【導讀】計算語言學協會(the Association for Computational Linguistics, ACL)年度會議作為頂級的國際會議,在計算語言學和自然語言處理領域一直備受關注。其接收的論文覆蓋了語義分析、文本挖掘、信息抽取、問答系統、機器翻譯、情感分析和意見挖掘等眾多自然語言處理領域的研究方向。今年,第58屆計算語言學協會(the Association for Computational Linguistics, ACL)年度會議將于2020年7月5日至10日在美國華盛頓西雅圖舉行。受COVID-19疫情影響,ACL 2020將全部改為線上舉行。本次ACL大會共提交了3429篇論文,共有571篇長論文、以及208篇短論文入選。不久之前,專知小編為大家整理了大會的圖神經網絡(GNN)相關論文,這期小編繼續為大家奉上ACL 2020圖神經網絡(GNN)相關論文-Part 2供參考——多文檔摘要、多粒度機器閱讀理解、帖子爭議檢測、GAE。
ACL2020GNN_Part1、WWW2020GNN_Part1、AAAI2020GNN、ACMMM2019GNN、CIKM2019GNN、ICLR2020GNN
1. Leveraging Graph to Improve Abstractive Multi-Document Summarization
作者:Wei Li, Xinyan Xiao, Jiachen Liu, Hua Wu, Haifeng Wang, Junping Du
摘要:捕捉文本單元之間關系圖對于從多個文檔中檢測顯著信息和生成整體連貫的摘要有很大好處。本文提出了一種神經抽取多文檔摘要(MDS)模型,該模型可以利用文檔的常見圖表示,如相似度圖和話語圖(discourse graph),來更有效地處理多個輸入文檔并生成摘要。我們的模型使用圖對文檔進行編碼,以捕獲跨文檔關系,這對于總結長文檔至關重要。我們的模型還可以利用圖來指導摘要的生成過程,這有利于生成連貫而簡潔的摘要。此外,預訓練的語言模型可以很容易地與我們的模型相結合,進一步提高了摘要的性能。在WikiSum和MultiNews數據集上的實驗結果表明,所提出的體系結構在幾個強大的基線上帶來了實質性的改進。
網址: //arxiv.org/abs/2005.10043
2. Document Modeling with Graph Attention Networks for Multi-grained Machine Reading Comprehension
作者:Bo Zheng, Haoyang Wen, Yaobo Liang, Nan Duan, Wanxiang Che, Daxin Jiang, Ming Zhou, Ting Liu
摘要:“自然問題”是一種具有挑戰性的新的機器閱讀理解基準,其中包含兩個答案:長答案(通常是一個段落)和短答案(長答案中的一個或多個實體)。盡管此基準測試的現有方法很有效,但它們在訓練期間單獨處理這兩個子任務,忽略了它們間的依賴關系。為了解決這個問題,我們提出了一種新穎的多粒度機器閱讀理解框架,該框架專注于對文檔的分層性質進行建模,這些文檔具有不同的粒度級別:文檔、段落、句子和詞。我們利用圖注意力網絡來獲得不同層次的表示,以便它們可以同時學習。長答案和短答案可以分別從段落級表示和詞級表示中提取。通過這種方式,我們可以對兩個粒度的答案之間的依賴關系進行建模,以便為彼此提供證據。我們聯合訓練這兩個子任務,實驗表明,我們的方法在長答案和短答案標準上都明顯優于以前的系統。
網址:
代碼鏈接:
3. Integrating Semantic and Structural Information with Graph Convolutional Network for Controversy Detection
作者:Lei Zhong, Juan Cao, Qiang Sheng, Junbo Guo, Ziang Wang
摘要:識別社交媒體上有爭議的帖子是挖掘公眾情緒、評估事件影響、緩解兩極分化觀點的基礎任務。然而,現有的方法不能1)有效地融合來自相關帖子內容的語義信息;2)保留回復關系建模的結構信息;3)正確處理與訓練集中主題不同的帖子。為了克服前兩個局限性,我們提出了主題-帖子-評論圖卷積網絡(TPC-GCN),它綜合了來自主題、帖子和評論的圖結構和內容的信息,用于帖子級別的爭議檢測。對于第三個限制,我們將模型擴展到分離的TPC-GCN(DTPC-GCN),將主題相關和主題無關的特征分離出來,然后進行動態融合。在兩個真實數據集上的大量實驗表明,我們的模型優于現有的方法。結果和實例分析表明,該模型能夠將語義信息和結構信息有機地結合在一起,具有較強的通用性。
網址:
4. Knowledge Graph-Augmented Abstractive Summarization with Semantic-Driven Cloze Reward
作者:Luyang Huang, Lingfei Wu, Lu Wang
摘要:用于抽取摘要的序列到序列(sequence-to-sequence )模型已經被廣泛研究,但是生成的摘要通常受到捏造的內容的影響,并且經常被發現是near-extractive的。我們認為,為了解決這些問題,摘要生成器應通過輸入獲取語義解釋,例如通過結構化表示,以允許生成更多信息的摘要。在本文中,我們提出了一種新的抽取摘要框架--Asgard,它具有圖形增強和語義驅動的特點。我們建議使用雙重編碼器-序列文檔編碼器和圖形結構編碼器-來保持實體的全局上下文和局部特征,并且相互補充。我們進一步設計了基于多項選擇完形填空測試的獎勵,以驅動模型更好地捕捉實體交互。結果表明,我們的模型在紐約時報和CNN/每日郵報的數據集上都比沒有知識圖作為輸入的變體產生了更高的Rouge分數。與從大型預訓練的語言模型中優化的系統相比,我們也獲得了更好或可比的性能。評委進一步認為我們的模型輸出信息更豐富,包含的不實錯誤更少。
網址:
5. A Graph Auto-encoder Model of Derivational Morphology
作者:Valentin Hofmann, Hinrich Schutze, Janet B. Pierrehumberty
摘要:關于派生詞的形態良好性(morphological well-formedness, MWF)建模工作在語言學中被認為是一個復雜而困難的問題,并且這方面的研究工作較少。我們提出了一個圖自編碼器學習嵌入以捕捉派生詞中詞綴和詞干的兼容性信息。自編碼器通過將句法和語義信息與來自心理詞典的關聯信息相結合,很好地模擬了英語中的MWF。
網址:
【導讀】作為世界數據挖掘領域的最高級別的學術會議,ACM SIGKDD(國際數據挖掘與知識發現大會,簡稱 KDD)每年都會吸引全球領域眾多專業人士參與。今年的 KDD大會計劃將于 2020 年 8 月 23 日 ~27 日在美國美國加利福尼亞州圣地亞哥舉行。上周,KDD 2020官方發布接收論文,共有1279篇論文提交到Research Track,共216篇被接收,接收率16.8%。近期KDD官網公布了接受論文列表,為此,上個月專知小編為大家整理了圖神經網絡相關的論文,這期小編繼續為大家奉上KDD 2020必讀的五篇圖神經網絡(GNN)相關論文-Part 2——多層次GCN、無監督預訓練GCN、圖Hash、GCN主題模型、采樣
KDD 2020 Accepted Paper: //www.kdd.org/kdd2020/accepted-papers
KDD2020GNN_Part1、CVPR2020SGNN、CVPR2020GNN_Part2、CVPR2020GNN_Part1、WWW2020GNN_Part1、AAAI2020GNN、ACMMM2019GNN、CIKM2019GNN、ICLR2020GNN、EMNLP2019GNN、ICCV2019GNN_Part2、ICCV2019GNN_Part1、NIPS2019GNN、IJCAI2019GNN_Part1、IJCAI2019GNN_Part2、KDD2019GNN、
1. Multi-level Graph Convolutional Networks for Cross-platform Anchor Link Prediction
作者:Hongxu Chen, Hongzhi Yin, Xiangguo Sun, Tong Chen, Bogdan Gabrys, Katarzyna Musial
摘要:跨平臺的賬號匹配在社交網絡分析中發揮著重要作用,并且有利于廣泛的應用。然而,現有的方法要么嚴重依賴于高質量的用戶生成內容(包括用戶興趣模型),要么只關注網絡拓撲結構,存在數據不足的問題,這使得研究這個方向變得很困難。為了解決這一問題,我們提出了一種新的框架,該框架統一考慮了局部網絡結構和超圖結構上的多級圖卷積。該方法克服了現有工作中數據不足的問題,并且不一定依賴于用戶的人口統計信息。此外,為了使所提出的方法能夠處理大規模社交網絡,我們提出了一種兩階段的空間協調機制,在基于網絡分區的并行訓練和跨不同社交網絡的帳戶匹配中對齊嵌入空間。我們在兩個大規模的真實社交網絡上進行了廣泛的實驗。實驗結果表明,該方法的性能比現有的模型有較大幅度的提高。
網址:
2. GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training
作者:Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang, Jie Tang
摘要:圖表示學習已經成為解決現實問題的一種強有力的技術。包括節點分類、相似性搜索、圖分類和鏈接預測在內的各種下游圖學習任務都受益于它的最新發展。然而,關于圖表示學習的現有技術集中于領域特定的問題,并為每個圖訓練專用模型,這通常不可轉移到領域之外的數據。受自然語言處理和計算機視覺在預訓練方面的最新進展的啟發,我們設計了圖對比編碼(Graph Contrastive Coding,GCC)一個無監督的圖表示學習框架來捕捉跨多個網絡的通用網絡拓撲屬性。我們將GCC的預訓練任務設計為網絡內部和網絡之間的子圖級別的實例判斷,并利用對比學習來增強模型學習內在的和可遷移的結構表征能力。我們在三個圖學習任務和十個圖數據集上進行了廣泛的實驗。結果表明,GCC在一組不同的數據集上進行預訓練,可以獲得與從頭開始的特定任務訓練的方法相媲美或更好的性能。這表明,預訓練和微調范式對圖表示學習具有巨大的潛力。
