亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

最近小編推出CVPR2019圖卷積網絡、CVPR2019生成對抗網絡、【可解釋性】,CVPR視覺目標跟蹤,CVPR視覺問答,醫學圖像分割,圖神經網絡的推薦,CVPR域自適應, ICML圖神經網絡,ICML元學習相關論文,反響熱烈。最近,ACL 2019最新接受文章出爐,大會共收到2905 篇論文投稿,其中660 篇被接收(接收率為22.7%)。小編發現,今年接受的文章結合GNN的工作有二三十篇,看來,圖神經網絡已經攻占NLP領域,希望其他領域的同學多多學習,看能否結合,期待好的工作!今天小編專門整理最新十篇ACL長文,圖神經網絡(GNN)+NLP—注意力機制引導圖神經網絡、Graph-to-Sequence、動態融合圖網絡、實體和關系抽取、Multi-hop閱讀理解、多模態上下文圖理解等。

1、Attention Guided Graph Convolutional Networks for Relation Extraction (注意力機制引導圖神經網絡的關系抽取)

ACL ’19

作者:Zhijiang Guo*, Yan Zhang* and Wei Lu

摘要:Dependency trees傳遞豐富的結構信息,這些信息對于提取文本中實體之間的關系非常有用。然而,如何有效利用相關信息而忽略Dependency trees中的無關信息仍然是一個具有挑戰性的研究問題。現有的方法使用基于規則的hard-pruning策略來選擇相關的部分依賴結構,可能并不總是產生最佳結果。本文提出了一種直接以全依賴樹為輸入的Attention Guided圖卷積網絡(AGGCNs)模型。我們的模型可以理解為一種soft-pruning方法,它自動學習如何有選擇地關注對關系提取任務有用的相關子結構。在包括跨句n元關系提取和大規模句級關系提取在內的各種任務上的大量結果表明,我們的模型能夠更好地利用全依賴樹的結構信息,其結果顯著優于之前的方法。

網址: //www.statnlp.org/paper/2019/attention-guided-graph-convolutional-networks-relation-extraction.html

代碼鏈接:

2、Cognitive Graph for Multi-Hop Reading Comprehension at Scale(大規模認知圖的Multi-Hop閱讀理解)

ACL ’19

作者:Ming Ding, Chang Zhou, Qibin Chen, Hongxia Yang, Jie Tang

摘要:我們提出了一種新的基于CogQA的web級文檔multi-hop問答框架。該框架以認知科學的對偶過程理論為基礎,通過協調隱式抽取模塊(System 1)和顯式推理模塊(System 2),在迭代過程中逐步構建認知圖,在給出準確答案的同時,進一步提供了可解釋的推理路徑。具體來說,我們基于BERT和graph neural network (GNN)的實現有效地處理了HotpotQA fullwiki數據集中數百萬個multi-hop推理問題的文檔,在排行榜上獲得了34.9的F1 score,而最佳競爭對手的得分為23.6。

網址:

代碼鏈接:

3、Coherent Comment Generation for Chinese Articles with a Graph-to-Sequence Model(使用Graph-to-Sequence模型為中文文章生成連貫的評論)

ACL ’19

作者:Wei Li, Jingjing Xu, Yancheng He, Shengli Yan, Yunfang Wu, Xu sun

摘要:自動文章評論有助于鼓勵用戶參與和在線新聞平臺上的互動。然而,對于傳統的基于encoder-decoder的模型來說,新聞文檔通常太長,這往往會導致一般性和不相關的評論。在本文中,我們提出使用一個Graph-to-Sequence的模型來生成評論,該模型將輸入的新聞建模為一個主題交互圖。通過將文章組織成圖結構,我們的模型可以更好地理解文章的內部結構和主題之間的聯系,這使得它能夠更好地理解故事。我們從中國流行的在線新聞平臺Tencent Kuaibao上收集并發布了一個大規模的新聞評論語料庫。廣泛的實驗結果表明,與幾個強大的baseline模型相比,我們的模型可以產生更多的連貫性和信息豐富性的評論。

網址:

代碼鏈接:

4、Dynamically Fused Graph Network for Multi-hop Reasoning(基于動態融合圖網絡的Multi-hop Reasoning)

ACL ’19

作者:Yunxuan Xiao, Yanru Qu, Lin Qiu, Hao Zhou, Lei Li, Weinan Zhang, Yong Yu

摘要:近年來,基于文本的問答(TBQA)得到了廣泛的研究。大多數現有的方法側重于在一段話內找到問題的答案。然而,許多有難度的問題需要來自兩個或多個文檔的分散文本的支持證據。本文提出了動態融合圖網絡(Dynamically Fused Graph Network ,DFGN),這是一種解決需要多個分散證據和推理的問題的新方法。受人類逐步推理行為的啟發,DFGN包含一個動態融合層,從給定查詢中提到的實體開始,沿著文本動態構建的實體圖進行探索,并逐步從給定文檔中找到相關的支持實體。我們在需要multi-hop reasoning的公共TBQA數據集HotpotQA上評估了DFGN。DFGN在公共數據集上取得了有競爭力的成績。此外,我們的分析表明,DFGN可以產生可解釋的推理鏈。

網址:

5、 Encoding Social Information with Graph Convolutional Networks for Political Perspective Detection in News Media(利用圖卷積網絡對Social Information進行編碼,用于新聞媒體中的政治傾向性檢測)

ACL ’19

作者:Chang Li, Dan Goldwasser

摘要:確定新聞事件在媒體中討論方式的政治視角是一項重要而富有挑戰性的任務。在這篇文章中,我們強調了將社交網絡置于情景化的重要性,捕捉這些信息如何在社交網絡中傳播。我們使用最近提出的一種表示關系信息的神經網絡結構——圖卷積網絡(Graph Convolutional Network)來捕獲這些信息,并證明即使在很少的social information分類中也可以得到顯著改進。

網址:

6、Graph Neural Networks with Generated Parameters for Relation Extraction(用于關系抽取的具有生成參數的圖神經網絡)

ACL ’19

作者:Hao Zhu, Yankai Lin, Zhiyuan Liu, Jie Fu, Tat-seng Chua, Maosong Sun

摘要:近年來,在改進機器學習領域的關系推理方面取得了一些進展。在現有的模型中,圖神經網絡(GNNs)是最有效的multi-hop關系推理方法之一。事實上,在關系抽取等自然語言處理任務中,multi-hop關系推理是必不可少的。本文提出了一種基于自然語言語句生成圖神經網絡(GP-GNNs)參數的方法,使神經網絡能夠對非結構化文本輸入進行關系推理。我們驗證了從文本中提取關系的GPGNN。 實驗結果表明,與baseline相比,我們的模型取得了顯著的改進。我們還進行了定性分析,證明我們的模型可以通過multi-hop關系推理發現更精確的關系。

網址:

7、Incorporating Syntactic and Semantic Information in Word Embeddings using Graph Convolutional Networks(使用圖卷積網絡在詞嵌入中結合句法和語義信息)

