亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

盡管它在機器學習中有重要的應用,非凸非凹目標的最小-最大優化仍然是難以實現的。不僅沒有已知的一階方法收斂甚至近似局部最小最大點,而且識別它們的計算復雜度也不為人所知。本文給出了非凸非凹目標和線性約束的約束最小-最優優化問題的計算復雜度,以及一階方法的局限性。

//arxiv.org/abs/2009.09623

付費5元查看完整內容

相關內容

圖在許多應用中被廣泛用于表示復雜數據,如電子商務、社交網絡和生物信息學。高效、有效地分析圖數據對于基于圖的應用程序非常重要。然而,大多數圖分析任務是組合優化(CO)問題,這是NP困難。最近的研究集中在使用機器學習(ML)解決基于圖CO問題的潛力上。使用基于ML的CO方法,一個圖必須用數值向量表示,這被稱為圖嵌入。在這個調查中,我們提供了一個全面的概述,最近的圖嵌入方法已經被用來解決CO問題。大多數圖嵌入方法有兩個階段:圖預處理和ML模型學習。本文從圖預處理任務和ML模型的角度對圖嵌入工作進行分類。此外,本文還總結了利用圖嵌入的基于圖的CO方法。特別是,圖嵌入可以被用作分類技術的一部分,也可以與搜索方法相結合來尋找CO問題的解決方案。最后對未來的研究方向做了一些評論。

付費5元查看完整內容

這本書全面介紹優化工程系統設計的實用算法。這本書從工程的角度進行優化,其目標是設計一個系統來優化受約束的一組指標。讀者將學習一系列挑戰的計算方法,包括高維搜索空間,處理有多個競爭目標的問題,以及適應指標中的不確定性。圖表、例子和練習傳達了數學方法背后的直覺。文本提供了Julia編程語言的具體實現。

//mitpress.mit.edu/books/algorithms-optimization

許多學科的核心都涉及到優化。在物理學中,系統被驅動到他們的最低能量狀態服從物理定律。在商業上,公司的目標是股東價值最大化。在生物學中,越健康的生物體越有可能生存下來。這本書將從工程的角度關注優化,目標是設計一個系統來優化受約束的一組指標。這個系統可以是一個復雜的物理系統,比如飛機,也可以是一個簡單的結構,比如自行車車架。這個系統甚至可能不是物理的;例如,我們可能會有興趣為自動化車輛設計一個控制系統,或設計一個計算機視覺系統來檢測腫瘤活檢的圖像是否為癌。我們希望這些系統能運行得盡可能好。根據應用程序的不同,相關的度量可能包括效率、安全性和準確性。對設計的限制可能包括成本、重量和結構堅固性。

這本書是關于優化的算法,或計算過程。給定系統設計的一些表示,如編碼機翼幾何的一組數字,這些算法將告訴我們如何搜索空間的可能設計,以找到最好的一個。根據應用程序的不同,這種搜索可能涉及運行物理實驗,比如風洞測試,也可能涉及計算解析表達式或運行計算機模擬。我們將討論解決各種挑戰的計算方法,例如如何搜索高維空間,處理有多個競爭目標的問題,以及適應指標中的不確定性。

付費5元查看完整內容

【導讀】深度神經網絡在很多監督任務都達到了SOTA性能,但是其計算量是個挑戰。來自MIT 教授 Vivienne Sze等學者發布了關于《深度神經網絡的高效處理》著作,本書為深度神經網絡(DNNs)的高效處理提供了關鍵原則和技術的結構化處理。值得關注。

//www.morganclaypoolpublishers.com/catalog_Orig/product_info.php?cPath=22&products_id=1530

本書為深度神經網絡(DNNs)的高效處理提供了關鍵原則和技術的結構化處理。DNNs目前廣泛應用于許多人工智能(AI)應用,包括計算機視覺、語音識別和機器人技術。雖然DNNs在許多人工智能任務中提供了最好的性能,但它以高計算復雜度為代價。因此,在不犧牲準確性或增加硬件成本的情況下,能夠有效處理深層神經網絡以提高指標(如能源效率、吞吐量和延遲)的技術對于在人工智能系統中廣泛部署DNNs至關重要。

