摘要: 圖像修復是計算機視覺領域中極具挑戰性的研究課題。近年來,深度學習技術的發展推動了圖像修復性能的顯著提升,使得圖像修復這一傳統課題再次引起了學者們的廣泛關注。文章致力于綜述圖像修復研究的關鍵技術。由于深度學習技術在解決“大面積缺失圖像修復”問題時具有重要作用并帶來了深遠影響,文中在簡要介紹傳統圖像修復方法的基礎上,重點介紹了基于深度學習的修復模型,主要包括模型分類、優缺點對比、適用范圍和在常用數據集上的性能對比等,最后對圖像修復潛在的研究方向和發展動態進行了分析和展望。
準確分割肺結節在臨床上具有重要意義。計算機斷層掃描(computer tomography,CT)技術以其成像速度快、圖像分辨率高等優點廣泛應用于肺結節分割及功能評價中。為了進一步對肺部CT影像中的肺結節分割方法進行探索,本文對基于CT影像的肺結節分割方法研究進行綜述。1)對傳統的肺結節分割方法及其優缺點進行了歸納比較;2)重點介紹了包括深度學習、深度學習與傳統方法相結合在內的肺結節分割方法;3)簡單介紹了肺結節分割方法的常用評價指標,并結合部分方法的指標表現展望了肺結節分割方法研究領域的未來發展趨勢。傳統的肺結節分割方法各有優缺點和其適用的結節類型,深度學習分割方法因普適性好等優點成為該領域的研究熱點。研究者們致力于如何提高分割結果的準確度、模型的魯棒性及方法的普適性,為了實現此目的本文總結了各類方法的優缺點。基于CT影像的肺結節分割方法研究已經取得了不小的成就,但肺結節形狀各異、密度不均勻,且部分結節與血管、胸膜等解剖結構粘連,給結節分割增加了困難,結節分割效果仍有很大提升空間。精度高、速度快的深度學習分割方法將會是研究者密切關注的方法,但該類方法仍需解決數據需求量大和網絡模型超參數的確定等問題。
//www.cjig.cn/jig/ch/reader/view_abstract.aspx?file_no=20210402&flag=1
摘要: 深度信念網絡(Deep belief network, DBN)是一種基于深度學習的生成模型, 克服了傳統梯度類學習算法在處理深層結構所面臨的梯度消失問題, 近幾年來已成為深度學習領域的研究熱點之一.基于分階段學習的思想, 人們設計了不同結構和學習算法的深度信念網絡模型.本文在回顧總結深度信念網絡的研究現狀基礎上, 給出了其發展趨勢.首先, 給出深度信念網絡的基本模型結構以及其標準的學習框架, 并分析了深度信念網絡與其他深度結構的關系與區別; 其次, 回顧總結深度信念網絡研究現狀, 基于標準模型分析不同深度信念網絡結構的性能; 第三, 給出深度信念網絡的不同無監督預訓練和有監督調優算法, 并分析其性能; 最后, 給出深度信念網絡今后的發展趨勢以及未來值得研究的方向.
傳統圖像修復算法在修復區域涉及復雜非重復結構(如面部)時,不能準確捕捉到高級語義。近三年來基于深度學習的方法被應用于圖像修復中,其修復結果的結構相似性較傳統方法提高了10%以上。首先闡述了面部修復技術的研究發展歷程,主要介紹了基于深度學習的面部修復算法,將其分為無監督和有監督兩大類方法,在每一類中重點對近年來涌現的各種面部修復算法進行分析和總結;然后歸納了當前主流的六類圖像數據集,以及算法性能評價指標;最后討論了面部修復技術的未來研究方向。
近年來,三維人臉識別研究取得了較大進展.相比 二維人臉識別,三維人臉識別更具有優勢,主要特點是在識 別中利用了三維形狀數據.該文首先根據三維形狀數據的 來源,將三維人臉識別分為基于彩色圖像的三維人臉識別、 基于高質 量 三 維 掃 描 數 據 的 三 維 人 臉 識 別、基 于 低 質 量 RGBGD圖像的三維人臉識別,分別闡述了各自具有代表性 的方法及其優缺點;其次分析了深度學習在三維人臉識別 中的應用方式;然后分析了三維人臉數據與二維圖像在雙 模態人臉識別中的融合方法,并介紹了常用的三維人臉數 據庫;最后 討 論 了 三 維 人 臉 識 別 面 臨 的 主 要 困 難 及 發 展 趨勢.
