摘 要:小目標檢測長期以來是計算機視覺中的一個難點和研究熱點。在深度學習的驅動下,小目標 檢測已取得了重大突破,并成功應用于國防安全、智能交通和工業自動化等領域。為了進一步促進小 目標檢測的發展,本文對小目標檢測算法進行了全面的總結,并對已有算法進行了歸類、分析和比較。首先,對小目標進行了定義,并概述小目標檢測所面臨的挑戰。然后,重點闡述從數據增強、多尺度學 習、上下文學習、生成對抗學習以及無錨機制等方面來提升小目標檢測性能的方法,并分析了這些方法 的優缺點和關聯性。之后,全面介紹小目標數據集,并在一些常用的公共數據集上對已有算法進行了 性能評估。最后本文對小目標檢測技術的未來發展方向進行了展望。
摘要: 圖像異常檢測是計算機視覺領域的一個熱門研究課題, 其目標是在不使用真實異常樣本的情況下, 利用現有的正常樣本構建模型以檢測可能出現的各種異常圖像, 在工業外觀缺陷檢測, 醫學圖像分析, 高光譜圖像處理等領域有較高的研究意義和應用價值. 本文首先介紹了異常的定義以及常見的異常類型. 然后, 本文根據在模型構建過程中有無神經網絡的參與, 將圖像異常檢測方法分為基于傳統方法和基于深度學習兩大類型, 并分別對相應的檢測方法的設計思路、優點和局限性進行了綜述與分析. 其次, 梳理了圖像異常檢測任務中面臨的主要挑戰. 最后, 對該領域未來可能的研究方向進行了展望.
小目標檢測一直是目標檢測領域中的熱點和難點,其主要挑戰是小目標像素少,難以提取有效的特征信息.近年來,隨著深度學習理論和技術的快速發展,基于深度學習的小目標檢測取得了較大進展,研究者從網絡結構、訓練策略、數據處理等方面入手,提出了一系列用于提高小目標檢測性能的方法.該文對基于深度學習的小目標檢測方法進行詳細綜述,按照方法原理將現有的小目標檢測方法分為基于多尺度預測、基于數據增強技術、基于提高特征分辨率、基于上下文信息,以及基于新的主干網絡和訓練策略等5類方法,全面分析總結基于深度學習的小目標檢測方法的研究現狀和最新進展,對比分析這些方法的特點和性能,并介紹常用的小目標檢測數據集.在總體梳理小目標檢測方法的研究進展的基礎上,對未來的研究方向進行展望.
摘要: 目標檢測技術是光學遙感圖像理解的基礎問題, 具有重要的應用價值. 本文對遙感圖像目標檢測算法發展進行了梳理和分析. 首先闡述了遙感圖像目標檢測的特點和挑戰; 之后系統總結了典型的檢測方法, 包括早期的基于手工設計特征的算法和現階段基于深度學習的方法, 對于深度學習方法首先介紹了典型的目標檢測模型, 進而針對遙感圖像本身的難點詳細梳理了優化改進方案; 接著介紹了常用的檢測數據集, 并對現有方法的性能進行比較; 最后對現階段問題進行總結并對未來發展趨勢進行展望.
摘要: 圖像修復是計算機視覺領域中極具挑戰性的研究課題。近年來,深度學習技術的發展推動了圖像修復性能的顯著提升,使得圖像修復這一傳統課題再次引起了學者們的廣泛關注。文章致力于綜述圖像修復研究的關鍵技術。由于深度學習技術在解決“大面積缺失圖像修復”問題時具有重要作用并帶來了深遠影響,文中在簡要介紹傳統圖像修復方法的基礎上,重點介紹了基于深度學習的修復模型,主要包括模型分類、優缺點對比、適用范圍和在常用數據集上的性能對比等,最后對圖像修復潛在的研究方向和發展動態進行了分析和展望。
對流體圖像序列進行運動分析一直是流體力學、醫學和計算機視覺等領域的重要研究課題。從圖像對中提取的密集精確的速度矢量場能夠為許多領域提供有價值的信息,基于光流法的流體運動估計技術因其獨特的優勢成為一個有前途的方向。光流法可以獲得具有較高分辨率的密集速度矢量場,在小尺度精細結構的測量上有所改進,彌補了基于相關分析法的粒子圖像測速技術的不足。此外,光流方法還可以方便的引入各種物理約束,獲得較為符合流體運動特性的運動估計結果。為了全面反映基于光流法的流體運動估計算法的研究進展,本文在廣泛調研相關文獻的基礎上,對國內外具有代表性的論文進行了系統闡述。首先介紹了光流法的基本原理,然后將現有算法按照要解決的突出問題進行分類:結合流體力學知識的能量最小化函數,提高對光照變化的魯棒性,大位移估計和消除異常值。對每類方法,從問題解決過程的角度予以介紹,分析了各類突出問題中現有算法的特點和局限性。最后,總結分析了流體運動估計技術當前面臨的問題和挑戰,并對未來基于光流法的運動估計算法的研究方向和研究重點進行了展望。
//www.cjig.cn/jig/ch/reader/view_abstract.aspx?file_no=20210209&flag=1