ACL ’19

作者:Shikhar Vashishth, Manik Bhandari, Prateek Yadav, Piyush Rai, Chiranjib Bhattacharyya, Partha Talukdar

摘要:詞嵌入已被廣泛應用于多種NLP應用程序中。現有的詞嵌入方法大多利用詞的sequential context來學習詞的嵌入。雖然有一些嘗試利用詞的syntactic context,但這種方法會導致詞表數的爆炸。在本文中,我們通過提出SynGCN來解決這個問題,SynGCN是一種靈活的基于圖卷積的學習詞嵌入的方法。SynGCN在不增加詞表大小的情況下利用單詞的dependency context。SynGCN學習的詞嵌入在各種內部和外部任務上都優于現有方法,在與ELMo一起使用時提供優勢。我們還提出了SemGCN,這是一個有效的框架,用于整合不同的語義知識,以進一步增強所學習的單詞表示。我們提供了兩個模型的源代碼,以鼓勵可重復的研究。

網址:

代碼鏈接:

8、 GraphRel: Modeling Text as Relational Graphs for Joint Entity and Relation Extraction(GraphRel: 將文本建模為關系圖,用于實體和關系抽取)

ACL ’19

作者:Tsu-Jui Fu, Peng-Hsuan Li, Wei-Yun Ma

摘要:本文提出了一種利用圖卷積網絡(GCNs)聯合學習命名實體和關系的端到端關系抽取模型GraphRel。與之前的baseline相比,我們通過關系加權GCN來考慮命名實體和關系之間的交互,從而更好地提取關系。線性結構和依賴結構都用于提取文本的序列特征和區域特征,并利用完整的詞圖進一步提取文本所有詞對之間的隱式特征。基于圖的方法大大提高了對重疊關系的預測能力。我們在兩個公共數據集NYT和webnlg上評估了GraphRel。結果表明,GraphRel在大幅度提高recall的同時,保持了較高的precision。GraphRel的性能也比之前的工作好3.2%和5.8% (F1 score),實現了關系抽取的最先進的方法。

網址:

代碼鏈接:

9、Multi-hop Reading Comprehension across Multiple Documents by Reasoning over Heterogeneous Graphs(通過對異構圖進行推理,實現跨多個文檔的Multi-hop閱讀理解)

ACL ’19

作者:Ming Tu, Guangtao Wang, Jing Huang, Yun Tang, Xiaodong He, Bowen Zhou

摘要:跨文檔的Multi-hop閱讀理解(RC)對單文本RC提出了新的挑戰,因為它需要對多個文檔進行推理才能得到最終答案。在本文中,我們提出了一個新的模型來解決multi-hop RC問題。我們引入了具有不同類型的節點和邊的異構圖,稱為異構文檔-實體(HDE)圖。HDE圖的優點是它包含不同粒度級別的信息,包括特定文檔上下文中的候選信息、文檔和實體。我們提出的模型可以對HDE圖進行推理,節點表示由基于co-attention 和 self-attention的上下文編碼器初始化。我們使用基于圖神經網絡(GNN)的消息傳遞算法,在提出的HDE圖上累積evidence。通過對Qangaroo WIKIHOP數據集的blind測試集的評估,我們的基于HDE圖的單模型給出了具有競爭力的結果,并且集成模型達到了最先進的性能。

網址:

10、Textbook Question Answering with Multi-modal Context Graph Understanding and Self-supervised Open-set Comprehension(多模態上下文圖理解和自監督開放集理解的Textbook問答)

ACL ’19

作者:Daesik Kim, Seonhoon Kim, Nojun Kwak

摘要:在本文中,我們介紹了一種解決教科書問答(TQA)任務的新算法。在分析TQA數據集時,我們主要關注兩個相關問題。首先,解決TQA問題需要理解復雜輸入數據中的多模態上下文。為了解決從長文本中提取知識特征并與視覺特征相結合的問題,我們從文本和圖像中建立了上下文圖,并提出了一種基于圖卷積網絡(GCN)的f-GCN模塊。其次,科學術語不會分散在各個章節中,而且主題在TQA數據集中是分開的。為了克服這個所謂的“領域外”問題,在學習QA問題之前,我們引入了一種新的沒有任何標注的自監督開放集學習過程。實驗結果表明,我們的模型明顯優于現有的最先進的方法。此外,消融研究證實,將f-GCN用于從多模態上下文中提取知識的方法和我們新提出的自監督學習過程對于TQA問題都是有效的。

網址:

下載鏈接: 提取碼:rr1c

付費5元查看完整內容

相關內容

圖神經網絡 (GNN) 是一種連接模型,它通過圖的節點之間的消息傳遞來捕捉圖的依賴關系。與標準神經網絡不同的是,圖神經網絡保留了一種狀態,可以表示來自其鄰域的具有任意深度的信息。近年來,圖神經網絡(GNN)在社交網絡、知識圖、推薦系統、問答系統甚至生命科學等各個領域得到了越來越廣泛的應用。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

【導讀】計算語言學協會(the Association for Computational Linguistics, ACL)年度會議作為頂級的國際會議,在計算語言學和自然語言處理領域一直備受關注。其接收的論文覆蓋了語義分析、文本挖掘、信息抽取、問答系統、機器翻譯、情感分析和意見挖掘等眾多自然語言處理領域的研究方向。今年,第58屆計算語言學協會(the Association for Computational Linguistics, ACL)年度會議將于2020年7月5日至10日在美國華盛頓西雅圖舉行。受COVID-19疫情影響,ACL 2020將全部改為線上舉行。本次ACL大會共提交了3429篇論文,共有571篇長論文、以及208篇短論文入選。不久之前,專知小編為大家整理了大會的圖神經網絡(GNN)相關論文,這期小編繼續為大家奉上ACL 2020圖神經網絡(GNN)相關論文-Part 2供參考——多文檔摘要、多粒度機器閱讀理解、帖子爭議檢測、GAE。

ACL2020GNN_Part1、WWW2020GNN_Part1、AAAI2020GNN、ACMMM2019GNN、CIKM2019GNN、ICLR2020GNN

1. Leveraging Graph to Improve Abstractive Multi-Document Summarization

作者:Wei Li, Xinyan Xiao, Jiachen Liu, Hua Wu, Haifeng Wang, Junping Du

摘要:捕捉文本單元之間關系圖對于從多個文檔中檢測顯著信息和生成整體連貫的摘要有很大好處。本文提出了一種神經抽取多文檔摘要(MDS)模型,該模型可以利用文檔的常見圖表示,如相似度圖和話語圖(discourse graph),來更有效地處理多個輸入文檔并生成摘要。我們的模型使用圖對文檔進行編碼,以捕獲跨文檔關系,這對于總結長文檔至關重要。我們的模型還可以利用圖來指導摘要的生成過程,這有利于生成連貫而簡潔的摘要。此外,預訓練的語言模型可以很容易地與我們的模型相結合,進一步提高了摘要的性能。在WikiSum和MultiNews數據集上的實驗結果表明,所提出的體系結構在幾個強大的基線上帶來了實質性的改進。