網址:
代碼鏈接:
3. GHashing: Semantic Graph Hashing for Approximate Similarity Search in Graph Databases
作者:Zongyue Qin, Yunsheng Bai, Yizhou Sun
摘要:圖相似搜索的目的是根據給定的鄰近度,即圖編輯距離(GED),在圖形數據庫中找到與查詢最相似的圖。這是一個被廣泛研究但仍具有挑戰性的問題。大多數研究都是基于剪枝驗證框架,該框架首先對非看好的圖進行剪枝,然后在較小的候選集上進行驗證。現有的方法能夠管理具有數千或數萬個圖的數據庫,但由于其精確的剪枝策略,無法擴展到更大的數據庫。受到最近基于深度學習的語義哈希(semantic hashing)在圖像和文檔檢索中的成功應用的啟發,我們提出了一種新的基于圖神經網絡(GNN)的語義哈希,即GHash,用于近似剪枝。我們首先用真實的GED結果訓練GNN,以便它學習生成嵌入和哈希碼,以保持圖之間的GED。然后建立哈希索引以實現恒定時間內的圖查找。在回答一個查詢時,我們使用哈希碼和連續嵌入作為兩級剪枝來檢索最有希望的候選對象,并將這些候選對象發送到精確的求解器進行最終驗證。由于我們的圖哈希技術利用了近似剪枝策略,與現有方法相比,我們的方法在保持高召回率的同時,實現了顯著更快的查詢時間。實驗表明,該方法的平均速度是目前唯一適用于百萬級數據庫的基線算法的20倍,這表明GHash算法成功地為解決大規模圖形數據庫的圖搜索問題提供了新的方向。
網址:
4. Graph Structural-topic Neural Network
作者:Qingqing Long, Yilun Jin, Guojie Song, Yi Li, Wei Lin
摘要:圖卷積網絡(GCNS)通過有效地收集節點的局部特征,取得了巨大的成功。然而,GCNS通常更多地關注節點特征,而較少關注鄰域內的圖結構,特別是高階結構模式。然而,這種局部結構模式被顯示為許多領域中的節點屬性。此外,由于網絡很復雜,每個節點的鄰域由各種節點和結構模式的混合組成,不只是單個模式,所有這些模式上的分布都很重要。相應地,在本文中,我們提出了圖結構主題神經網絡,簡稱GraphSTONE,這是一種利用圖的主題模型的GCN模型,使得結構主題廣泛地從概率的角度捕捉指示性的圖結構,而不僅僅是幾個結構。具體地說,我們使用 anonymous walks和Graph Anchor LDA(一種LDA的變體,首先選擇重要的結構模式)在圖上建立主題模型,以降低復雜性并高效地生成結構主題。此外,我們設計了多視圖GCNS來統一節點特征和結構主題特征,并利用結構主題來指導聚合。我們通過定量和定性實驗對我們的模型進行了評估,我們的模型表現出良好的性能、高效率和清晰的可解釋性。
網址:
代碼鏈接:
5. Minimal Variance Sampling with Provable Guarantees for Fast Training of Graph Neural Networks
作者:Weilin Cong, Rana Forsati, Mahmut Kandemir, Mehrdad Mahdavi
摘要:抽樣方法(如節點抽樣、分層抽樣或子圖抽樣)已成為加速大規模圖神經網絡(GNNs)訓練不可缺少的策略。然而,現有的抽樣方法大多基于圖的結構信息,忽略了最優化的動態性,導致隨機梯度估計的方差較大。高方差問題在非常大的圖中可能非常明顯,它會導致收斂速度慢和泛化能力差。本文從理論上分析了抽樣方法的方差,指出由于經驗風險的復合結構,任何抽樣方法的方差都可以分解為前向階段的嵌入近似方差和后向階段的隨機梯度方差,這兩種方差都必須減小,才能獲得較快的收斂速度。我們提出了一種解耦的方差減小策略,利用(近似)梯度信息自適應地對方差最小的節點進行采樣,并顯式地減小了嵌入近似引入的方差。理論和實驗表明,與現有方法相比,該方法即使在小批量情況下也具有更快的收斂速度和更好的泛化能力。
網址:
【導讀】ICML(International Conference on Machine Learning),即國際機器學習大會, 是機器學習領域全球最具影響力的學術會議之一,因此在該會議上發表論文的研究者也會備受關注。因疫情的影響, 今年第37屆ICML大會將于2020年7月13日至18日在線上舉行。據官方統計,ICML 2020共提交4990篇論文,接收論文1088篇,接收率為21.8%。與往年相比,接收率逐年走低。在會議開始前夕,專知小編為大家整理了ICML 2020圖神經網絡(GNN)的六篇相關論文供參考——核GNN、特征變換、Haar 圖池化、無監督圖表示、譜聚類、自監督GCN。
ICML 2020 Accepted Papers //icml.cc/Conferences/2020/AcceptedPapersInitial
ACL2020GNN_Part1、WWW2020GNN_Part1、AAAI2020GNN、ACMMM2019GNN、CIKM2019GNN、ICLR2020GNN
1. Convolutional Kernel Networks for Graph-Structured Data
作者:Dexiong Chen, Laurent Jacob, Julien Mairal
摘要:我們引入了一系列多層圖核,并在圖卷積神經網絡和核方法之間建立了新的聯系。我們的方法通過將圖表示為核特征映射序列將卷積核網絡推廣到圖結構數據,其中每個節點攜帶關于局部圖子結構的信息。一方面,核的觀點提供了一種無監督的、有表現力的、易于正規化的數據表示,這在樣本有限的情況下很有用。另一方面,我們的模型也可以在大規模數據上進行端到端的訓練,從而產生了新型的圖卷積神經網絡。我們的方法在幾個圖分類基準上取得了與之相當的性能,同時提供了簡單的模型解釋。
網址:
代碼鏈接:
2. GNN-FILM: Graph Neural Networks with Feature-Wise Linear Modulation 作者:Marc Brockschmidt
摘要:本文提出了一種新的基于特征線性調制(feature-wise linear modulation,FiLM)的圖神經網絡(GNN)。許多標準GNN變體僅通過每條邊的源的表示來計算“信息”,從而沿著圖的邊傳播信息。在GNN-FILE中,邊的目標節點的表示被附加地用于計算可以應用于所有傳入信息的變換,從而允許對傳遞的信息進行基于特征的調制。基于基線方法的重新實現,本文給出了在文獻中提到的三個任務上的不同GNN體系結構的實驗結果。所有方法的超參數都是通過廣泛的搜索找到的,產生了一些令人驚訝的結果:基線模型之間的差異比文獻報道的要小。盡管如此,GNN-FILE在分子圖的回歸任務上的表現優于基線方法,在其他任務上的表現也具有競爭性。
網址:
3. Haar Graph Pooling
作者:Yu Guang Wang, Ming Li, Zheng Ma, Guido Montufar, Xiaosheng Zhuang, Yanan Fan
摘要:深度圖神經網絡(GNNs)是用于圖分類和基于圖的回歸任務的有效模型。在這些任務中,圖池化是GNN適應不同大小和結構的輸入圖的關鍵因素。本文提出了一種新的基于壓縮Haar變換的圖池化操作-HaarPooling。HaarPooling實現了一系列池化操作;它是通過跟隨輸入圖的一系列聚類序列來計算的。HaarPooling層將給定的輸入圖變換為節點數較小、特征維數相同的輸出圖;壓縮Haar變換在Haar小波域中過濾出細節信息。通過這種方式,所有HaarPooling層一起將任何給定輸入圖的特征合成為大小一致的特征向量。這種變換提供了數據的稀疏表征,并保留了輸入圖的結構信息。使用標準圖卷積層和HaarPooling層實現的GNN在各種圖分類和回歸問題上實現了最先進的性能。
網址:
4. Interferometric Graph Transform: a Deep Unsupervised Graph Representation 作者:Edouard Oyallon
摘要:我們提出了Interferometric Graph Transform(IGT),這是一類用于構建圖表示的新型深度無監督圖卷積神經網絡。我們的第一個貢獻是提出了一種從歐幾里德傅立葉變換的推廣得到的通用復數譜圖結構。基于一個新穎的貪婪凹目標,我們的學習表示既包括可區分的特征,也包括不變的特征。通過實驗可以得到,我們的學習過程利用了譜域的拓撲,這通常是譜方法的一個缺陷,特別是我們的方法可以恢復視覺任務的解析算子。我們在各種具有挑戰性的任務上測試了我們的算法,例如圖像分類(MNIST,CIFAR-10)、社區檢測(Authorship,Facebook graph)和3D骨架視頻中的動作識別(SBU,NTU),在譜圖非監督環境下展示了一種新的技術水平。
網址:
5. Spectral Clustering with Graph Neural Networks for Graph Pooling
作者:Filippo Maria Bianchi, Daniele Grattarola, Cesare Alippi
摘要:譜聚類(SC)是發現圖上強連通社區的一種流行的聚類技術。SC可以在圖神經網絡(GNN)中使用,以實現聚合屬于同一簇的節點的池化操作。然而,Laplacian的特征分解代價很高,而且由于聚類結果是特定于圖的,因此基于SC的池化方法必須對每個新樣本執行新的優化。在本文中,我們提出了一種圖聚類方法來解決SC的這些局限性。我們建立了歸一化minCUT問題的連續松弛公式,并訓練GNN來計算最小化這一目標的簇分配。我們的基于GNN的實現是可微的,不需要計算譜分解,并且學習了一個聚類函數,可以在樣本外的圖上快速評估。從提出的聚類方法出發,我們設計了一個圖池化算子,它克服了現有圖池化技術的一些重要局限性,并在多個監督和非監督任務中取得了最好的性能。
網址:
6. When Does Self-Supervision Help Graph Convolutional Networks?
作者:Yuning You, Tianlong Chen, Zhangyang Wang, Yang Shen
摘要:自監督作為一種新興的技術已被用于訓練卷積神經網絡(CNNs),以提高圖像表示學習的可傳遞性、泛化能力和魯棒性。然而,自監督對操作圖形數據的圖卷積網絡(GCNS)的介紹卻很少被探索。在這項研究中,我們首次將自監督納入GCNS的系統探索和評估。我們首先闡述了將自監督納入GCNS的三種機制,分析了預訓練&精調和自訓練的局限性,并進而將重點放在多任務學習上。此外,我們還提出了三種新的GCNS自監督學習任務,并進行了理論分析和數值比較。最后,我們進一步將多任務自監督融入到圖對抗性訓練中。研究結果表明,通過合理設計任務形式和合并機制,自監督有利于GCNS獲得更強的泛化能力和魯棒性。
網址:
代碼鏈接:
【導讀】計算語言學協會(the Association for Computational Linguistics, ACL)年度會議作為頂級的國際會議,在計算語言學和自然語言處理領域一直備受關注。今年,第58屆計算語言學協會(the Association for Computational Linguistics, ACL)年度會議將于2020年7月5日至10日在美國華盛頓西雅圖舉行。受COVID-19疫情影響,ACL 2020將全部改為線上舉行。本次ACL大會共提交了3429篇論文,共有571篇長論文、以及208篇短論文入選。不久之前,專知小編為大家整理了大會的圖神經網絡(GNN)相關論文,上周,專知小編為大家整理了大會的圖神經網絡(GNN)相關論文,這期小編繼續為大家奉上ACL 2020知識圖譜表示學習(KGR)相關論文供參考——開放域知識圖譜嵌入、Multi-hop QA、雙曲嵌入、圖上下文建模、SEEK ACL2020GNN_Part2、ACL2020GNN_Part1、WWW2020GNN_Part1、AAAI2020GNN、ACMMM2019GNN、CIKM2019GNN、ICLR2020GNN
1. Can We Predict New Facts with Open Knowledge Graph Embeddings? A Benchmark for Open Link Prediction
作者:Samuel Broscheit, Kiril Gashteovski, Yanjie Wang, Rainer Gemulla
摘要:開放式信息抽取系統從原始文本中抽取(“主體文本”、“關系文本”、“客體文本”)三元組。有些三元組是事實的文本版本,即對實體和關系的非規范化提及。在這篇文章中,我們調查是否有可以不需要對精選的知識進行任何規范化或監督,直接從開放的知識圖中推斷出新的事實。為此,我們提出了一個open的鏈接預測任務,即通過補全(“主體文本”,“關系文本”,?)來預測測試事實問題。在這樣設置中的評估提出了如下這個問題:正確的預測是由開放域知識圖上的推理所誘導的新事實,還是說可以簡單地解釋。例如,事實可能出現在不同的措辭文本變體中。為此,我們提出了一種評估協議和建立了開放域鏈接預測基準的方法--OLPBENCH。我們使用一個用于開放域鏈接預測的典型知識圖嵌入模型進行了實驗。雖然這項任務非常具有挑戰性,但我們的結果表明,預測真正的新事實是可能的,并且這是不能簡單解釋的。
2. Improving Multi-hop Question Answering over Knowledge Graphs using Knowledge Base Embeddings
作者:Apoorv Saxena, Aditay Tripathi, Partha Talukdar
摘要:知識圖(KG)是由實體作為節點,實體之間的關系作為類型邊組成的多關系圖。KGQA任務的目標是回答在KG上提出的自然語言問題。多跳(Multi-hop)KGQA需要在KG的多個邊上進行推理才能得到正確的答案。KG通常是不完整的,有許多缺失的鏈接,這給KGQA帶來了額外的挑戰,特別是對于多跳KGQA。最近關于多跳KGQA的研究試圖使用相關的外部文本來處理KG稀疏性,但這并不總是容易獲得的。在另一項研究中,已經提出了通過執行缺失鏈接預測來降低KG稀疏的KG嵌入方法。這種KG嵌入方法雖然高度相關,但到目前為止還沒有被探索用于多跳KGQA。本文填補了這一空白,提出了EmbedKGQA。EmbedKGQA在稀疏KG上執行多跳KGQA特別有效。EmbedKGQA還放寬了從預先確定的鄰域中選擇答案的要求,這是以前的多跳KGQA方法實施的次優約束。通過在多個基準數據集上的廣泛實驗,我們證明了EmbedKGQA在其他最先進的基線上的有效性。
網址:
代碼鏈接:
3. Low-Dimensional Hyperbolic Knowledge Graph Embeddings
作者:Ines Chami, Adva Wolf, Da-Cheng Juan, Frederic Sala, Sujith Ravi, Christopher Ré
摘要:知識圖(KG)嵌入學習實體和關系的低維表示,用于預測另外實體或者補全關系。KG通常表現出必須保留在嵌入空間中的分層和邏輯模式。對于分層數據,雙曲嵌入(hyperbolic embedding)方法在高保真和簡約表示方面顯示出了希望。然而,現有的雙曲嵌入方法沒有考慮KG中豐富的邏輯模式。在這項工作中,我們引入了一類同時捕捉層次模式和邏輯模式的雙曲KG嵌入模型。我們的方法結合了雙曲線反射和旋轉,并注意建模復雜的關系模式。在標準KG基準上的實驗結果表明,我們的方法在低維的MRR(mean reciprocal rank)上比以前的基于歐幾里得和雙曲的工作提高了6.1%。此外,我們觀察到不同的幾何變換捕獲不同類型的關系,而基于注意力的變換概括為多個關系。在高維方面,我們的方法在WN18RR上的MRR為49.6%,在YAGO3-10上的MRR為57.7%。
網址:
4. Orthogonal Relation Transforms with Graph Context Modeling for Knowledge Graph Embedding
作者:Yun Tang, Jing Huang, Guangtao Wang, Xiaodong He, Bowen Zhou
摘要:基于距離的知識圖嵌入已經在知識圖鏈接預測任務上有了實質性的改進,從TransE到目前最先進的RotatE。然而,諸如 N-to-1, 1-to-N和N-to-N的復雜關系仍然難以預測。在這項工作中,我們提出了一種新的基于距離的知識圖鏈接預測方法。首先,通過對模型關系的正交變換,將RotatE從二維復數域擴展到高維空間。關系的正交變換嵌入保持了對于對稱/反對稱關系、逆關系和復合關系的建模能力,同時具有更好的建模能力。其次,將圖形上下文直接集成到距離評分函數中。具體地說,圖上下文是通過兩個有向上下文表示來顯式建模的。嵌入到知識圖中的每個節點都增加了兩個上下文表示,這兩個上下文表示分別從相鄰的傳出節點/邊和傳入節點/邊計算得到。該方法提高了N-to-1, 1-to-N和N-to-N情況下的預測精度。實驗結果表明,該算法在兩個常用的基準測試FB15k237和WNRR-18上都取得了最好的結果,特別是在節點數較多的FB15k-237上。
網址:
5. SEEK: Segmented Embedding of Knowledge Graphs
作者:Wentao Xu, Shun Zheng, Liang He, Bin Shao, Jian Yin, Tie-Yan Liu
摘要:近年來,知識圖嵌入成為人工智能領域的研究熱點,在推薦、問答等各種下游應用中發揮著越來越重要的作用。然而,現有的知識圖嵌入方法沒有在模型復雜度和模型表現力之間取得適當的折衷,這使得它們仍然遠遠不能令人滿意。為了緩解這一問題,我們提出了一個輕量級的建模框架,它可以在不增加模型復雜度的情況下獲得具有高度競爭力的關系表達能力。我們的框架側重于評分函數的設計,并突出了兩個關鍵特征:1)促進充分的特征交互;2)保持關系的對稱性和反對稱性。值得注意的是,由于評分函數設計的通用性和美觀性,我們的框架可以將現有的許多著名的方法作為特例合并在一起。此外,在公共基準上的大量實驗證明了該框架的有效性。
網址:
代碼鏈接:
【導讀】作為世界數據挖掘領域的最高級別的學術會議,ACM SIGKDD(國際數據挖掘與知識發現大會,簡稱 KDD)每年都會吸引全球領域眾多專業人士參與。今年的 KDD大會計劃將于 2020 年 8 月 23 日 ~27 日在美國美國加利福尼亞州圣地亞哥舉行。上周,KDD 2020官方發布接收論文,共有1279篇論文提交到Research Track,共216篇被接收,接收率16.8%。近期一些Paper放出來了,為此,專知小編提前為大家整理了五篇KDD 2020 圖神經網絡(GNN)相關論文,供大家參考。——圖結構學習、多元時間序列預測、負采樣、多任務多視角圖表示學習、多興趣推薦