//cea.ceaj.org/CN/abstract/abstract39198.shtml
近年來,深度學習技術被廣泛應用于各個領域,基于深度學習的預處理模型將自然語言處理帶入一個新時代。預訓練模型的目標是如何使預訓練好的模型處于良好的初始狀態,在下游任務中達到更好的性能表現。對預訓練技術及其發展歷史進行介紹,并按照模型特點劃分為基于概率統計的傳統模型和基于深度學習的新式模型進行綜述;簡要分析傳統預訓練模型的特點及局限性,重點介紹基于深度學習的預訓練模型,并針對它們在下游任務的表現進行對比評估;梳理出具有啟發意義的新式預訓練模型,簡述這些模型的改進機制以及在下游任務中取得的性能提升;總結目前預訓練的模型所面臨的問題,并對后續發展趨勢進行展望。
機器視覺是建立在計算機視覺理論工程化基礎上的一門學科,涉及到光學成像、視覺信息處理、人工智能以及機電一體化等相關技術。隨著我國制造業的轉型升級與相關研究的不斷深入,機器視覺技術憑借其精度高、實時性強、自動化與智能化程度高等優點,成為了提升機器人智能化的重要驅動力之一,并被廣泛應用于工業生產、農業以及軍事等各個領域。在廣泛查閱相關文獻之后,針對近十多年來機器視覺相關技術的發展與應用進行分析與總結,旨在為研究學者與工程應用人員提供參考。首先,總結了機器視覺技術的發展歷程、國內外的機器視覺發展現狀;其次,重點分析了機器視覺系統的核心組成部件、常用視覺處理算法以及當前主流的機器視覺工業軟件;然后,介紹了機器視覺技術在產品瑕疵檢測、智能視頻監控分析、自動駕駛與輔助駕駛與醫療影像診斷等四個典型領域的應用;最后分析了當前機器視覺技術所面臨的挑戰,并對其未來的發展趨勢進行了展望。希望為機器視覺技術的發展和應用推廣發揮積極作用。
推薦系統旨在為用戶推薦個性化的在線商品或信息, 其廣泛應用于眾多Web場景之中, 來處理海量信息數據所導致的信息過載問題, 以此提升用戶體驗. 鑒于推薦系統強大的實用性, 自20世紀90年代中期以來, 研究者針對其方法與應用兩方面, 進行了大量廣泛的研究. 近年來, 很多工作發現知識圖譜中所蘊含的豐富信息可以有效地解決推薦系統中存在的一系列關鍵問題, 例如數據稀疏、冷啟動、推薦多樣性等. 因此, 本文 針對基于知識圖譜的推薦系統這一領域進行了全面的綜述. 具體地, 首先簡單介紹推薦系統與知識圖譜中的一些基本概念. 隨后, 詳細介紹現有方法如何挖掘知識圖譜不同種類的信息并應用于推薦系統. 此外, 總結了相關的一系列推薦應用場景. 最后, 提出了對基于知識圖譜的推薦系統前景的看法, 并展望了該領域未來的研究方向.
摘要: 在自然語言處理領域,信息抽取一直以來受到人們的關注.信息抽取主要包括3項子任務:實體抽取、關系抽取和事件抽取,而關系抽取是信息抽取領域的核心任務和重要環節.實體關系抽取的主要目標是從自然語言文本中識別并判定實體對之間存在的特定關系,這為智能檢索、語義分析等提供了基礎支持,有助于提高搜索效率,促進知識庫的自動構建.綜合闡述了實體關系抽取的發展歷史,介紹了常用的中文和英文關系抽取工具和評價體系.主要從4個方面展開介紹了實體關系抽取方法,包括:早期的傳統關系抽取方法、基于傳統機器學習、基于深度學習和基于開放領域的關系抽取方法,總結了在不同歷史階段的主流研究方法以及相應的代表性成果,并對各種實體關系抽取技術進行對比分析.最后,對實體關系抽取的未來重點研究內容和發展趨勢進行了總結和展望.
//crad.ict.ac.cn/CN/10.7544/issn1000-1239.2020.20190358#1
摘要: 目標檢測算法應用廣泛,一直是計算機視覺領域備受關注的研究熱點。近年來,隨著深度學習的發展,3D圖像的目標檢測研究取得了巨大的突破。與2D目標檢測相比,3D目標檢測結合了深度信息,能夠提供目標的位置、方向和大小等空間場景信息,在自動駕駛和機器人領域發展迅速。文中首先對基于深度學習的2D目標檢測算法進行概述;其次根據圖像、激光雷達、多傳感器等不同數據采集方式,分析目前具有代表性和開創性的3D目標檢測算法;結合自動駕駛的應用場景,對比分析不同 3D 目標檢測算法的性能、優勢和局限性;最后總結了3D目標檢測的應用意義以及待解決的問題,并對 3D 目標檢測的發展方向和新的挑戰進行了討論和展望。