亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

近年來,三維人臉識別研究取得了較大進展.相比 二維人臉識別,三維人臉識別更具有優勢,主要特點是在識 別中利用了三維形狀數據.該文首先根據三維形狀數據的 來源,將三維人臉識別分為基于彩色圖像的三維人臉識別、 基于高質 量 三 維 掃 描 數 據 的 三 維 人 臉 識 別、基 于 低 質 量 RGBGD圖像的三維人臉識別,分別闡述了各自具有代表性 的方法及其優缺點;其次分析了深度學習在三維人臉識別 中的應用方式;然后分析了三維人臉數據與二維圖像在雙 模態人臉識別中的融合方法,并介紹了常用的三維人臉數 據庫;最后 討 論 了 三 維 人 臉 識 別 面 臨 的 主 要 困 難 及 發 展 趨勢.

//jst.tsinghuajournals.com/CN/Y2021/V61/I1/77

付費5元查看完整內容

相關內容

單幅圖像超分辨率重建是計算機視覺領域上的一個重要問題, 在安防視頻監控、飛機航拍以及衛星遙感等方面具有重要的研究意義和應用價值. 近年來, 深度學習在圖像分類、檢測、識別等諸多領域中取得了突破性進展, 也推動著圖像超分辨率重建技術的發展. 本文首先介紹單幅圖像超分辨率重建的常用公共圖像數據集; 然后重點闡述基于深度學習的單幅圖像超分辨率重建方向的創新與進展; 最后討論了單幅圖像超分辨率重建方向上存在的困難和挑戰, 并對未來的發展趨勢進行了思考與展望.

//www.aas.net.cn/cn/article/doi/10.16383/j.aas.c190859

付費5元查看完整內容

我們生活在一個由大量不同模態內容構建而成的多媒體世界中,不同模態信息之間具有高度的相關性和互補性,多模態表征學習的主要目的就是挖掘出不同模態之間的共性和特性,產生出可以表示多模態信息的隱含向量.該文章主要介紹了目前應用較廣的視覺語言表征的相應研究工作,包括傳統的基于相似性模型的研究方法和目前主流的基于語言模型的預訓練的方法.目前比較好的思路和解決方案是將視覺特征語義化然后與文本特征通過一個強大的特征抽取器產生出表征,其中Transformer[1]作為主要的特征抽取器被應用表征學習的各類任務中.文章分別從研究背景、不同研究方法的劃分、測評方法、未來發展趨勢等幾個不同角度進行闡述.

//www.jos.org.cn/jos/ch/reader/view_abstract.aspx?file_no=6125&flag=1

付費5元查看完整內容

摘要: 行人重識別是近年來計算機視覺領域的熱點問題, 經過多年的發展, 基于可見光圖像的一般行人重識別技術已經趨近成熟. 然而, 目前的研究多基于一個相對理想的假設, 即行人圖像都是在光照充足的條件下拍攝的高分辨率圖像. 因此雖然大多數的研究都能取得較為滿意的效果, 但在實際環境中并不適用. 多源數據行人重識別即利用多種行人信息進行行人匹配的問題. 除了需要解決一般行人重識別所面臨的問題外, 多源數據行人重識別技術還需要解決不同類型行人信息與一般行人圖片相互匹配時的差異問題, 如低分辨率圖像、紅外圖像、深度圖像、文本信息和素描圖像等. 因此, 與一般行人重識別方法相比, 多源數據行人重識別研究更具實用性, 同時也更具有挑戰性. 本文首先介紹了一般行人重識別的發展現狀和所面臨的問題, 然后比較了多源數據行人重識別與一般行人重識別的區別, 并根據不同數據類型總結了5 類多源數據行人重識別問題, 分別從方法、數據集兩個方面對現有工作做了歸納和分析. 與一般行人重識別技術相比, 多源數據行人重識別的優點是可以充分利用各類數據學習跨模態和類型的特征轉換. 最后, 本文討論了多源數據行人重識別未來的發展.

//www.aas.net.cn/cn/article/doi/10.16383/j.aas.c190278

付費5元查看完整內容

隨著數據采集技術的進步,帶有地理位置信息的時空數據迅速增長,迫切需要探索有效的時空數據建模方法。時空序列預測是時空數據建模的基礎方法之一,它廣泛應用于很多領域。目前缺乏對它進行綜述的中文文獻,因而對這些方法進行歸納和總結具有重要的研究意義。針對時空序列預測問題進行了研究,首先回顧了其應用背景和發展歷程,介紹了它的相關定義及特點。然后按其類別介紹了傳統的時空序列預測方法、基于傳統機器學習的時空序列預測方法和基于深度學習的時空序列預測方法,并分析了這些方法的應用范圍和優缺點。最后對時空序列預測未來的研究方向進行了梳理和展望,為研究者們進一步深入研究時空序列預測問題奠定了理論基礎。

//kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDAUTO&filename=JSYJ202010001&v=Dhm5rO5ZeYgyZbNpnHoaIPZm2jZat5Y1%25mmd2BxLMLQnQvulreqkfkSD6lv0FxAe0uh1D