CVPR2020SGNN、CVPR2020GNN_Part2、CVPR2020GNN_Part1、WWW2020GNN_Part1、AAAI2020GNN、ACMMM2019GNN、CIKM2019GNN、ICLR2020GNN、EMNLP2019GNN、ICCV2019GNN_Part2、ICCV2019GNN_Part1、NIPS2019GNN、IJCAI2019GNN_Part1、IJCAI2019GNN_Part2、KDD2019GNN、ACL2019GNN、CVPR2019GNN、
1. Graph Structure Learning for Robust Graph Neural Networks
作者:Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, Jiliang Tang
摘要:圖神經網絡(GNNs)是圖表示學習的有力工具。但是,最近的研究表明,GNN容易受到精心設計的擾動(稱為對抗攻擊)的攻擊。對抗性攻擊很容易欺騙GNN來預測下游任務。對于對抗攻擊的脆弱性使人們越來越關注在安全關鍵型應用中應用GNN。因此,開發穩健的算法來防御對抗攻擊具有重要意義。防御對抗攻擊的一個自然想法是清理受干擾的圖。很明顯,真實世界的圖共享一些內在屬性。例如,許多現實世界的圖都是低秩和稀疏的,兩個相鄰節點的特征往往是相似的。事實上,我們發現對抗攻擊很可能會違背這些圖的性質。因此,在本文中,我們利用這些特性來防御針對圖的對抗攻擊。特別是,我們提出了一個通用框架Pro-GNN,該框架可以從受這些特性指導的擾動圖中聯合學習結構圖和魯棒圖神經網絡模型。在真實圖上的大量實驗表明,即使在圖受到嚴重干擾的情況下,我們所提出的框架也比現有的防御方法獲得了顯著更好的性能。我們將Pro-GNN的實現發布到我們的DeepRobust存儲庫,以進行對抗性攻擊和防御。
網址: //arxiv.org/pdf/2005.10203.pdf
代碼鏈接:
2. Connecting the Dots: Multivariate Time Series Forecasting with Graph Neural Networks
作者:Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, Chengqi Zhang
摘要:多變量時間序列的建模長期以來一直吸引著來自經濟、金融和交通等不同領域的研究人員的關注。多變量時間序列預測背后的一個基本假設是其變量之間相互依賴,但現有方法未能充分利用變量對之間的潛在空間相關性。同時,近些年來,圖神經網絡(GNNs)在處理關系依賴方面表現出了很高的能力。GNN需要定義良好的圖結構來進行信息傳播,這意味著它們不能直接應用于事先不知道依賴關系的多變量時間序列。本文提出了一種專門針對多變量時間序列數據設計的通用圖神經網絡框架。該方法通過圖學習模塊自動提取變量間的單向關系,可以方便地集成變量屬性等外部知識。在此基礎上,提出了一種新的max-hop傳播層和一個dilated inception層來捕捉時間序列中的時間和空間依賴關系。圖學習、圖卷積和時間卷積模塊在端到端框架中聯合學習。實驗結果表明,我們提出的模型在4個基準數據集中的3個數據上優于最新的基線方法,并且在提供額外結構信息的兩個交通數據集上,與其他方法具有同等的性能。
網址:
3. Understanding Negative Sampling in Graph Representation Learning
作者:Zhen Yang, Ming Ding, Chang Zhou, Hongxia Yang, Jingren Zhou, Jie Tang
摘要:在最近的幾年中,對圖表示學習進行了廣泛的研究。盡管它有可能為各種網絡生成連續的嵌入,但是在大型節點集中得到有效高質量的表示仍然具有挑戰性。采樣是實現該性能目標的關鍵點。現有技術通常側重于正向節點對的采樣,而對負向采樣的策略探索不夠。為了彌補這一差距,我們從目標和風險兩個角度系統地分析了負采樣的作用,從理論上論證了負采樣在確定優化目標和結果方差方面與正采樣同等重要。據我們所知,我們是第一個推導該理論并量化負采樣分布應與其正采樣分布成正相關但亞線性相關的方法。在該理論的指導下,我們提出了MCNS,用自對比度近似法近似正分布,并通過Metropolis-Hastings加速負采樣。我們在5個數據集上評估了我們的方法,這些數據集涵蓋了19個實驗設置,涵蓋了廣泛的下游圖學習任務,包括鏈接預測,節點分類和個性化推薦。這些相對全面的實驗結果證明了其穩健性和優越性。
網址:
4. M2GRL: A Multi-task Multi-view Graph Representation Learning Framework for Web-scale Recommender Systems
作者:Menghan Wang, Yujie Lin, Guli Lin, Keping Yang, Xiao-ming Wu
摘要:將圖表示學習與多視圖數據(邊信息)相結合進行推薦是工業上的一種趨勢。現有的大多數方法可以歸類為多視圖表示融合,它們首先構建一個圖,然后將多視圖數據集成到圖中每個節點的單個緊湊表示中。這些方法在工程和算法方面都引起了人們的關注:1)多視圖數據在工業中是豐富而且有用的,并且可能超過單個矢量的容量;2)由于多視圖數據往往來自不同的分布,可能會引入歸納偏置(inductive bias)。在本文中,我們使用一種多視圖表示對齊方法來解決這個問題。特別地,我們提出了一個多任務多視角圖表示學習框架(M2GRL)來學習web級推薦系統中的多視角圖節點表示。M2GRL為每個單視圖數據構造一個圖,從多個圖中學習多個單獨的表示,并執行對齊以建立模型的交叉視圖關系。M2GRL選擇了一種多任務學習范式來聯合學習視圖內表示和交叉視圖關系。此外,M2GRL在訓練過程中利用同方差不確定性自適應地調整任務的損失權重。我們在淘寶部署了M2GRL,并對570億個實例進行了訓練。根據離線指標和在線A/B測試,M2GRL的性能明顯優于其他最先進的算法。對淘寶多樣性推薦的進一步研究表明,利用M2GRL產生的多種表征是有效的,對于不同側重點的各種工業推薦任務來說,M2GRL是一個很有前途的方向。
網址:
5. Controllable Multi-Interest Framework for Recommendation
作者:Yukuo Cen, Jianwei Zhang, Xu Zou, Chang Zhou, Hongxia Yang, Jie Tang
摘要:近年來,由于深度學習的快速發展,神經網絡在電子商務推薦系統中得到了廣泛的應用。我們將推薦系統形式化為一個序列推薦問題,目的是預測可能與用戶交互的下一個項目。最近的研究通常從用戶的行為序列中給出一個整體的嵌入。然而,統一的用戶嵌入不能反映用戶在一段時間內的多個興趣。本文提出了一種新穎的可控多興趣序列推薦框架,稱為ComiRec。我們的多興趣模塊從用戶行為序列中捕獲多個興趣,可用于從大規模項目集中檢索候選項目。然后將這些項目送入聚合模塊以獲得總體推薦。聚合模塊利用一個可控因素來平衡推薦的準確性和多樣性。我們在兩個真實的數據集Amazon和Taobao進行序列推薦實驗。實驗結果表明,我們的框架相對于最新模型取得了重大改進。我們的框架也已成功部署在離線阿里巴巴分布式云平臺上。
網址:
代碼鏈接:
【導讀】作為計算機視覺領域的三大國際頂會之一,IEEE國際計算機視覺與模式識別會議 CVPR 每年都會吸引全球領域眾多專業人士參與。由于受COVID-19疫情影響,原定于6月16日至20日在華盛頓州西雅圖舉行的CVPR 2020將全部改為線上舉行。今年的CVPR有6656篇有效投稿,最終有1470篇論文被接收,接收率為22%左右。之前小編為大家整理過CVPR 2020 GNN 相關論文,這周小編繼續為大家整理了五篇CVPR 2020 圖神經網絡(GNN)相關論文,供大家參考——行為識別、少樣本學習、仿射跳躍連接、多層GCN、3D視頻目標檢測。
CVPR2020SGNN、CVPR2020GNN_Part2、CVPR2020GNN_Part1、WWW2020GNN_Part1、AAAI2020GNN、ACMMM2019GNN、CIKM2019GNN、ICLR2020GNN、EMNLP2019GNN、ICCV2019GNN_Part2、ICCV2019GNN_Part1、NIPS2019GNN、IJCAI2019GNN_Part1、IJCAI2019GNN_Part2、KDD2019GNN、ACL2019GNN、CVPR2019GNN
1. Disentangling and Unifying Graph Convolutions for Skeleton-Based Action Recognition
作者:Ziyu Liu, Hongwen Zhang, Zhenghao Chen, Zhiyong Wang, Wanli Ouyang