本書中包括了DNN處理的背景知識;設計DNN加速器的硬件架構方法的描述和分類;評價和比較不同設計的關鍵指標;DNN處理的特點是服從硬件/算法的共同設計,以提高能源效率和吞吐量;以及應用新技術的機會。讀者將會發現對該領域的結構化介紹,以及對現有工作中關鍵概念的形式化和組織,從而提供可能激發新想法的見解。

深度神經網絡(DNNs)已經變得非常流行; 然而,它們是以高計算復雜度為代價的。因此,人們對有效處理DNNs產生了極大的興趣。DNN加速的挑戰有三:

  • 為了實現高性能和效率
  • 提供足夠的靈活性,以滿足廣泛和快速變化的工作負載范圍
  • 能夠很好地集成到現有的軟件框架中。

目錄內容:

第一部分理解深層神經網絡

  • 介紹
  • 深度神經網絡概述

第二部分處理DNNs的硬件設計

  • 關鍵量度和設計目標
  • 內核計算
  • 設計DNN加速器
  • 專用硬件上的操作映射

第三部分,DNN硬件和算法的協同設計

  • 減少精度
  • 利用稀疏
  • 設計高效的DNN模型
  • 先進技術
  • 結論

第一個模塊旨在提供DNN領域的總體背景和了解DNN工作負載的特點。

  • 第一章提供了DNNs為什么重要的背景,他們的歷史和他們的應用。
  • 第二章概述了神經網絡的基本組成部分和目前常用的神經網絡模型。還介紹了用于DNN研究和開發的各種資源。這包括各種軟件框架的討論,以及用于訓練和評估的公共數據集。

第二部分主要介紹處理DNNs的硬件設計。它根據定制程度(從通用平臺到完全定制硬件)討論各種架構設計決策,以及在將DNN工作負載映射到這些架構時的設計考慮。同時考慮了時間和空間架構。

  • 第三章描述了在設計或比較各種DNN加速器時應該考慮的關鍵指標。
  • 第四章描述了如何處理DNN內核,重點關注的是時序架構,比如cpu和gpu。為了獲得更高的效率,這類架構通常具有緩存層次結構和粗粒度的計算能力,例如向量指令,從而使計算結果更高效。對于這樣的架構,DNN處理通常可以轉化為矩陣乘法,這有很多優化的機會。本章還討論了各種軟件和硬件優化,用于加速這些平臺上的DNN計算,而不影響應用程序的精度。
  • 第五章介紹了DNN處理專用硬件的設計,重點介紹了空間架構。它強調了用于處理DNN的硬件的處理順序和產生的數據移動,以及與DNN的循環嵌套表示的關系。循環嵌套中的循環順序稱為數據流,它決定了移動每個數據塊的頻率。循環嵌套中的循環限制描述了如何將DNN工作負載分解成更小的塊,稱為平鋪/阻塞,以說明在內存層次結構的不同級別上有限的存儲容量。
  • 第六章介紹了將DNN工作負載映射到DNN加速器的過程。它描述了找到優化映射所需的步驟,包括枚舉所有合法映射,并通過使用預測吞吐量和能源效率的模型來搜索這些映射。

第三個模塊討論了如何通過算法和硬件的協同設計來提高堆棧的效率,或者通過使用混合信號電路新的存儲器或設備技術來降低堆棧的效率。在修改算法的情況下,必須仔細評估對精度的影響。

  • 第七章描述了如何降低數據和計算的精度,從而提高吞吐量和能源效率。它討論了如何使用量化和相關的設計考慮來降低精度,包括硬件成本和對精度的影響。
  • 第八章描述了如何利用DNNs的稀疏性來減少數據的占用,這為減少存儲需求、數據移動和算術操作提供了機會。它描述了稀疏的各種來源和增加稀疏的技術。然后討論了稀疏DNN加速器如何將稀疏轉化為能源效率和吞吐量的提高。它還提出了一種新的抽象數據表示,可用于表達和獲得關于各種稀疏DNN加速器的數據流的見解。
  • 第九章描述了如何優化DNN模型的結構(即(例如DNN的“網絡架構”),以提高吞吐量和能源效率,同時盡量減少對準確性的影響。它討論了手工設計方法和自動設計方法(例如。(如神經結構搜索)
  • 第十章,關于先進技術,討論了如何使用混合信號電路和新的存儲技術,使計算更接近數據(例如,在內存中處理),以解決昂貴的數據移動,支配吞吐量和DNNs的能源消耗。并簡要討論了在光域內進行計算和通信以降低能耗和提高吞吐量的前景。

Vivienne Sze,來自 MIT 的高效能多媒體系統組(Energy-Efficient Multimedia Systems Group)。她曾就讀于多倫多大學,在 MIT 完成 PhD 學業并獲得電氣工程博士學位,目前在 MIT 任教。Sze 教授的主要研究興趣是高效能算法和移動多媒體設備應用架構。

付費5元查看完整內容

深度學習系統在許多任務中都取得了顯著的性能,但要確保生成的模型服從硬約束(在許多控制應用程序中可能經常需要這樣做),常常是出了名的困難。在這次演講中,我將介紹一些最近的關于在深度學習系統中加強不同類型的約束的工作。具體來說,我將重點介紹最近的一些工作,包括將一般的凸優化問題集成為深網絡中的層次,研究保證表示凸函數的學習網絡,以及研究增強非線性動力學的全局穩定性的深層動力系統。在所有情況下,我們都強調我們可以設計網絡結構來編碼這些隱性偏見的方式,這種方式可以讓我們輕松地執行這些硬約束。

付費5元查看完整內容

【導讀】場景優化理論(Scenario Optimization Approach)是一種基于約束樣本解決魯棒優化和機會約束優化問題的啟發式解決方案。該理論經過多年的發展,已經形成了較為系統的理論基礎。

介紹

本文從風險與復雜度(Risk and Complexity)的新角度,介紹了場景優化理論ScenarioOptimization Theory的最新進展。場景(scenario)是指源于環境的觀測樣本,場景優化(scenario approach)指使用一組可用的觀測樣本進行優化的理論,通過數據驅動優化(data-driven optimization)的思路,解決含不確定性的隨機優化和隨機決策問題。場景優化理論具有堅實的數學基礎,嘗試回答了一些基本問題,例如,如何將經驗納入決策過程,以取得優化的結果?若遇到訓練樣本中從未見過的新樣本,決策的執行效果如何?使用該理論和方法時,優化結果的魯棒性如何?該理論自2005年由M.C. Campi教授(IEEEFellow, 因該貢獻獲得2008年IEEE CSSGeorge S. Axelby outstanding paper award)等人提出以來,不斷取得新進展,已經廣泛應用于機器學習、控制系統設計、系統識別等問題,以及醫學分類、量化金融、航空運輸系統、能源系統等應用領域。本講座是M.C. Campi教授關于場景優化理論最新進展的介紹,更多相關研究可以訪問//marco-campi.unibs.it/?origin=publication_detail。

參考地址:

付費5元查看完整內容

本書概述了現代數據科學重要的數學和數值基礎。特別是,它涵蓋了信號和圖像處理(傅立葉、小波及其在去噪和壓縮方面的應用)、成像科學(反問題、稀疏性、壓縮感知)和機器學習(線性回歸、邏輯分類、深度學習)的基礎知識。重點是對方法學工具(特別是線性算子、非線性逼近、凸優化、最優傳輸)的數學上合理的闡述,以及如何將它們映射到高效的計算算法。

//mathematical-tours.github.io/book/

它應該作為數據科學的數字導覽的數學伴侶,它展示了Matlab/Python/Julia/R對這里所涵蓋的所有概念的詳細實現。

付費5元查看完整內容

對因果推理的簡明和自成體系的介紹,在數據科學和機器學習中越來越重要。

因果關系的數學化是一個相對較新的發展,在數據科學和機器學習中變得越來越重要。這本書提供了一個獨立的和簡明的介紹因果模型和如何學習他們的數據。在解釋因果模型的必要性,討論潛在的因果推論的一些原則,這本書教讀者如何使用因果模型:如何計算干預分布,如何從觀測推斷因果模型和介入的數據,和如何利用因果思想經典的機器學習問題。所有這些主題都將首先以兩個變量的形式進行討論,然后在更一般的多元情況下進行討論。對于因果學習來說,二元情況是一個特別困難的問題,因為經典方法中用于解決多元情況的條件獨立不存在。作者認為分析因果之間的統計不對稱是非常有意義的,他們報告了他們對這個問題十年來的深入研究。