付費5元查看完整內容

行人再識別的主要任務是利用計算機視覺對特定行人進行跨視域匹配和檢索。相比于傳統算法,由數據驅 動的深度學習方法所提取的特征更能表征行人之間的區分性。對行人再識別的背景及研究歷史、主要面臨的挑 戰、主要方法、數據集及評價指標進行了梳理和總結。主要從特征表達、局部特征、生成對抗網絡三個方面對行人 再識別的算法進行分析,列舉了行人再識別9個常用數據集、3個評價標準和14種典型方法在 Market1501數據集 上取得的準確率,最后對行人再識別的未來研究方向進行展望。

付費5元查看完整內容

摘要: 三維重建在視覺方面具有很高的研究價值, 在機器人視覺導航、智能車環境感知系統以及虛擬現實中被廣泛應用.本文對近年來國內外基于視覺的三維重建方法的研究工作進行了總結和分析, 主要介紹了基于主動視覺下的激光掃描法、結構光法、陰影法以及TOF (Time of flight)技術、雷達技術、Kinect技術和被動視覺下的單目視覺、雙目視覺、多目視覺以及其他被動視覺法的三維重建技術, 并比較和分析這些方法的優點和不足.最后對三維重建的未來發展作了幾點展望。

付費5元查看完整內容

摘要: 大數據時代,數據呈現維度高、數據量大和增長快等特點。如何有效利用其中蘊含的有價值信息,以實現數據的智能化處理,已成為當前理論和應用的研究熱點。針對現實普遍存在的多義性對象,數據多標簽被提出并被廣泛應用于數據智能化組織。近年來,深度學習在數據特征提取方面呈現出高速、高精度等優異性,使基于深度學習的多標簽生成得到廣泛關注。文中分五大類別總結了最新研究成果,并進一步從數據、關系類型、應用場景、適應性及實驗性能方面對其進行對比和分析,最后探討了多標簽生成面臨的挑戰和未來的研究方向。

付費5元查看完整內容

摘要: 目標檢測算法應用廣泛,一直是計算機視覺領域備受關注的研究熱點。近年來,隨著深度學習的發展,3D圖像的目標檢測研究取得了巨大的突破。與2D目標檢測相比,3D目標檢測結合了深度信息,能夠提供目標的位置、方向和大小等空間場景信息,在自動駕駛和機器人領域發展迅速。文中首先對基于深度學習的2D目標檢測算法進行概述;其次根據圖像、激光雷達、多傳感器等不同數據采集方式,分析目前具有代表性和開創性的3D目標檢測算法;結合自動駕駛的應用場景,對比分析不同 3D 目標檢測算法的性能、優勢和局限性;最后總結了3D目標檢測的應用意義以及待解決的問題,并對 3D 目標檢測的發展方向和新的挑戰進行了討論和展望。

付費5元查看完整內容

模態是指事物發生或存在的方式,如文字、語言、聲音、圖形等。多模態學習是指學習多個模態中各個模態的信息,并且實現各個模態的信息的交流和轉換。多模態深度學習是指建立可以完成多模態學習任務的神經網絡模型。多模態學習的普遍性和深度學習的熱度賦予了多模態深度學習鮮活的生命力和發展潛力。旨在多模態深度學習的發展前期,總結當前的多模態深度學習,發現在不同的多模態組合和學習目標下,多模態深度學習實現過程中的共有問題,并對共有問題進行分類,敘述解決各類問題的方法。具體來說,從涉及自然語言、視覺、聽覺的多模態學習中考慮了語言翻譯、事件探測、信息描述、情緒識別、聲音識別和合成,以及多媒體檢索等方面研究,將多模態深度學習實現過程中的共有問題分為模態表示、模態傳譯、模態融合和模態對齊四類,并對各問題進行子分類和論述,同時列舉了為解決各問題產生的神經網絡模型。最后論述了實際多模態系統,多模態深度學習研究中常用的數據集和評判標準,并展望了多模態深度學習的發展趨勢。

付費5元查看完整內容

摘要 : 零樣本圖像分類指訓練集和測試集在數據的類別上沒有交集的情況下進行圖像分類 . 該技術 是解決類別標簽缺失問題的一種有效手段 , 因此受到了日益廣泛的關注 . 自提出此問題至今 , 零樣本 圖像分類的研究已經大致有十年時間 . 本文系統地對過去十年中零樣本圖像分類技術的研究進展進行 了綜述 , 主要包括以下 4 個方面 . 首先介紹零樣本圖像分類技術的研究意義及其應用價值 , 然后重點 總結和歸納零樣本圖像分類的發展過程和研究現狀 , 接下來介紹常用的數據集和評價準則 , 以及與零 樣本學習相關的技術的區別和聯系 , 最后分析有待深入研究的熱點與難點問題 , 并對未來的發展趨勢 進行了展望 .

關鍵詞: 零樣本圖像分類 , 屬性 , 詞向量 , 跨模態映射 , 領域適應學習

付費5元查看完整內容
北京阿比特科技有限公司