摘要:基于骨架的動作識別算法廣泛使用時空圖對人體動作動態進行建模。為了從這些圖中捕獲魯棒的運動模式,長范圍和多尺度的上下文聚合與時空依賴建模是一個強大的特征提取器的關鍵方面。然而,現有的方法在實現(1)多尺度算子下的無偏差長范圍聯合關系建模和(2)用于捕捉復雜時空依賴的通暢的跨時空信息流方面存在局限性。在這項工作中,我們提出了(1)一種簡單的分解(disentangle)多尺度圖卷積的方法和(2)一種統一的時空圖卷積算子G3D。所提出的多尺度聚合方法理清了不同鄰域中節點對于有效的遠程建模的重要性。所提出的G3D模塊利用密集的跨時空邊作為跳過連接(skip connections),用于在時空圖中直接傳播信息。通過耦合上述提議,我們開發了一個名為MS-G3D的強大的特征提取器,在此基礎上,我們的模型在三個大規模數據集NTU RGB+D60,NTU RGB+D120和Kinetics Skeleton 400上的性能優于以前的最先進方法。
網址: //arxiv.org/pdf/2003.14111.pdf
代碼鏈接: github.com/kenziyuliu/ms-g3d
2. DPGN: Distribution Propagation Graph Network for Few-shot Learning
作者:Ling Yang, Liangliang Li, Zilun Zhang, Xinyu Zhou, Erjin Zhou, Yu Liu
摘要:大多數基于圖網絡的元學習方法都是為實例的instance-level關系進行建模。我們進一步擴展了此思想,以1-vs-N的方式將一個實例與所有其他實例的分布級關系明確建模。我們提出了一種新的少樣本學習方法--分布傳播圖網絡(DPGN)。它既表達了每個少樣本學習任務中的分布層次關系,又表達了實例層次關系。為了將所有實例的分布層關系和實例層關系結合起來,我們構造了一個由點圖和分布圖組成的對偶全圖網絡,其中每個節點代表一個實例。DPGN采用雙圖結構,在更新時間內將標簽信息從帶標簽的實例傳播到未帶標簽的實例。在少樣本學習的大量基準實驗中,DPGN在監督設置下以5%~12%和在半監督設置下以7%~13%的優勢大大超過了最新的結果。
網址:
代碼鏈接:
3. Geometrically Principled Connections in Graph Neural Networks
作者:Shunwang Gong, Mehdi Bahri, Michael M. Bronstein, Stefanos Zafeiriou
摘要:圖卷積操作為以前認為遙不可及的各種圖形和網格處理任務帶來了深度學習的優勢。隨著他們的持續成功,人們希望設計更強大的體系結構,這通常是將現有的深度學習技術應用于非歐幾里得數據。在這篇文章中,我們認為幾何應該仍然是幾何深度學習這一新興領域創新的主要驅動力。我們將圖神經網絡與廣泛成功的計算機圖形和數據近似模型(徑向基函數(RBF))相關聯。我們推測,與RBF一樣,圖卷積層將從向功能強大的卷積核中添加簡單函數中受益。我們引入了仿射跳躍連接 (affine skip connections),這是一種通過將全連接層與任意圖卷積算子相結合而形成的一種新的構建塊。通過實驗證明了我們的技術的有效性,并表明性能的提高是參數數量增加的結果。采用仿射跳躍連接的算子在形狀重建、密集形狀對應和圖形分類等每一項任務上的表現都明顯優于它們的基本性能。我們希望我們簡單有效的方法將成為堅實的基準,并有助于簡化圖神經網絡未來的研究。
網址:
4. L^2-GCN: Layer-Wise and Learned Efficient Training of Graph Convolutional Networks
作者:Yuning You, Tianlong Chen, Zhangyang Wang, Yang Shen
摘要:圖卷積網絡(GCN)在許多應用中越來越受歡迎,但在大型圖形數據集上的訓練仍然是出了名的困難。它們需要遞歸地計算鄰居的節點表示。當前的GCN訓練算法要么存在隨層數呈指數增長的高計算成本,要么存在加載整個圖和節點嵌入的高內存使用率問題。本文提出了一種新的高效的GCN分層訓練框架(L-GCN),該框架將訓練過程中的特征聚合和特征變換分離開來,從而大大降低了時間和存儲復雜度。我們在圖同構框架下給出了L-GCN的理論分析,在溫和的條件下,與代價更高的傳統訓練算法相比L-GCN可以產生同樣強大的GCN。我們進一步提出了L2-GCN,它為每一層學習一個控制器,該控制器可以自動調整L-GCN中每一層的訓練周期。實驗表明,L-GCN比現有技術快至少一個數量級,內存使用量的一致性不依賴于數據集的大小,同時保持了還不錯的預測性能。通過學習控制器,L2-GCN可以將訓練時間進一步減少一半。
網址:
代碼鏈接:
補充材料:
5. LiDAR-based Online 3D Video Object Detection with Graph-based Message Passing and Spatiotemporal Transformer Attention
作者:Junbo Yin, Jianbing Shen, Chenye Guan, Dingfu Zhou, Ruigang Yang
摘要:現有的基于LiDAR的3D目標檢測算法通常側重于單幀檢測,而忽略了連續點云幀中的時空信息。本文提出了一種基于點云序列的端到端在線3D視頻對象檢測器。該模型包括空間特征編碼部分和時空特征聚合部分。在前一個組件中,我們提出了一種新的柱狀消息傳遞網絡(Pillar Message Passing Network,PMPNet)來對每個離散點云幀進行編碼。它通過迭代信息傳遞的方式自適應地從相鄰節點收集柱節點的信息,有效地擴大了柱節點特征的感受野。在后一組件中,我們提出了一種注意力時空轉換GRU(AST-GRU)來聚合時空信息,通過注意力記憶門控機制增強了傳統的ConvGRU。AST-GRU包含一個空間Transformer Attention(STA)模塊和一個時間Transformer Attention(TTA)模塊,分別用于強調前景對象和對齊動態對象。實驗結果表明,所提出的3D視頻目標檢測器在大規模的nuScenes基準測試中達到了最先進的性能。
網址:
代碼鏈接:
【導讀】計算語言學協會(the Association for Computational Linguistics, ACL)年度會議作為頂級的國際會議,在計算語言學和自然語言處理領域一直備受關注。其接收的論文覆蓋了語義分析、文本挖掘、信息抽取、問答系統、機器翻譯、情感分析和意見挖掘等眾多自然語言處理領域的研究方向。今年,第58屆計算語言學協會(the Association for Computational Linguistics, ACL)年度會議將于2020年7月5日至10日在美國華盛頓西雅圖舉行。受COVID-19疫情影響,ACL 2020將全部改為線上舉行。為此,專知小編提前為大家整理了ACL 2020圖神經網絡(GNN)相關論文,讓大家先睹為快——事實驗證、法律文書、謠言檢測、自動摘要、情感分析。
WWW2020GNN_Part1、AAAI2020GNN、ACMMM2019GNN、CIKM2019GNN、ICLR2020GNN、EMNLP2019GNN、ICCV2019GNN_Part2、ICCV2019GNN_Part1、NIPS2019GNN、IJCAI2019GNN_Part1、IJCAI2019GNN_Part2、KDD2019GNN、ACL2019GNN、CVPR2019GNN、ICML2019GNN
1. Fine-grained Fact Verification with Kernel Graph Attention Network
作者:Zhenghao Liu, Chenyan Xiong, Maosong Sun, Zhiyuan Liu
摘要:事實驗證(Fact V erification)需要細粒度的自然語言推理能力來找到微妙的線索去識別句法和語義上正確但沒有強有力支持的聲明(well-supported claims)。本文提出了基于核方法的圖注意力網絡(KGAT),該網絡使用基于核的注意力進行更細粒度的事實驗證。給定一個聲明和一組形成證據圖潛在證據的句子,KGAT在圖注意力網絡中引入了可以更好地衡量證據節點重要性的節點核,以及可以在圖中進行細粒度證據傳播的邊緣核,以實現更準確的事實驗證。KGAT達到了70.38%的FEVER得分,在FEVER上大大超過了現有的事實驗證模型(FEVER是事實驗證的大規模基準)。我們的分析表明,與點積注意力相比,基于核的注意力更多地集中在證據圖中的相關證據句子和有意義的線索上,這是KGAT有效性的主要來源。
網址://arxiv.org/pdf/1910.09796.pdf
2. Distinguish Confusing Law Articles for Legal Judgment Prediction
作者:Nuo Xu, Pinghui Wang, Long Chen, Li Pan, Xiaoyan Wang, Junzhou Zhao
摘要:法律審判預測(LJP)是在給出案件事實描述文本的情況下,自動預測案件判決結果的任務,其在司法協助系統中具有良好的應用前景,為公眾提供方便的服務。實際上,由于適用于類似法律條款的法律案件很容易被誤判,經常會產生混淆的指控。在本文中,我們提出了一個端到端的模型--LADAN來解決LJP的任務。為了解決這一問題,現有的方法嚴重依賴領域專家,這阻礙了它在不同法律制度中的應用。為了區分混淆的指控,我們提出了一種新的圖神經網絡來自動學習混淆法律文章之間的細微差別,并設計了一種新的注意力機制,該機制充分利用學習到的差別從事實描述中提取令人信服的鑒別特征。在真實數據集上進行的實驗證明了我們的LADAN算法的優越性。