在計算機視覺領域中,語義分割是場景解析和行為識別的關鍵任務,基于深度卷積神經網絡的圖像語義分割方法已經取得突破性進展。語義分割的任務是對圖像中的每一個像素分配所屬的類別標簽,屬于像素級的圖像理解。目標檢測僅定位目標的邊界框,而語義分割需要分割出圖像中的目標。本文首先分析和描述了語義分割領域存在的困難和挑戰,介紹了語義分割算法性能評價的常用數據集和客觀評測指標。然后,歸納和總結了現階段主流的基于深度卷積神經網絡的圖像語義分割方法的國內外研究現狀,依據網絡訓練是否需要像素級的標注圖像,將現有方法分為基于監督學習的語義分割和基于弱監督學習的語義分割兩類,詳細闡述并分析這兩類方法各自的優勢和不足。本文在PASCAL VOC(pattern analysis, statistical modelling and computational learning visual object classes)2012數據集上比較了部分監督學習和弱監督學習的語義分割模型,并給出了監督學習模型和弱監督學習模型中的最優方法,以及對應的MIoU(mean intersection-over-union)。最后,指出了圖像語義分割領域未來可能的熱點方向。
//www.cjig.cn/jig/ch/reader/view_abstract.aspx?file_no=20200601&flag=1
//cea.ceaj.org/CN/abstract/abstract39198.shtml
近年來,深度學習技術被廣泛應用于各個領域,基于深度學習的預處理模型將自然語言處理帶入一個新時代。預訓練模型的目標是如何使預訓練好的模型處于良好的初始狀態,在下游任務中達到更好的性能表現。對預訓練技術及其發展歷史進行介紹,并按照模型特點劃分為基于概率統計的傳統模型和基于深度學習的新式模型進行綜述;簡要分析傳統預訓練模型的特點及局限性,重點介紹基于深度學習的預訓練模型,并針對它們在下游任務的表現進行對比評估;梳理出具有啟發意義的新式預訓練模型,簡述這些模型的改進機制以及在下游任務中取得的性能提升;總結目前預訓練的模型所面臨的問題,并對后續發展趨勢進行展望。
摘要:小目標檢測是針對圖像中像素占比少的目標,借助計算機視覺在圖像中找到并判斷該目標所屬類別的目標檢測技術。與目前應用較為成熟的大尺度、中尺度目標檢測不同,小目標自身存在著語義信息少、覆蓋面積小等先天不足,導致小目標的檢測效果并不理想,因此如何提高小目標的檢測效果依然是計算機視覺領域的一大難題。對近年來國內外小目標檢測領域研究成果進行了梳理,以小目標檢測技術為核心,首先對關于小目標的定義、檢測難點進行分析;隨后將能有效提高小目標檢測精度的方法進行分類匯總,并介紹了各種方法的應用與優缺點;最后對未來小目標檢測領域發展趨勢進行了預測與展望。
機器視覺是建立在計算機視覺理論工程化基礎上的一門學科,涉及到光學成像、視覺信息處理、人工智能以及機電一體化等相關技術。隨著我國制造業的轉型升級與相關研究的不斷深入,機器視覺技術憑借其精度高、實時性強、自動化與智能化程度高等優點,成為了提升機器人智能化的重要驅動力之一,并被廣泛應用于工業生產、農業以及軍事等各個領域。在廣泛查閱相關文獻之后,針對近十多年來機器視覺相關技術的發展與應用進行分析與總結,旨在為研究學者與工程應用人員提供參考。首先,總結了機器視覺技術的發展歷程、國內外的機器視覺發展現狀;其次,重點分析了機器視覺系統的核心組成部件、常用視覺處理算法以及當前主流的機器視覺工業軟件;然后,介紹了機器視覺技術在產品瑕疵檢測、智能視頻監控分析、自動駕駛與輔助駕駛與醫療影像診斷等四個典型領域的應用;最后分析了當前機器視覺技術所面臨的挑戰,并對其未來的發展趨勢進行了展望。希望為機器視覺技術的發展和應用推廣發揮積極作用。
摘要: 目標檢測算法應用廣泛,一直是計算機視覺領域備受關注的研究熱點。近年來,隨著深度學習的發展,3D圖像的目標檢測研究取得了巨大的突破。與2D目標檢測相比,3D目標檢測結合了深度信息,能夠提供目標的位置、方向和大小等空間場景信息,在自動駕駛和機器人領域發展迅速。文中首先對基于深度學習的2D目標檢測算法進行概述;其次根據圖像、激光雷達、多傳感器等不同數據采集方式,分析目前具有代表性和開創性的3D目標檢測算法;結合自動駕駛的應用場景,對比分析不同 3D 目標檢測算法的性能、優勢和局限性;最后總結了3D目標檢測的應用意義以及待解決的問題,并對 3D 目標檢測的發展方向和新的挑戰進行了討論和展望。