本書對具有機器學習或統計學背景的讀者開放,可用于研究生課程或作為研究人員的參考。文本包括可以復制和粘貼的代碼片段、練習和附錄,其中包括最重要的技術概念摘要。

首先,本書主要研究因果關系推理子問題,這可能被認為是最基本和最不現實的。這是一個因果問題,需要分析的系統只包含兩個可觀測值。在過去十年中,作者對這個問題進行了較為詳細的研究。本書整理這方面的大部分工作,并試圖將其嵌入到作者認為對研究因果關系推理問題的選擇性至關重要的更大背景中。盡管先研究二元(bivariate)案例可能有指導意義,但按照章節順序,也可以直接開始閱讀多元(multivariate)章節;見圖一。

第二,本書提出的解決方法來源于機器學習和計算統計領域的技術。作者對其中的方法如何有助于因果結構的推斷更感興趣,以及因果推理是否能告訴我們應該如何進行機器學習。事實上,如果我們不把概率分布描述的隨機實驗作為出發點,而是考慮分布背后的因果結構,機器學習的一些最深刻的開放性問題就能得到最好的理解。
付費5元查看完整內容

摘要:

本文將優化描述為一個過程。在許多實際應用中,環境是如此復雜,以致于無法制定一個全面的理論模型,并使用經典算法理論和數學優化。采取一種穩健的方法是必要的,也是有益的,方法是應用一種不斷學習的優化方法,在觀察到問題的更多方面時從經驗中學習。這種將優化視為一個過程的觀點在各個領域都很突出,并在建模和系統方面取得了一些驚人的成功,現在它們已經成為我們日常生活的一部分。

作者介紹:

Elad Hazan是普林斯頓大學計算機科學教授。他于2015年從Technion畢業,當時他是該校運籌學副教授。他的研究重點是機器學習和優化的基本問題的算法設計和分析。他的貢獻包括合作開發用于訓練學習機器的AdaGrad算法,以及第一個用于凸優化的次線性時間算法。他曾(兩次)獲得2012年IBM Goldberg最佳論文獎,以表彰他對機器學習的次線性時間算法的貢獻。2008年,他還獲得了歐洲研究理事會(European Research Council)的一筆撥款、瑪麗?居里(Marie Curie)獎學金和谷歌研究獎(兩次)。他是計算學習協會的指導委員會成員,并擔任COLT 2015的項目主席。

//www.cs.princeton.edu/~ehazan/

付費5元查看完整內容

A Survey of Model Compression and Acceleration for Deep Neural Networks 深度卷積神經網絡(CNNs)最近在許多視覺識別任務中取得了巨大的成功。然而,現有的深度神經網絡模型在計算上是昂貴的和內存密集型的,這阻礙了它們在低內存資源的設備或有嚴格時間延遲要求的應用程序中的部署。因此,在不顯著降低模型性能的情況下,在深度網絡中進行模型壓縮和加速是一種自然的思路。在過去幾年中,這方面取得了巨大的進展。本文綜述了近年來發展起來的壓縮和加速CNNs模型的先進技術。這些技術大致分為四種方案: 參數剪枝和共享、低秩因子分解、傳輸/緊湊卷積過濾器和知識蒸餾。首先介紹參數修剪和共享的方法,然后介紹其他技術。對于每種方案,我們都提供了關于性能、相關應用程序、優點和缺點等方面的詳細分析。然后我們將討論一些最近比較成功的方法,例如,動態容量網絡和隨機深度網絡。然后,我們調查評估矩陣、用于評估模型性能的主要數據集和最近的基準測試工作。最后,對全文進行總結,并對今后的研究方向進行了展望。

付費5元查看完整內容
北京阿比特科技有限公司