網址:
3. GCAN: Graph-aware Co-Attention Networks for Explainable Fake News Detection on Social Media
作者:Yi-Ju Lu, Cheng-Te Li
摘要:本文解決了在更現實的社交媒體場景下的假新聞檢測問題。給定源短文本推文和相應的沒有文本評論的轉發用戶序列,我們的目的是預測源推文是否是假的,并通過突出可疑轉發者的證據和他們關注的詞語來產生解釋。為了實現這一目標,我們提出了一種新的基于神經網絡的模型--圖感知協同注意網絡(GCAN)。在真實推文數據集上進行的廣泛實驗表明,GCAN的平均準確率比最先進的方法高出16%。此外,案例研究還表明,GCAN可以給出合理的解釋。
網址:
4. Heterogeneous Graph Neural Networks for Extractive Document Summarization
作者:Danqing Wang, Pengfei Liu, Yining Zheng, Xipeng Qiu, Xuanjing Huang
摘要:作為提取文檔摘要的關鍵步驟,跨句關系學習已經有了大量的研究方法。一種直觀的方法是將它們放入基于圖的神經網絡中,該網絡具有更復雜的結構來捕獲句間關系。本文提出了一種基于圖的異構神經網絡抽取摘要算法(HeterSUMGraph),該算法除句子外,還包含不同粒度的語義節點。這些額外的結點起到句子之間的中介作用,豐富了句子之間的關系。此外,通過引入文檔節點,我們的圖結構可以靈活地從單文檔設置自然擴展到多文檔設置。據我們所知,我們是第一個將不同類型的節點引入到基于圖的神經網絡中進行提取文檔摘要的,我們還進行了全面的定性分析,以考察它們的好處。
網址:
代碼鏈接:
5. Relational Graph Attention Network for Aspect-based Sentiment Analysis
作者:Kai Wang, Weizhou Shen, Yunyi Yang, Xiaojun Quan, Rui Wang
摘要:Aspect級的情感分析旨在確定在線評論中對某一特定方面的情感極性。最近的大多數努力采用了基于注意力的神經網絡模型來隱式地將aspect與觀點詞聯系起來。然而,由于語言的復雜性和單句中多個aspect的存在,這些模型往往混淆了它們之間的聯系。在本文中,我們通過對語法信息進行有效的編碼來解決這個問題。首先,我們通過重塑和修剪常規依賴關系樹,定義了一個以目標方面為根的統一的面向aspect的依賴樹結構。然后,我們提出了一種關系圖注意力網絡(R-GAT)來編碼新的樹結構用于情感預測。我們在SemEval 2014和Twitter數據集上進行了廣泛的實驗,實驗結果證實,該方法可以更好地建立aspect和觀點詞之間的聯系,從而顯著提高了圖注意網絡(GAT)的性能。
網址:
【導讀】計算機視覺頂會CVPR 2020在不久前公布了論文接收列表。本屆CVPR共收到了6656篇有效投稿,接收1470篇,其接受率在逐年下降,今年接受率僅為22%。幾周前專知小編整理了CVPR 2020 圖神經網絡(GNN)相關的比較有意思的值得閱讀的,這期小編繼續為大家奉上CVPR 2020五篇GNN相關論文供參考——視頻文本檢索、人體解析、圖像描述生成、人臉重構、Human-Object Interaction。
CVPR2020GNN_Part1、WWW2020GNN_Part1、AAAI2020GNN、ACMMM2019GNN、CIKM2019GNN、ICLR2020GNN、EMNLP2019GNN、ICCV2019GNN_Part2、ICCV2019GNN_Part1、NIPS2019GNN、IJCAI2019GNN_Part1、IJCAI2019GNN_Part2、KDD2019GNN、ACL2019GNN、CVPR2019GNN、ICML2019GNN
作者:Shizhe Chen, Yida Zhao, Qin Jin and Qi Wu
摘要:隨著視頻在網絡上的迅速涌現,視頻和文本之間的跨模態檢索越來越受到人們的關注。目前解決這一問題的主流方法是學習聯合嵌入空間來度量跨模態相似性。然而,簡單的聯合嵌入不足以表示復雜的視覺和文本細節,例如場景、對象、動作及他們的組成。為了提高細粒度的視頻文本檢索,我們提出了一種分層圖推理(HGR)模型,將視頻文本匹配分解為全局到局部層次。具體地說,該模型將文本分解成層次化的語義圖,包括事件、動作、實體這三個層次和這些層次之間的關系。利用基于屬性的圖推理生成層次化的文本嵌入,以指導多樣化、層次化的視頻表示學習。HGR模型聚合來自不同視頻-文本級別的匹配,以捕捉全局和局部細節。在三個視頻文本數據集上的實驗結果表明了該模型的優越性。這種分層分解還可以更好地跨數據集進行泛化,并提高區分細粒度語義差異的能力。
作者:Wenguan Wang, Hailong Zhu, Jifeng Dai, Yanwei Pang, Jianbing Shen and Ling Shao
摘要:人體解析(Human parsing)是為了像素級的人類語義理解。由于人體是具有層次結構的,因此如何對人體結構進行建模是這個任務的中心主題。圍繞這一點,我們試圖同時探索深度圖網絡的表示能力和層次化的人類結構。在本文中,我們有以下兩個貢獻。首先,首次用三個不同的關系網絡完整而精確地描述了分解、組合和依賴這三種部件關系。這與以前的解析方式形成了鮮明的對比,之前的解析器只關注關系的一部分,并采用類型不可知(type-agnostic)的關系建模策略。通過在關系網絡中顯式地施加參數來滿足不同關系的具體特性,可以捕捉到更具表現力的關系信息。其次,以前的解析器在很大程度上忽略了循環的人類層次結構上的近似算法的需求,而我們則通過將具有邊類型的通用信息傳遞網絡與卷積網絡同化來解決迭代推理過程。通過這些努力,我們的解析器為更復雜、更靈活的人際關系推理模式奠定了基礎。在五個數據集上的綜合實驗表明,我們的解析器在每個數據集上都具有最好的表現。
網址:
作者:Shizhe Chen, Qin Jin, Peng Wang and Qi Wu
摘要:人類能夠隨心所欲地用粗略到精細的細節來描述圖像內容。然而,大多數圖像描述生成模型都是忽略意圖(intention-agnostic)的,不能根據不同的用戶意圖主動生成不同的描述。在這項工作中,我們提出了抽象場景圖(ASG)結構來在細粒度層次上表示用戶意圖,并控制生成的描述應該是什么和有多詳細。ASG是一個由三種類型的抽象節點(對象、屬性、關系)組成的有向圖,這些節點來自于圖像,沒有任何具體的語義標簽。因此,啊他們通過手動或自動生成都很容易獲得。在ASG的基礎上,我們提出了一種新穎的ASG2圖像描述生成模型,該模型能夠識別用戶在圖中的意圖和語義,從而根據圖的結構生成想要的字幕。與在VisualGenome和MSCOCO數據集上的其它的基線模型相比,我們的模型在ASG上具有更好的可控性條件。它還通過自動采樣不同的ASG作為控制信號,顯著提高了caption的多樣性。
網址:
作者:Jiangke Lin, Yi Yuan, Tianjia Shao and Kun Zhou
摘要:基于三維形變模型(3DMM)的方法在從單視圖圖像中恢復三維人臉形狀方面取得了很大的成功。然而,用這種方法恢復的面部紋理缺乏像輸入圖像中表現出的逼真度。最近的工作采用生成網絡來恢復高質量的面部紋理,這些網絡是從一個大規模的高分辨率臉部紋理UV圖數據庫中訓練出來的,這些數據庫很難準備的,也不能公開使用。本文介紹了一種在無約束條件下捕獲(in-the-wild)的單視圖像中重建具有高保真紋理的三維人臉形狀的方法,該方法不需要獲取大規模的人臉紋理數據庫。為此,我們提出使用圖卷積網絡來重建網格頂點的細節顏色來代替重建UV地圖。實驗表明,我們的方法可以產生高質量的結果,并且在定性和定量比較方面都優于最先進的方法。
網址:
作者:Oytun Ulutan, A S M Iftekhar and B. S. Manjunath
摘要:全面的視覺理解要求檢測框架能夠在單獨分析物體的同時有效地學習和利用物體交互。這是人類-物體交互(Human-Object Interaction,HOI)任務的主要目標。特別是,物體之間的相對空間推理和結構聯系是分析交互的基本線索,文中提出的視覺-空間-圖網絡(VSGNet)體系結構可以解決這一問題。VSGNet從人類-物體對中提取視覺特征,利用人類-物體對的空間構型對特征進行細化,并通過圖卷積利用人類-物體對之間的結構聯系。我們使用COCO(V-COCO)和HICO-Det數據集中的動詞對VSGNet的性能進行了全面評估。實驗結果表明,VSGNet在V-COCO和HICO-DET中的性能分別比現有解決方案高出8%或4MAP和16%或3MAP。
網址:
代碼鏈接:
最近小編推出CVPR2019圖卷積網絡、CVPR2019生成對抗網絡、【可解釋性】,CVPR視覺目標跟蹤,CVPR視覺問答,醫學圖像分割,圖神經網絡的推薦,CVPR域自適應, ICML圖神經網絡,ICML元學習相關論文,反響熱烈。最近,ACL 2019最新接受文章出爐,大會共收到2905 篇論文投稿,其中660 篇被接收(接收率為22.7%)。小編發現,今年接受的文章結合GNN的工作有二三十篇,看來,圖神經網絡已經攻占NLP領域,希望其他領域的同學多多學習,看能否結合,期待好的工作!今天小編專門整理最新十篇ACL長文,圖神經網絡(GNN)+NLP—注意力機制引導圖神經網絡、Graph-to-Sequence、動態融合圖網絡、實體和關系抽取、Multi-hop閱讀理解、多模態上下文圖理解等。
1、Attention Guided Graph Convolutional Networks for Relation Extraction (注意力機制引導圖神經網絡的關系抽取)
ACL ’19
作者:Zhijiang Guo*, Yan Zhang* and Wei Lu
摘要:Dependency trees傳遞豐富的結構信息,這些信息對于提取文本中實體之間的關系非常有用。然而,如何有效利用相關信息而忽略Dependency trees中的無關信息仍然是一個具有挑戰性的研究問題。現有的方法使用基于規則的hard-pruning策略來選擇相關的部分依賴結構,可能并不總是產生最佳結果。本文提出了一種直接以全依賴樹為輸入的Attention Guided圖卷積網絡(AGGCNs)模型。我們的模型可以理解為一種soft-pruning方法,它自動學習如何有選擇地關注對關系提取任務有用的相關子結構。在包括跨句n元關系提取和大規模句級關系提取在內的各種任務上的大量結果表明,我們的模型能夠更好地利用全依賴樹的結構信息,其結果顯著優于之前的方法。
網址: //www.statnlp.org/paper/2019/attention-guided-graph-convolutional-networks-relation-extraction.html
代碼鏈接:
2、Cognitive Graph for Multi-Hop Reading Comprehension at Scale(大規模認知圖的Multi-Hop閱讀理解)
ACL ’19
作者:Ming Ding, Chang Zhou, Qibin Chen, Hongxia Yang, Jie Tang
摘要:我們提出了一種新的基于CogQA的web級文檔multi-hop問答框架。該框架以認知科學的對偶過程理論為基礎,通過協調隱式抽取模塊(System 1)和顯式推理模塊(System 2),在迭代過程中逐步構建認知圖,在給出準確答案的同時,進一步提供了可解釋的推理路徑。具體來說,我們基于BERT和graph neural network (GNN)的實現有效地處理了HotpotQA fullwiki數據集中數百萬個multi-hop推理問題的文檔,在排行榜上獲得了34.9的F1 score,而最佳競爭對手的得分為23.6。
網址:
代碼鏈接:
3、Coherent Comment Generation for Chinese Articles with a Graph-to-Sequence Model(使用Graph-to-Sequence模型為中文文章生成連貫的評論)
ACL ’19
作者:Wei Li, Jingjing Xu, Yancheng He, Shengli Yan, Yunfang Wu, Xu sun
摘要:自動文章評論有助于鼓勵用戶參與和在線新聞平臺上的互動。然而,對于傳統的基于encoder-decoder的模型來說,新聞文檔通常太長,這往往會導致一般性和不相關的評論。在本文中,我們提出使用一個Graph-to-Sequence的模型來生成評論,該模型將輸入的新聞建模為一個主題交互圖。通過將文章組織成圖結構,我們的模型可以更好地理解文章的內部結構和主題之間的聯系,這使得它能夠更好地理解故事。我們從中國流行的在線新聞平臺Tencent Kuaibao上收集并發布了一個大規模的新聞評論語料庫。廣泛的實驗結果表明,與幾個強大的baseline模型相比,我們的模型可以產生更多的連貫性和信息豐富性的評論。
網址:
代碼鏈接:
4、Dynamically Fused Graph Network for Multi-hop Reasoning(基于動態融合圖網絡的Multi-hop Reasoning)
ACL ’19
作者:Yunxuan Xiao, Yanru Qu, Lin Qiu, Hao Zhou, Lei Li, Weinan Zhang, Yong Yu
摘要:近年來,基于文本的問答(TBQA)得到了廣泛的研究。大多數現有的方法側重于在一段話內找到問題的答案。然而,許多有難度的問題需要來自兩個或多個文檔的分散文本的支持證據。本文提出了動態融合圖網絡(Dynamically Fused Graph Network ,DFGN),這是一種解決需要多個分散證據和推理的問題的新方法。受人類逐步推理行為的啟發,DFGN包含一個動態融合層,從給定查詢中提到的實體開始,沿著文本動態構建的實體圖進行探索,并逐步從給定文檔中找到相關的支持實體。我們在需要multi-hop reasoning的公共TBQA數據集HotpotQA上評估了DFGN。DFGN在公共數據集上取得了有競爭力的成績。此外,我們的分析表明,DFGN可以產生可解釋的推理鏈。
網址:
5、 Encoding Social Information with Graph Convolutional Networks for Political Perspective Detection in News Media(利用圖卷積網絡對Social Information進行編碼,用于新聞媒體中的政治傾向性檢測)
ACL ’19
作者:Chang Li, Dan Goldwasser
摘要:確定新聞事件在媒體中討論方式的政治視角是一項重要而富有挑戰性的任務。在這篇文章中,我們強調了將社交網絡置于情景化的重要性,捕捉這些信息如何在社交網絡中傳播。我們使用最近提出的一種表示關系信息的神經網絡結構——圖卷積網絡(Graph Convolutional Network)來捕獲這些信息,并證明即使在很少的social information分類中也可以得到顯著改進。
網址:
6、Graph Neural Networks with Generated Parameters for Relation Extraction(用于關系抽取的具有生成參數的圖神經網絡)
ACL ’19
作者:Hao Zhu, Yankai Lin, Zhiyuan Liu, Jie Fu, Tat-seng Chua, Maosong Sun
摘要:近年來,在改進機器學習領域的關系推理方面取得了一些進展。在現有的模型中,圖神經網絡(GNNs)是最有效的multi-hop關系推理方法之一。事實上,在關系抽取等自然語言處理任務中,multi-hop關系推理是必不可少的。本文提出了一種基于自然語言語句生成圖神經網絡(GP-GNNs)參數的方法,使神經網絡能夠對非結構化文本輸入進行關系推理。我們驗證了從文本中提取關系的GPGNN。 實驗結果表明,與baseline相比,我們的模型取得了顯著的改進。我們還進行了定性分析,證明我們的模型可以通過multi-hop關系推理發現更精確的關系。
網址:
7、Incorporating Syntactic and Semantic Information in Word Embeddings using Graph Convolutional Networks(使用圖卷積網絡在詞嵌入中結合句法和語義信息)
ACL ’19
作者:Shikhar Vashishth, Manik Bhandari, Prateek Yadav, Piyush Rai, Chiranjib Bhattacharyya, Partha Talukdar
摘要:詞嵌入已被廣泛應用于多種NLP應用程序中。現有的詞嵌入方法大多利用詞的sequential context來學習詞的嵌入。雖然有一些嘗試利用詞的syntactic context,但這種方法會導致詞表數的爆炸。在本文中,我們通過提出SynGCN來解決這個問題,SynGCN是一種靈活的基于圖卷積的學習詞嵌入的方法。SynGCN在不增加詞表大小的情況下利用單詞的dependency context。SynGCN學習的詞嵌入在各種內部和外部任務上都優于現有方法,在與ELMo一起使用時提供優勢。我們還提出了SemGCN,這是一個有效的框架,用于整合不同的語義知識,以進一步增強所學習的單詞表示。我們提供了兩個模型的源代碼,以鼓勵可重復的研究。
網址:
代碼鏈接:
8、 GraphRel: Modeling Text as Relational Graphs for Joint Entity and Relation Extraction(GraphRel: 將文本建模為關系圖,用于實體和關系抽取)
ACL ’19
作者:Tsu-Jui Fu, Peng-Hsuan Li, Wei-Yun Ma