網址: //arxiv.org/abs/2005.10043

2. Document Modeling with Graph Attention Networks for Multi-grained Machine Reading Comprehension

作者:Bo Zheng, Haoyang Wen, Yaobo Liang, Nan Duan, Wanxiang Che, Daxin Jiang, Ming Zhou, Ting Liu

摘要:“自然問題”是一種具有挑戰性的新的機器閱讀理解基準,其中包含兩個答案:長答案(通常是一個段落)和短答案(長答案中的一個或多個實體)。盡管此基準測試的現有方法很有效,但它們在訓練期間單獨處理這兩個子任務,忽略了它們間的依賴關系。為了解決這個問題,我們提出了一種新穎的多粒度機器閱讀理解框架,該框架專注于對文檔的分層性質進行建模,這些文檔具有不同的粒度級別:文檔、段落、句子和詞。我們利用圖注意力網絡來獲得不同層次的表示,以便它們可以同時學習。長答案和短答案可以分別從段落級表示和詞級表示中提取。通過這種方式,我們可以對兩個粒度的答案之間的依賴關系進行建模,以便為彼此提供證據。我們聯合訓練這兩個子任務,實驗表明,我們的方法在長答案和短答案標準上都明顯優于以前的系統。

網址:

代碼鏈接:

3. Integrating Semantic and Structural Information with Graph Convolutional Network for Controversy Detection

作者:Lei Zhong, Juan Cao, Qiang Sheng, Junbo Guo, Ziang Wang

摘要:識別社交媒體上有爭議的帖子是挖掘公眾情緒、評估事件影響、緩解兩極分化觀點的基礎任務。然而,現有的方法不能1)有效地融合來自相關帖子內容的語義信息;2)保留回復關系建模的結構信息;3)正確處理與訓練集中主題不同的帖子。為了克服前兩個局限性,我們提出了主題-帖子-評論圖卷積網絡(TPC-GCN),它綜合了來自主題、帖子和評論的圖結構和內容的信息,用于帖子級別的爭議檢測。對于第三個限制,我們將模型擴展到分離的TPC-GCN(DTPC-GCN),將主題相關和主題無關的特征分離出來,然后進行動態融合。在兩個真實數據集上的大量實驗表明,我們的模型優于現有的方法。結果和實例分析表明,該模型能夠將語義信息和結構信息有機地結合在一起,具有較強的通用性。

網址:

4. Knowledge Graph-Augmented Abstractive Summarization with Semantic-Driven Cloze Reward

作者:Luyang Huang, Lingfei Wu, Lu Wang

摘要:用于抽取摘要的序列到序列(sequence-to-sequence )模型已經被廣泛研究,但是生成的摘要通常受到捏造的內容的影響,并且經常被發現是near-extractive的。我們認為,為了解決這些問題,摘要生成器應通過輸入獲取語義解釋,例如通過結構化表示,以允許生成更多信息的摘要。在本文中,我們提出了一種新的抽取摘要框架--Asgard,它具有圖形增強和語義驅動的特點。我們建議使用雙重編碼器-序列文檔編碼器和圖形結構編碼器-來保持實體的全局上下文和局部特征,并且相互補充。我們進一步設計了基于多項選擇完形填空測試的獎勵,以驅動模型更好地捕捉實體交互。結果表明,我們的模型在紐約時報和CNN/每日郵報的數據集上都比沒有知識圖作為輸入的變體產生了更高的Rouge分數。與從大型預訓練的語言模型中優化的系統相比,我們也獲得了更好或可比的性能。評委進一步認為我們的模型輸出信息更豐富,包含的不實錯誤更少。

網址:

5. A Graph Auto-encoder Model of Derivational Morphology

作者:Valentin Hofmann, Hinrich Schutze, Janet B. Pierrehumberty

摘要:關于派生詞的形態良好性(morphological well-formedness, MWF)建模工作在語言學中被認為是一個復雜而困難的問題,并且這方面的研究工作較少。我們提出了一個圖自編碼器學習嵌入以捕捉派生詞中詞綴和詞干的兼容性信息。自編碼器通過將句法和語義信息與來自心理詞典的關聯信息相結合,很好地模擬了英語中的MWF。

網址:

付費5元查看完整內容

【導讀】計算語言學協會(the Association for Computational Linguistics, ACL)年度會議作為頂級的國際會議,在計算語言學和自然語言處理領域一直備受關注。其接收的論文覆蓋了語義分析、文本挖掘、信息抽取、問答系統、機器翻譯、情感分析和意見挖掘等眾多自然語言處理領域的研究方向。今年,第58屆計算語言學協會(the Association for Computational Linguistics, ACL)年度會議將于2020年7月5日至10日在美國華盛頓西雅圖舉行。受COVID-19疫情影響,ACL 2020將全部改為線上舉行。為此,專知小編提前為大家整理了ACL 2020圖神經網絡(GNN)相關論文,讓大家先睹為快——事實驗證、法律文書、謠言檢測、自動摘要、情感分析。

WWW2020GNN_Part1、AAAI2020GNN、ACMMM2019GNN、CIKM2019GNN、ICLR2020GNN、EMNLP2019GNN、ICCV2019GNN_Part2、ICCV2019GNN_Part1、NIPS2019GNN、IJCAI2019GNN_Part1、IJCAI2019GNN_Part2、KDD2019GNN、ACL2019GNN、CVPR2019GNN、ICML2019GNN

1. Fine-grained Fact Verification with Kernel Graph Attention Network

作者:Zhenghao Liu, Chenyan Xiong, Maosong Sun, Zhiyuan Liu

摘要:事實驗證(Fact V erification)需要細粒度的自然語言推理能力來找到微妙的線索去識別句法和語義上正確但沒有強有力支持的聲明(well-supported claims)。本文提出了基于核方法的圖注意力網絡(KGAT),該網絡使用基于核的注意力進行更細粒度的事實驗證。給定一個聲明和一組形成證據圖潛在證據的句子,KGAT在圖注意力網絡中引入了可以更好地衡量證據節點重要性的節點核,以及可以在圖中進行細粒度證據傳播的邊緣核,以實現更準確的事實驗證。KGAT達到了70.38%的FEVER得分,在FEVER上大大超過了現有的事實驗證模型(FEVER是事實驗證的大規模基準)。我們的分析表明,與點積注意力相比,基于核的注意力更多地集中在證據圖中的相關證據句子和有意義的線索上,這是KGAT有效性的主要來源。

網址://arxiv.org/pdf/1910.09796.pdf

2. Distinguish Confusing Law Articles for Legal Judgment Prediction

作者:Nuo Xu, Pinghui Wang, Long Chen, Li Pan, Xiaoyan Wang, Junzhou Zhao

摘要:法律審判預測(LJP)是在給出案件事實描述文本的情況下,自動預測案件判決結果的任務,其在司法協助系統中具有良好的應用前景,為公眾提供方便的服務。實際上,由于適用于類似法律條款的法律案件很容易被誤判,經常會產生混淆的指控。在本文中,我們提出了一個端到端的模型--LADAN來解決LJP的任務。為了解決這一問題,現有的方法嚴重依賴領域專家,這阻礙了它在不同法律制度中的應用。為了區分混淆的指控,我們提出了一種新的圖神經網絡來自動學習混淆法律文章之間的細微差別,并設計了一種新的注意力機制,該機制充分利用學習到的差別從事實描述中提取令人信服的鑒別特征。在真實數據集上進行的實驗證明了我們的LADAN算法的優越性。

網址:

3. GCAN: Graph-aware Co-Attention Networks for Explainable Fake News Detection on Social Media

作者:Yi-Ju Lu, Cheng-Te Li

摘要:本文解決了在更現實的社交媒體場景下的假新聞檢測問題。給定源短文本推文和相應的沒有文本評論的轉發用戶序列,我們的目的是預測源推文是否是假的,并通過突出可疑轉發者的證據和他們關注的詞語來產生解釋。為了實現這一目標,我們提出了一種新的基于神經網絡的模型--圖感知協同注意網絡(GCAN)。在真實推文數據集上進行的廣泛實驗表明,GCAN的平均準確率比最先進的方法高出16%。此外,案例研究還表明,GCAN可以給出合理的解釋。

網址:

4. Heterogeneous Graph Neural Networks for Extractive Document Summarization

作者:Danqing Wang, Pengfei Liu, Yining Zheng, Xipeng Qiu, Xuanjing Huang

摘要:作為提取文檔摘要的關鍵步驟,跨句關系學習已經有了大量的研究方法。一種直觀的方法是將它們放入基于圖的神經網絡中,該網絡具有更復雜的結構來捕獲句間關系。本文提出了一種基于圖的異構神經網絡抽取摘要算法(HeterSUMGraph),該算法除句子外,還包含不同粒度的語義節點。這些額外的結點起到句子之間的中介作用,豐富了句子之間的關系。此外,通過引入文檔節點,我們的圖結構可以靈活地從單文檔設置自然擴展到多文檔設置。據我們所知,我們是第一個將不同類型的節點引入到基于圖的神經網絡中進行提取文檔摘要的,我們還進行了全面的定性分析,以考察它們的好處。

網址:

代碼鏈接:

5. Relational Graph Attention Network for Aspect-based Sentiment Analysis

作者:Kai Wang, Weizhou Shen, Yunyi Yang, Xiaojun Quan, Rui Wang

摘要:Aspect級的情感分析旨在確定在線評論中對某一特定方面的情感極性。最近的大多數努力采用了基于注意力的神經網絡模型來隱式地將aspect與觀點詞聯系起來。然而,由于語言的復雜性和單句中多個aspect的存在,這些模型往往混淆了它們之間的聯系。在本文中,我們通過對語法信息進行有效的編碼來解決這個問題。首先,我們通過重塑和修剪常規依賴關系樹,定義了一個以目標方面為根的統一的面向aspect的依賴樹結構。然后,我們提出了一種關系圖注意力網絡(R-GAT)來編碼新的樹結構用于情感預測。我們在SemEval 2014和Twitter數據集上進行了廣泛的實驗,實驗結果證實,該方法可以更好地建立aspect和觀點詞之間的聯系,從而顯著提高了圖注意網絡(GAT)的性能。

網址:

付費5元查看完整內容

【導讀】國際萬維網大會(The Web Conference,簡稱WWW會議)是由國際萬維網會議委員會發起主辦的國際頂級學術會議,創辦于1994年,每年舉辦一屆,是CCF-A類會議。WWW 2020將于2020年4月20日至4月24日在中國臺灣臺北舉行。本屆會議共收到了1129篇長文投稿,錄用217篇長文,錄用率為19.2%。這周會議已經召開,會議論文集已經公開,大家可以自己查看感興趣的論文,專知小編繼續整理WWW 2020 系列論文,這期小編為大家奉上的是WWW 2020五篇知識圖譜+圖神經網絡(KG+GNN)相關論文,供大家參考!——多關系實體對齊、問答推理、動態圖實體鏈接、序列實體鏈接、知識圖譜補全。

WWW 2020 會議論文集: //dl.acm.org/doi/proceedings/10.1145/3366423

WWW2020GNN_Part1、AAAI2020GNN、ACMMM2019GNN、CIKM2019GNN、ICLR2020GNN、EMNLP2019GNN、ICCV2019GNN_Part2、ICCV2019GNN_Part1、NIPS2019GNN、IJCAI2019GNN_Part1、IJCAI2019GNN_Part2、KDD2019GNN、ACL2019GNN、CVPR2019GNN、ICML2019GNN

  1. Collective Multi-type Entity Alignment Between Knowledge Graphs

作者:Qi Zhu, Hao Wei, Bunyamin Sisman, Da Zheng, Christos Faloutsos, Xin Luna Dong and Jiawei Han

摘要:知識圖(如Freebase、Yago)是表示各類實體之間豐富真實信息的多關系圖。實體對齊是實現多源知識圖集成的關鍵步驟。它旨在識別涉及同一真實世界實體的不同知識圖中的實體。然而,現有的實體對齊系統忽略了不同知識圖的稀疏性,不能通過單一模型對多類型實體進行對齊。在本文中,我們提出了一種用于多類型實體對齊的聯合圖神經網絡(Collective Graph neural network),稱為CG-MuAlign。與以前的工作不同,CG-MuAlign聯合對齊多種類型的實體,共同利用鄰域信息并將其推廣到未標記的實體類型。具體地說,我們提出了一種新的集中聚集函數1)通過交叉圖和自注意力來緩解知識圖的不完全性,2)通過小批量訓練范例和有效的鄰域抽樣策略,有效地提高了可伸縮性。我們在具有數百萬個實體的真實知識圖上進行了實驗,觀察到了比現有方法更優越的性能。此外,我們的方法的運行時間比目前最先進的深度學習方法要少得多。

網址:

  1. Complex Factoid Question Answering with a Free-Text Knowledge Graph

作者:Chen Zhao, Chenyan Xiong, Xin Qian and Jordan Boyd-Graber

摘要:我們介紹了Delft,一個事實問答系統,它將知識圖問答方法的細微和深度與更廣泛的free-文本結合在一起。Delft從Wikipedia構建了一個自由文本知識圖,以實體為節點和句子,其中實體同時出現做為邊。對于每個問題,Delft使用文本句子作為邊,找到將問題實體節點鏈接到候選對象的子圖,創建了密集且覆蓋率高的語義圖。一種新穎的圖神經網絡在free-文本圖上進行推理-通過沿邊句子的信息組合節點上的證據-以選擇最終答案。在三個問答數據集上的實驗表明,Delft能夠比基于機器閱讀的模型、基于BERT的答案排序和記憶網絡更好地回答實體豐富的問題。Delft的優勢既來自于其free-文本知識圖譜的高覆蓋率--是DBpedia關系的兩倍多--也來自于新穎的圖神經網絡,它基于豐富而嘈雜的free-文本證據進行推理。

網址:

  1. Dynamic Graph Convolutional Networks for Entity Linking

作者:Junshuang Wu, Richong Zhang, Yongyi Mao, Hongyu Guo, Masoumeh Soflaei and Jinpeng Huai

摘要:實體鏈接將文檔中提及的命名實體映射到給定知識圖中的合適的實體,已被證明能夠從基于圖卷積網絡(GCN)對實體相關性建模中獲得顯著好處。然而,現有的GCN實體鏈接模型沒有考慮到,一組實體的結構化圖不僅依賴于給定文檔的上下文信息,而且在GCN的不同聚合層上自適應地變化,導致在捕捉實體之間的結構信息方面存在不足。在本文中,我們提出了一種動態的GCN體系結構來有效地應對這一挑戰。模型中的圖結構是在訓練過程中動態計算和修改的。通過聚合動態鏈接節點的知識,我們的GCN模型可以集中識別文檔和知識圖之間的實體映射,并有效地捕捉整個文檔中各個實體提及( mentions)之間的主題一致性。在基準實體連接數據集上的實證研究證實了我們提出的策略的優越性能和動態圖結構的好處。

網址:

  1. High Quality Candidate Generation and Sequential Graph Attention Network for Entity Linking

作者:Yichao Zhou, Shaunak Mishra, Manisha Verma, Narayan Bhamidipati and Wei Wang

摘要:實體鏈接(EL)是將文本中提及的內容映射到知識庫(KB)中相應實體的任務。這項任務通常包括候選生成(CG)和實體消歧(ED)兩個階段。目前基于神經網絡模型的EL系統取得了較好的性能,但仍然面臨著兩個挑戰:(1)以往的研究在評估模型時沒有考慮候選實體之間的差異。事實上,候選集的質量(特別是黃金召回)對EL結果有影響。因此,如何提候選的素質需要引起更多的關注。(Ii)為了利用提及實體之間的主題一致性,提出了許多聚集ED的圖和序列模型。然而,基于圖的模型對所有候選實體一視同仁,這可能會引入大量的噪聲信息。相反,序列模型只能觀察先前引用的實體,而忽略了當前提及的實體與其后續實體之間的相關性。針對第一個問題,我們提出了一種基于多策略的CG方法來生成高召回率的候選集。對于第二個問題,我們設計了一個序列圖注意力網絡(SeqGat),它結合了圖和序列方法的優點。在我們的模型中,提及( mentions)是按順序處理的。在當前提到的情況下,SeqGAT對其先前引用的實體和后續實體進行動態編碼,并為這些實體分配不同的重要性。這樣既充分利用了主題的一致性,又減少了噪聲干擾。我們在不同類型的數據集上進行了實驗,并在開放的評測平臺上與以前的EL系統進行了比較。比較結果表明,與現有的方法相比,我們的模型有了很大的改進。

網址:

  1. Mining Implicit Entity Preference from User-Item Interaction Data for Knowledge Graph Completion via Adversarial Learning

作者:Gaole He, Junyi Li, Wayne Xin Zhao, Peiju Liu and Ji-Rong Wen

摘要:知識圖補全(KGC)任務旨在自動推斷知識圖(KG)中缺失的事實信息。在本文中,我們采取了一個新的視角,旨在利用豐富的用戶-項目交互數據(簡稱用戶交互數據)來改進KGC任務。我們的工作靈感來自于觀察到許多KG實體對應于應用系統中的在線項目。然而,這兩種數據源的固有特性有很大的不同,使用簡單的融合策略很可能會損害原有的性能。為了應對這一挑戰,我們提出了一種新的對抗性學習方法,通過利用用戶交互數據來執行KGC任務。我們的生成器是從用戶交互數據中分離出來的,用來提高鑒別器的性能。鑒別器將從用戶交互數據中學習到的有用信息作為輸入,并逐步增強評估能力,以識別生成器生成的假樣本。為了發現用戶的隱含實體偏好,設計了一種基于圖神經網絡的協同學習算法,并與鑒別器進行聯合優化。這種方法有效地緩解了KGC任務的數據異構性和語義復雜性問題。在三個真實世界數據集上的廣泛實驗已經證明了我們在KGC任務上的方法的有效性。

網址:

付費5元查看完整內容

1、MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing(MixHop: 通過稀疏鄰域混合實現的高階圖卷積結構)

作者:Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr Harutyunyan, Greg Ver Steeg, Aram Galstyan

摘要:現有的基于圖神經網絡的半監督學習方法(如圖卷積網絡)不能學習一般的鄰域混合關系。為了解決這個缺點,我們提出了一個新的模型,MixHop,它可以通過在不同距離重復混合鄰居的特征表示來學習這些關系,包括不同的操作符。MixHop不需要額外的內存或計算復雜度,并且在一些具有挑戰性的baseline上性能更好。此外,我們建議使用稀疏正則化,使我們能夠可視化網絡如何跨不同的圖數據集對鄰居信息進行優先級排序。我們對所學體系結構的分析表明,每個數據集的鄰域混合是不同的。

網址://proceedings.mlr.press/v97/abu-el-haija19a.html

代碼鏈接:

2、Compositional Fairness Constraints for Graph Embeddings(圖嵌入的組合公平性約束)

作者:Avishek Bose, William Hamilton

摘要:學習高質量的節點嵌入是基于圖數據(如社交網絡和推薦系統)的機器學習模型的關鍵步驟。然而,現有的圖嵌入技術無法處理公平約束,例如,確保所學習的表示與某些屬性(如年齡或性別)不相關。在這里,我們引入一個對抗框架來對圖嵌入實施公平性約束。我們的方法是組合的,這意味著它可以靈活地適應推理過程中公平約束的不同組合。例如,在社會推薦的上下文中,我們的框架允許一個用戶要求他們的推薦對他們的年齡和性別都是不變的,同時也允許另一個用戶只對他們的年齡要求不變。在標準知識圖和推薦系統基準測試上的實驗突出了我們提出的框架的實用性。

網址:

代碼鏈接:

3、Learning Discrete Structures for Graph Neural Networks(學習圖神經網絡的離散結構)

作者:Luca Franceschi, Mathias Niepert, Massimiliano Pontil, Xiao He

摘要:圖神經網絡(GNNs)是一種流行的機器學習模型,已成功地應用于一系列問題。它們的主要優勢在于能夠顯式地合并數據點之間的稀疏和離散依賴結構。不幸的是,只有在這種圖結構可用時才能使用GNN。然而,在實踐中,真實世界中的圖常常是嘈雜的、不完整的,或者根本就不可用。在此基礎上,我們提出通過近似求解一個學習圖邊緣離散概率分布的雙層程序來共同學習圖卷積網絡(GCNs)的圖結構和參數。這不僅允許在給定圖不完整或損壞的場景中應用GCNs,還允許在圖不可用的場景中應用GCNs。我們進行了一系列的實驗,分析了該方法的行為,并證明了它比相關的方法有顯著的優勢。

網址:

代碼鏈接:

4、Graph U-Nets

作者:Hongyang Gao, Shuiwang Ji

摘要:我們研究了圖數據的表示學習問題。卷積神經網絡可以很自然地對圖像進行操作,但在處理圖數據方面存在很大的挑戰。由于圖像是二維網格上節點圖的特殊情況,圖的嵌入任務與圖像的分割等像素級預測任務具有天然的對應關系。雖然像U-Nets這樣的編解碼器結構已經成功地應用于許多圖像的像素級預測任務,但是類似的方法在圖數據上還是很缺乏。這是由于池化操作和上采樣操作對圖數據不是自然的。為了解決這些挑戰,我們提出了新的圖池化(gPool)和反池化(gUnpool)操作。gPool層根據節點在可訓練投影向量上的標量投影值,自適應地選擇節點,形成較小的圖。我們進一步提出了gUnpool層作為gPool層的逆操作。gUnpool層使用在相應gPool層中選擇的節點位置信息將圖恢復到其原始結構。基于我們提出的gPool和gUnpool層,我們開發了一個基于圖的編解碼器模型,稱為Graph U-Nets。我們在節點分類和圖分類任務上的實驗結果表明,我們的方法比以前的模型具有更好的性能。

網址:

代碼鏈接:

5、Graph Neural Network for Music Score Data and Modeling Expressive Piano Performance(圖神經網絡用于樂譜數據和鋼琴演奏表現力的建模)

作者:Dasaem Jeong, Taegyun Kwon, Yoojin Kim, Juhan Nam

摘要:樂譜通常被處理為一維序列數據。與文本文檔中的單詞不同,樂譜中的音符可以由復調性質同時演奏,并且每個音符都有自己的持續時間。在本文中,我們使用圖神經網絡表示樂譜的獨特形式,并將其應用于從樂譜中渲染表現力的鋼琴演奏。具體地,我們設計了使用note-level門控圖神經網絡和采用迭代反饋方法的雙向LSTM測量級層次注意網絡的模型。此外,為了對給定輸入分數的不同性能風格建模,我們使用了一個變分自編碼器。聽力測試結果表明,與baseline模型和層次注意網絡模型相比,我們提出的模型生成了更多的類人性能,而層次注意網絡模型將音樂得分處理為類詞序列。

網址:

代碼鏈接:

6、Graph Matching Networks for Learning the Similarity of Graph Structured Objects(用于學習圖結構物體相似性的圖匹配網絡)

作者:Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, Pushmeet Kohli

摘要:本文針對圖結構物體的檢索與匹配這一具有挑戰性的問題,做了兩個關鍵的貢獻。首先,我們演示了如何訓練圖神經網絡(GNN)在向量空間中嵌入圖,從而實現高效的相似性推理。其次,提出了一種新的圖匹配網絡模型,該模型以一對圖作為輸入,通過一種新的基于注意力的交叉圖匹配機制,對圖對進行聯合推理,計算出圖對之間的相似度評分。我們證明了我們的模型在不同領域的有效性,包括具有挑戰性的基于控制流圖的功能相似性搜索問題,該問題在軟件系統漏洞檢測中發揮著重要作用。實驗分析表明,我們的模型不僅能夠在相似性學習的背景下利用結構,而且它們還比那些為這些問題精心手工設計的領域特定baseline系統表現得更好。

網址:

7、Disentangled Graph Convolutional Networks(Disentangled圖卷積網絡)

作者:Jianxin Ma, Peng Cui, Kun Kuang, Xin Wang, Wenwu Zhu

摘要:真實世界圖形的形成通常來自于許多潛在因素之間高度復雜的交互作用。現有的基于圖結構數據的深度學習方法忽略了潛在因素的糾纏,使得學習表示不魯棒,難以解釋。然而,在圖神經網絡的研究中,如何將潛在因素分解出來的學習表示方法面臨著巨大的挑戰,并且在很大程度上還沒有得到探索。本文引入解糾纏(Disentangled)圖卷積網絡(DisenGCN)來學習disentangled節點表示。特別地,我們提出了一種新的鄰域路由機制,它能夠動態地識別可能導致節點與其相鄰節點之間產生邊的潛在因素,并相應地將相鄰節點分配到一個提取和卷積特定于該因素的特性的信道。從理論上證明了該路由機制的收斂性。實驗結果表明,我們提出的模型可以獲得顯著的性能提升,特別是當數據表明存在許多糾纏因素時。

網址:

8、GMNN: Graph Markov Neural Networks(GMNN: 圖馬爾可夫神經網絡)

作者:Meng Qu, Yoshua Bengio, Jian Tang

摘要:本文研究關系數據中的半監督對象分類問題,這是關系數據建模中的一個基本問題。在統計關系學習(如關系馬爾可夫網絡)和圖神經網絡(如圖卷積網絡)的文獻中,這一問題得到了廣泛的研究。統計關系學習方法可以通過條件隨機場對對象標簽的依賴關系進行有效的建模,用于集體分類,而圖神經網絡則通過端到端訓練學習有效的對象表示來分類。在本文中,我們提出了一種集兩種方法優點于一體的Graph Markov Neural Networks (GMNN)。GMNN利用條件隨機場對目標標簽的聯合分布進行建模,利用變分EM算法對其進行有效訓練。在E-step中,一個圖神經網絡學習有效的對象表示,逼近對象標簽的后驗分布。在M-step中,利用另一個圖神經網絡對局部標簽依賴關系進行建模。在對象分類、鏈路分類和無監督節點表示學習等方面的實驗表明,GMNN取得了較好的效果。

網址:

代碼鏈接:

9、Simplifying Graph Convolutional Networks(簡化圖卷積網絡)

作者:Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, Kilian Weinberger

摘要:圖卷積網絡(GCNs)及其變體得到了廣泛的關注,已成為學習圖表示的實際方法。GCNs的靈感主要來自最近的深度學習方法,因此可能會繼承不必要的復雜性和冗余計算。在本文中,我們通過連續消除非線性和折疊連續層之間的權重矩陣來減少這種額外的復雜性。我們從理論上分析了得到的線性模型,結果表明它對應于一個固定的低通濾波器,然后是一個線性分類器。值得注意的是,我們的實驗評估表明,這些簡化不會對許多下游應用程序的準確性產生負面影響。此外,生成的模型可以擴展到更大的數據集,這是自然可解釋的,并且比FastGCN的速度提高了兩個數量級。

網址:

代碼鏈接:

10、Position-aware Graph Neural Networks(位置感知圖神經網絡)

作者:Jiaxuan You, Rex Ying, Jure Leskovec

摘要:學習節點嵌入,捕捉節點在更廣泛的圖結構中的位置,對于圖上的許多預測任務是至關重要的。然而,現有的圖神經網絡(GNN)結構在獲取給定節點相對于圖中所有其他節點的position/location方面的能力有限。本文提出了一種計算位置感知節點嵌入的新型神經網絡—Position-aware Graph Neural Networks (P-GNNs)。P-GNN首先對錨節點集進行采樣,計算給定目標節點到每個錨集的距離,然后學習錨集上的非線性距離加權聚集方案。通過這種方式,P-GNNs可以捕獲節點相對于錨節點的位置。P-GNN有幾個優點: 它們具有歸納性,可擴展性,并且可以包含節點特征信息。我們將P-GNNs應用于多個預測任務,包括鏈路預測和社區檢測。我們顯示,P-GNNs始終優于最先進的GNNs, 在ROC AUC分數方面提高了66%。

網址:

代碼鏈接:

論文下載

百度云鏈接:

提取碼:vcc3

付費5元查看完整內容

1、 Adversarial Graph Embedding for Ensemble Clustering

作者:Zhiqiang Tao , Hongfu Liu , Jun Li , ZhaowenWang and Yun Fu;

摘要:Ensemble Clustering通常通過圖分區方法將基本分區集成到共識分區(consensus partition)中,但這種方法存在兩個局限性: 1) 它忽略了重用原始特征; 2)獲得具有可學習圖表示的共識分區(consensus partition)仍未得到充分研究。在本文中,我們提出了一種新穎的對抗圖自動編碼器(AGAE)模型,將集成聚類結合到深度圖嵌入過程中。具體地,采用圖卷積網絡作為概率編碼器,將特征內容信息與共識圖信息進行聯合集成,并使用簡單的內積層作為解碼器,利用編碼的潛變量(即嵌入表示)重建圖。此外,我們還開發了一個對抗正則化器來指導具有自適應分區依賴先驗的網絡訓練。通過對8個實際數據集的實驗,證明了AGAE在幾種先進的深度嵌入和集成聚類方法上的有效性。

網址://www.ijcai.org/proceedings/2019/0494.pdf

2、Attributed Graph Clustering via Adaptive Graph Convolution

作者:Xiaotong Zhang, Han Liu, Qimai Li and Xiao-Ming Wu;

摘要:Attributed Graph聚類是一項具有挑戰性的工作,它要求對圖結構和節點屬性進行聯合建模。圖卷積網絡的研究進展表明,圖卷積能夠有效地將結構信息和內容信息結合起來,近年來基于圖卷積的方法在一些實際屬性網絡上取得了良好的聚類性能。然而,對于圖卷積如何影響聚類性能以及如何正確地使用它來優化不同圖的性能,人們的了解有限。現有的方法本質上是利用固定低階的圖卷積,只考慮每個節點幾跳內的鄰居,沒有充分利用節點關系,忽略了圖的多樣性。本文提出了一種自適應圖卷積方法,利用高階圖卷積捕獲全局聚類結構,并自適應地為不同的圖選擇合適的順序。通過對基準數據集的理論分析和大量實驗,驗證了該方法的有效性。實驗結果表明,該方法與現有的方法相比具有較好的優越性。

網址:

3、Dynamic Hypergraph Neural Networks

作者:Jianwen Jiang , Yuxuan Wei , Yifan Feng , Jingxuan Cao and Yue Gao;

摘要:近年來,基于圖/超圖(graph/hypergraph)的深度學習方法引起了研究者的廣泛關注。這些深度學習方法以圖/超圖結構作為模型的先驗知識。然而,隱藏的重要關系并沒有直接表現在內在結構中。為了解決這個問題,我們提出了一個動態超圖神經網絡框架(DHGNN),它由兩個模塊的堆疊層組成:動態超圖構造(DHG)和超圖卷積(HGC)。考慮到最初構造的超圖可能不適合表示數據,DHG模塊在每一層上動態更新超圖結構。然后引入超圖卷積對超圖結構中的高階數據關系進行編碼。HGC模塊包括兩個階段:頂點卷積和超邊界卷積,它們分別用于聚合頂點和超邊界之間的特征。我們已經在標準數據集、Cora引文網絡和微博數據集上評估了我們的方法。我們的方法優于最先進的方法。通過更多的實驗驗證了該方法對不同數據分布的有效性和魯棒性。

網址:

4、Exploiting Interaction Links for Node Classification with Deep Graph Neural Networks

作者:Hogun Park and Jennifer Neville;

摘要:節點分類是關系機器學習中的一個重要問題。然而,在圖邊表示實體間交互的場景中(例如,隨著時間的推移),大多數當前方法要么將交互信息匯總為鏈接權重,要么聚合鏈接以生成靜態圖。在本文中,我們提出了一種神經網絡結構,它可以同時捕獲時間和靜態交互模式,我們稱之為Temporal-Static-Graph-Net(TSGNet)。我們的主要觀點是,利用靜態鄰居編碼器(可以學習聚合鄰居模式)和基于圖神經網絡的遞歸單元(可以捕獲復雜的交互模式),可以提高節點分類的性能。在我們對節點分類任務的實驗中,與最先進的方法相比,TSGNet取得了顯著的進步——與四個真實網絡和一個合成數據集中的最佳競爭模型相比,TSGNet的分類錯誤減少了24%,平均減少了10%。

網址:

5、Fine-grained Event Categorization with Heterogeneous Graph Convolutional Networks

作者:Hao Peng, Jianxin Li, Qiran Gong, Yangqiu Song, Yuanxing Ning, Kunfeng Lai and Philip S. Yu;

摘要:事件在現實世界中實時發生,可以是涉及多個人和物體的計劃和組織場合。社交媒體平臺發布了大量包含公共事件和綜合話題的文本消息。然而,由于文本中事件元素的異構性以及顯式和隱式的社交網絡結構,挖掘社會事件是一項具有挑戰性的工作。本文設計了一個事件元模式來表征社會事件的語義關聯,并構建了一個基于事件的異構信息網絡(HIN),該網絡融合了外部知識庫中的信息,提出了一種基于對偶流行度圖卷積網絡(PP-GCN)的細粒度社會事件分類模型。我們提出了一種基于事件間社會事件相似度(KIES)的知識元路徑實例,并建立了一個加權鄰域矩陣作為PP-GCN模型的輸入。通過對真實數據收集的綜合實驗,比較各種社會事件檢測和聚類任務。實驗結果表明,我們提出的框架優于其他可選的社會事件分類技術。

網址:

6、Graph Contextualized Self-Attention Network for Session-based Recommendation

作者:Chengfeng Xu, Pengpeng Zhao, Yanchi Liu, Victor S. Sheng, Jiajie Xu, Fuzhen Zhuang, Junhua Fang and Xiaofang Zhou;

摘要:基于會話的推薦旨在預測用戶基于匿名會話的下一步行動,是許多在線服務(比如電子商務,媒體流)中的關鍵任務。近年來,在不使用遞歸網絡和卷積網絡的情況下,自注意力網絡(SAN)在各種序列建模任務中取得了顯著的成功。然而,SAN缺乏存在于相鄰商品上的本地依賴關系,并且限制了其學習序列中商品的上下文表示的能力。本文提出了一種利用圖神經網絡和自注意力機制的圖上下文自注意力模型(GC-SAN),用于基于會話的推薦。在GC-SAN中,我們動態地為會話序列構造一個圖結構,并通過圖神經網絡(GNN)捕獲豐富的局部依賴關系。然后,每個會話通過應用自注意力機制學習長期依賴關系。最后,每個會話都表示為全局首選項和當前會話興趣的線性組合。對兩個真實數據集的大量實驗表明,GC-SAN始終優于最先進的方法。

網址:

7、Graph Convolutional Network Hashing for Cross-Modal Retrieval

作者:Ruiqing Xu , Chao Li , Junchi Yan , Cheng Deng and Xianglong Liu;

摘要:基于深度網絡的跨模態檢索近年來取得了顯著的進展。然而,彌補模態差異,進一步提高檢索精度仍然是一個關鍵的瓶頸。本文提出了一種圖卷積哈希(GCH)方法,該方法通過關聯圖學習模態統一的二進制碼。一個端到端深度體系結構由三個主要組件構成:語義編碼模塊、兩個特征編碼網絡和一個圖卷積網絡(GCN)。我們設計了一個語義編碼器作為教師模塊來指導特征編碼過程,即學生模塊,用于語義信息的挖掘。此外,利用GCN研究數據點之間的內在相似性結構,有助于產生有區別的哈希碼。在三個基準數據集上的大量實驗表明,所提出的GCH方法優于最先進的方法。

網址:

付費5元查看完整內容

【導讀】自然語言處理國際頂級會議EMNLP 2019于11月3日至11月7日在中國香港舉行。為了帶大家領略高質量論文,專知小編特意整理了六篇EMNLP 2019GNN相關論文,并附上論文鏈接供參考——命名實體識別、情感分類、對話圖卷積網絡、數據生成文本、短文本分類、Aspect-level情感分類等。

1、A Lexicon-Based Graph Neural Network for Chinese NER

作者:Tao Gui, Yicheng Zou, Qi Zhang;

摘要:遞歸神經網絡(RNN)用于中文命名實體識別(NER)中,能夠對文字信息進行順序跟蹤,取得了很大的成功。然而,由于鏈式結構的特點和缺乏全局語義,基于RNN的模型容易產生歧義。本文試圖通過引入一種全局語義的基于詞典的圖神經網絡來解決這一問題,該網絡利用詞典知識連接字符來捕獲局部成分,而全局中繼節點則可以捕獲全局句子語義和長距離依賴。基于字符、潛在單詞和整個句子語義之間的多重交互,可以有效地解決單詞歧義。在4個NER數據集的實驗表明,該模型與其他基線模型相比有顯著的改進。

網址:

//qizhang.info/paper/emnlp-2019.ner.pdf

2、Aspect-based Sentiment Classification with Aspect-specific Graph Convolutional Networks

作者:Chen Zhang, Qiuchi Li, Dawei Song;

摘要:注意機制和卷積神經網絡(CNNs)由于其固有的方面和上下文詞的語義對齊能力,被廣泛應用于基于方面的情感分類。然而,這些模型缺乏一種機制來解釋相關的句法約束和長距離的詞語依賴,因此可能會錯誤地將句法無關的上下文詞作為判斷方面情緒的線索。為了解決這個問題,我們提出在句子的依存樹上建立一個圖卷積網絡(GCN),以利用句法信息和詞的依存關系。在此基礎上,提出了一種新的面向方面的情感分類框架。在三個基準集合上的實驗表明,我們所提出的模型比一系列最先進的模型更具有相當的有效性,并且進一步證明了圖卷積結構能夠恰當地捕獲語法信息和長距離字的依賴關系。

網址:

3、DialogueGCN A Graph Convolutional Neural Network for Emotion Recognition in Conversation

作者:Deepanway Ghosal, Navonil Majumder, Soujanya Poria, Niyati Chhaya, Alexander Gelbukh;

摘要:會話情感識別(ECC)由于其在醫療、教育、人力資源等多個領域的廣泛應用,近年來受到了研究者的廣泛關注。在本文中,我們提出了對話圖卷積網絡(DialogueGCN),基于圖神經網絡的ERC方法。我們利用對話者的自言和對話人之間的依賴關系來為情緒識別建立會話環境模型。DialogueGCN通過圖形網絡解決了當前基于RNN的方法中存在的上下文傳播問題。我們經驗表明,這種方法緩解了這樣的問題,同時在一些基準的情緒分類數據集上超過了目前的狀態。

網址:

4、Enhancing AMR-to-Text Generation with Dual Graph Representations

作者:Leonardo F. R. Ribeiro, Claire Gardent, Iryna Gurevych;

摘要:基于圖的數據生成文本,如抽象意義表示(AMR),是一個具有挑戰性的任務,因為如何正確地對具有標記邊的圖的結構進行編碼存在固有的困難。為了解決這一難題,我們提出了一種新的圖-序列模型,該模型對AMR圖中包含的結構信息的不同但互補的透視圖進行編碼。該模型學習節點的自頂向下和自下而上的并行表示,以捕獲圖的對比視圖。我們還研究了不同節點消息傳遞策略的使用,使用不同的最先進的圖形編碼器來計算基于傳入和傳出透視圖的節點表示。在我們的實驗中,我們證明了對偶圖表示法可以改進AMR到文本的生成,從而在兩個AMR數據集上取得了最先進的效果。

網址:

5、Heterogeneous Graph Attention Networks for Semi-supervised Short Text Classification

作者:Linmei Hu, Tianchi Yang, Chuan Shi, Houye Ji, Xiaoli Li ;

摘要:短文本分類在新聞和推特標記中得到了豐富而重要的應用,以幫助用戶查找相關信息。由于在許多實際用例中缺乏標記的訓練數據,因此迫切需要研究半監督短文本分類。現有的研究大多集中在長文本上,由于標記數據的稀疏性和局限性,在短文本上的表現不盡人意。本文提出了一種新的基于異構圖神經網絡的半監督短文本分類方法,該方法充分利用了標記數據少和未標記數據大的優點,實現了信息在圖上的傳播。特別是,我們提出了一種靈活的HIN(異構信息網絡)框架,用于建模短文本,它可以集成任何類型的附加信息,并捕獲它們之間的關系來解決語義稀疏性。然后,我們提出了基于節點級和類型級注意的雙重注意機制的異構圖注意網絡(HGAT)嵌入HIN進行短文本分類。注意機制可以學習不同相鄰節點的重要性,以及不同節點(信息)類型對當前節點的重要性。大量的實驗結果表明,我們提出的模型在6個基準數據集上的性能顯著優于最先進的方法。

網址:

6、Syntax-Aware Aspect Level Sentiment Classification with Graph Attention Networks

作者:Binxuan Huang, Kathleen M. Carley ;

摘要:Aspect-level情感分類旨在識別向上下文語句給出的aspect表達的情緒。以往的基于神經網絡的方法在很大程度上忽略了句子的句法結構。在本文中,我們提出了一種新的目標依賴圖注意力網絡(TD-GAT)來進行方面層次的情感分類,該網絡明確利用了詞語之間的依賴關系。使用依賴圖,它直接從一個方面目標的語法上下文傳播情感特征。在我們的實驗中,我們證明了我們的方法優于使用GloVe嵌入的多個基線。我們還證明了使用BERT表示可以進一步顯著地提高性能。

網址:

付費5元查看完整內容
北京阿比特科技有限公司