摘要:本文提出了一種利用圖卷積網絡(GCNs)聯合學習命名實體和關系的端到端關系抽取模型GraphRel。與之前的baseline相比,我們通過關系加權GCN來考慮命名實體和關系之間的交互,從而更好地提取關系。線性結構和依賴結構都用于提取文本的序列特征和區域特征,并利用完整的詞圖進一步提取文本所有詞對之間的隱式特征。基于圖的方法大大提高了對重疊關系的預測能力。我們在兩個公共數據集NYT和webnlg上評估了GraphRel。結果表明,GraphRel在大幅度提高recall的同時,保持了較高的precision。GraphRel的性能也比之前的工作好3.2%和5.8% (F1 score),實現了關系抽取的最先進的方法。
網址:
代碼鏈接:
9、Multi-hop Reading Comprehension across Multiple Documents by Reasoning over Heterogeneous Graphs(通過對異構圖進行推理,實現跨多個文檔的Multi-hop閱讀理解)
ACL ’19
作者:Ming Tu, Guangtao Wang, Jing Huang, Yun Tang, Xiaodong He, Bowen Zhou
摘要:跨文檔的Multi-hop閱讀理解(RC)對單文本RC提出了新的挑戰,因為它需要對多個文檔進行推理才能得到最終答案。在本文中,我們提出了一個新的模型來解決multi-hop RC問題。我們引入了具有不同類型的節點和邊的異構圖,稱為異構文檔-實體(HDE)圖。HDE圖的優點是它包含不同粒度級別的信息,包括特定文檔上下文中的候選信息、文檔和實體。我們提出的模型可以對HDE圖進行推理,節點表示由基于co-attention 和 self-attention的上下文編碼器初始化。我們使用基于圖神經網絡(GNN)的消息傳遞算法,在提出的HDE圖上累積evidence。通過對Qangaroo WIKIHOP數據集的blind測試集的評估,我們的基于HDE圖的單模型給出了具有競爭力的結果,并且集成模型達到了最先進的性能。
網址:
10、Textbook Question Answering with Multi-modal Context Graph Understanding and Self-supervised Open-set Comprehension(多模態上下文圖理解和自監督開放集理解的Textbook問答)
ACL ’19
作者:Daesik Kim, Seonhoon Kim, Nojun Kwak
摘要:在本文中,我們介紹了一種解決教科書問答(TQA)任務的新算法。在分析TQA數據集時,我們主要關注兩個相關問題。首先,解決TQA問題需要理解復雜輸入數據中的多模態上下文。為了解決從長文本中提取知識特征并與視覺特征相結合的問題,我們從文本和圖像中建立了上下文圖,并提出了一種基于圖卷積網絡(GCN)的f-GCN模塊。其次,科學術語不會分散在各個章節中,而且主題在TQA數據集中是分開的。為了克服這個所謂的“領域外”問題,在學習QA問題之前,我們引入了一種新的沒有任何標注的自監督開放集學習過程。實驗結果表明,我們的模型明顯優于現有的最先進的方法。此外,消融研究證實,將f-GCN用于從多模態上下文中提取知識的方法和我們新提出的自監督學習過程對于TQA問題都是有效的。
網址:
下載鏈接: 提取碼:rr1c
【導讀】自然語言處理國際頂級會議EMNLP 2019于11月3日至11月7日在中國香港舉行。為了帶大家領略高質量論文,專知小編特意整理了六篇EMNLP 2019GNN相關論文,并附上論文鏈接供參考——命名實體識別、情感分類、對話圖卷積網絡、數據生成文本、短文本分類、Aspect-level情感分類等。
1、A Lexicon-Based Graph Neural Network for Chinese NER
作者:Tao Gui, Yicheng Zou, Qi Zhang;
摘要:遞歸神經網絡(RNN)用于中文命名實體識別(NER)中,能夠對文字信息進行順序跟蹤,取得了很大的成功。然而,由于鏈式結構的特點和缺乏全局語義,基于RNN的模型容易產生歧義。本文試圖通過引入一種全局語義的基于詞典的圖神經網絡來解決這一問題,該網絡利用詞典知識連接字符來捕獲局部成分,而全局中繼節點則可以捕獲全局句子語義和長距離依賴。基于字符、潛在單詞和整個句子語義之間的多重交互,可以有效地解決單詞歧義。在4個NER數據集的實驗表明,該模型與其他基線模型相比有顯著的改進。
網址:
//qizhang.info/paper/emnlp-2019.ner.pdf
2、Aspect-based Sentiment Classification with Aspect-specific Graph Convolutional Networks
作者:Chen Zhang, Qiuchi Li, Dawei Song;
摘要:注意機制和卷積神經網絡(CNNs)由于其固有的方面和上下文詞的語義對齊能力,被廣泛應用于基于方面的情感分類。然而,這些模型缺乏一種機制來解釋相關的句法約束和長距離的詞語依賴,因此可能會錯誤地將句法無關的上下文詞作為判斷方面情緒的線索。為了解決這個問題,我們提出在句子的依存樹上建立一個圖卷積網絡(GCN),以利用句法信息和詞的依存關系。在此基礎上,提出了一種新的面向方面的情感分類框架。在三個基準集合上的實驗表明,我們所提出的模型比一系列最先進的模型更具有相當的有效性,并且進一步證明了圖卷積結構能夠恰當地捕獲語法信息和長距離字的依賴關系。
網址:
3、DialogueGCN A Graph Convolutional Neural Network for Emotion Recognition in Conversation
作者:Deepanway Ghosal, Navonil Majumder, Soujanya Poria, Niyati Chhaya, Alexander Gelbukh;
摘要:會話情感識別(ECC)由于其在醫療、教育、人力資源等多個領域的廣泛應用,近年來受到了研究者的廣泛關注。在本文中,我們提出了對話圖卷積網絡(DialogueGCN),基于圖神經網絡的ERC方法。我們利用對話者的自言和對話人之間的依賴關系來為情緒識別建立會話環境模型。DialogueGCN通過圖形網絡解決了當前基于RNN的方法中存在的上下文傳播問題。我們經驗表明,這種方法緩解了這樣的問題,同時在一些基準的情緒分類數據集上超過了目前的狀態。
網址:
4、Enhancing AMR-to-Text Generation with Dual Graph Representations
作者:Leonardo F. R. Ribeiro, Claire Gardent, Iryna Gurevych;
摘要:基于圖的數據生成文本,如抽象意義表示(AMR),是一個具有挑戰性的任務,因為如何正確地對具有標記邊的圖的結構進行編碼存在固有的困難。為了解決這一難題,我們提出了一種新的圖-序列模型,該模型對AMR圖中包含的結構信息的不同但互補的透視圖進行編碼。該模型學習節點的自頂向下和自下而上的并行表示,以捕獲圖的對比視圖。我們還研究了不同節點消息傳遞策略的使用,使用不同的最先進的圖形編碼器來計算基于傳入和傳出透視圖的節點表示。在我們的實驗中,我們證明了對偶圖表示法可以改進AMR到文本的生成,從而在兩個AMR數據集上取得了最先進的效果。
網址:
5、Heterogeneous Graph Attention Networks for Semi-supervised Short Text Classification
作者:Linmei Hu, Tianchi Yang, Chuan Shi, Houye Ji, Xiaoli Li ;
摘要:短文本分類在新聞和推特標記中得到了豐富而重要的應用,以幫助用戶查找相關信息。由于在許多實際用例中缺乏標記的訓練數據,因此迫切需要研究半監督短文本分類。現有的研究大多集中在長文本上,由于標記數據的稀疏性和局限性,在短文本上的表現不盡人意。本文提出了一種新的基于異構圖神經網絡的半監督短文本分類方法,該方法充分利用了標記數據少和未標記數據大的優點,實現了信息在圖上的傳播。特別是,我們提出了一種靈活的HIN(異構信息網絡)框架,用于建模短文本,它可以集成任何類型的附加信息,并捕獲它們之間的關系來解決語義稀疏性。然后,我們提出了基于節點級和類型級注意的雙重注意機制的異構圖注意網絡(HGAT)嵌入HIN進行短文本分類。注意機制可以學習不同相鄰節點的重要性,以及不同節點(信息)類型對當前節點的重要性。大量的實驗結果表明,我們提出的模型在6個基準數據集上的性能顯著優于最先進的方法。
網址:
6、Syntax-Aware Aspect Level Sentiment Classification with Graph Attention Networks
作者:Binxuan Huang, Kathleen M. Carley ;
摘要:Aspect-level情感分類旨在識別向上下文語句給出的aspect表達的情緒。以往的基于神經網絡的方法在很大程度上忽略了句子的句法結構。在本文中,我們提出了一種新的目標依賴圖注意力網絡(TD-GAT)來進行方面層次的情感分類,該網絡明確利用了詞語之間的依賴關系。使用依賴圖,它直接從一個方面目標的語法上下文傳播情感特征。在我們的實驗中,我們證明了我們的方法優于使用GloVe嵌入的多個基線。我們還證明了使用BERT表示可以進一步顯著地提高性能。
網址: