【導讀】計算語言學協會(the Association for Computational Linguistics, ACL)年度會議作為頂級的國際會議,在計算語言學和自然語言處理領域一直備受關注。今年,第58屆計算語言學協會(the Association for Computational Linguistics, ACL)年度會議將于2020年7月5日至10日在美國華盛頓西雅圖舉行。受COVID-19疫情影響,ACL 2020將全部改為線上舉行。本次ACL大會共提交了3429篇論文,共有571篇長論文、以及208篇短論文入選。不久之前,專知小編為大家整理了大會的圖神經網絡(GNN)相關論文,上周,專知小編為大家整理了大會的圖神經網絡(GNN)相關論文,這期小編繼續為大家奉上ACL 2020知識圖譜表示學習(KGR)相關論文供參考——開放域知識圖譜嵌入、Multi-hop QA、雙曲嵌入、圖上下文建模、SEEK ACL2020GNN_Part2、ACL2020GNN_Part1、WWW2020GNN_Part1、AAAI2020GNN、ACMMM2019GNN、CIKM2019GNN、ICLR2020GNN
1. Can We Predict New Facts with Open Knowledge Graph Embeddings? A Benchmark for Open Link Prediction
作者:Samuel Broscheit, Kiril Gashteovski, Yanjie Wang, Rainer Gemulla
摘要:開放式信息抽取系統從原始文本中抽取(“主體文本”、“關系文本”、“客體文本”)三元組。有些三元組是事實的文本版本,即對實體和關系的非規范化提及。在這篇文章中,我們調查是否有可以不需要對精選的知識進行任何規范化或監督,直接從開放的知識圖中推斷出新的事實。為此,我們提出了一個open的鏈接預測任務,即通過補全(“主體文本”,“關系文本”,?)來預測測試事實問題。在這樣設置中的評估提出了如下這個問題:正確的預測是由開放域知識圖上的推理所誘導的新事實,還是說可以簡單地解釋。例如,事實可能出現在不同的措辭文本變體中。為此,我們提出了一種評估協議和建立了開放域鏈接預測基準的方法--OLPBENCH。我們使用一個用于開放域鏈接預測的典型知識圖嵌入模型進行了實驗。雖然這項任務非常具有挑戰性,但我們的結果表明,預測真正的新事實是可能的,并且這是不能簡單解釋的。
2. Improving Multi-hop Question Answering over Knowledge Graphs using Knowledge Base Embeddings
作者:Apoorv Saxena, Aditay Tripathi, Partha Talukdar
摘要:知識圖(KG)是由實體作為節點,實體之間的關系作為類型邊組成的多關系圖。KGQA任務的目標是回答在KG上提出的自然語言問題。多跳(Multi-hop)KGQA需要在KG的多個邊上進行推理才能得到正確的答案。KG通常是不完整的,有許多缺失的鏈接,這給KGQA帶來了額外的挑戰,特別是對于多跳KGQA。最近關于多跳KGQA的研究試圖使用相關的外部文本來處理KG稀疏性,但這并不總是容易獲得的。在另一項研究中,已經提出了通過執行缺失鏈接預測來降低KG稀疏的KG嵌入方法。這種KG嵌入方法雖然高度相關,但到目前為止還沒有被探索用于多跳KGQA。本文填補了這一空白,提出了EmbedKGQA。EmbedKGQA在稀疏KG上執行多跳KGQA特別有效。EmbedKGQA還放寬了從預先確定的鄰域中選擇答案的要求,這是以前的多跳KGQA方法實施的次優約束。通過在多個基準數據集上的廣泛實驗,我們證明了EmbedKGQA在其他最先進的基線上的有效性。
網址:
代碼鏈接:
3. Low-Dimensional Hyperbolic Knowledge Graph Embeddings
作者:Ines Chami, Adva Wolf, Da-Cheng Juan, Frederic Sala, Sujith Ravi, Christopher Ré
摘要:知識圖(KG)嵌入學習實體和關系的低維表示,用于預測另外實體或者補全關系。KG通常表現出必須保留在嵌入空間中的分層和邏輯模式。對于分層數據,雙曲嵌入(hyperbolic embedding)方法在高保真和簡約表示方面顯示出了希望。然而,現有的雙曲嵌入方法沒有考慮KG中豐富的邏輯模式。在這項工作中,我們引入了一類同時捕捉層次模式和邏輯模式的雙曲KG嵌入模型。我們的方法結合了雙曲線反射和旋轉,并注意建模復雜的關系模式。在標準KG基準上的實驗結果表明,我們的方法在低維的MRR(mean reciprocal rank)上比以前的基于歐幾里得和雙曲的工作提高了6.1%。此外,我們觀察到不同的幾何變換捕獲不同類型的關系,而基于注意力的變換概括為多個關系。在高維方面,我們的方法在WN18RR上的MRR為49.6%,在YAGO3-10上的MRR為57.7%。
網址:
4. Orthogonal Relation Transforms with Graph Context Modeling for Knowledge Graph Embedding
作者:Yun Tang, Jing Huang, Guangtao Wang, Xiaodong He, Bowen Zhou
摘要:基于距離的知識圖嵌入已經在知識圖鏈接預測任務上有了實質性的改進,從TransE到目前最先進的RotatE。然而,諸如 N-to-1, 1-to-N和N-to-N的復雜關系仍然難以預測。在這項工作中,我們提出了一種新的基于距離的知識圖鏈接預測方法。首先,通過對模型關系的正交變換,將RotatE從二維復數域擴展到高維空間。關系的正交變換嵌入保持了對于對稱/反對稱關系、逆關系和復合關系的建模能力,同時具有更好的建模能力。其次,將圖形上下文直接集成到距離評分函數中。具體地說,圖上下文是通過兩個有向上下文表示來顯式建模的。嵌入到知識圖中的每個節點都增加了兩個上下文表示,這兩個上下文表示分別從相鄰的傳出節點/邊和傳入節點/邊計算得到。該方法提高了N-to-1, 1-to-N和N-to-N情況下的預測精度。實驗結果表明,該算法在兩個常用的基準測試FB15k237和WNRR-18上都取得了最好的結果,特別是在節點數較多的FB15k-237上。
網址:
5. SEEK: Segmented Embedding of Knowledge Graphs
作者:Wentao Xu, Shun Zheng, Liang He, Bin Shao, Jian Yin, Tie-Yan Liu
摘要:近年來,知識圖嵌入成為人工智能領域的研究熱點,在推薦、問答等各種下游應用中發揮著越來越重要的作用。然而,現有的知識圖嵌入方法沒有在模型復雜度和模型表現力之間取得適當的折衷,這使得它們仍然遠遠不能令人滿意。為了緩解這一問題,我們提出了一個輕量級的建模框架,它可以在不增加模型復雜度的情況下獲得具有高度競爭力的關系表達能力。我們的框架側重于評分函數的設計,并突出了兩個關鍵特征:1)促進充分的特征交互;2)保持關系的對稱性和反對稱性。值得注意的是,由于評分函數設計的通用性和美觀性,我們的框架可以將現有的許多著名的方法作為特例合并在一起。此外,在公共基準上的大量實驗證明了該框架的有效性。
網址:
代碼鏈接:
【導讀】ICML(International Conference on Machine Learning),即國際機器學習大會, 是機器學習領域全球最具影響力的學術會議之一,因此在該會議上發表論文的研究者也會備受關注。因疫情的影響, 今年第37屆ICML大會已于2020年7月13日至18日在線上舉行。據官方統計,ICML 2020共提交4990篇論文,接收論文1088篇,接收率為21.8%。與往年相比,接收率逐年走低。ICML官網公布了接受論文列表,小編發現基于Graph相關的paper依然很多,為此,上個月專知小編為大家整理了圖神經網絡相關的論文,這期小編繼續為大家奉上ICML 2020必讀的五篇圖神經網絡(GNN)相關論文-Part 2——貝葉斯GNN、連續GNN、Faster圖嵌入、深度GCN、圖Pooling、
ICML 2020 Accepted Paper: //proceedings.icml.cc/book/2020
ICML2020GNN_Part1、KDD2020GNN_Part1、CVPR2020SGNN、CVPR2020GNN_Part2、CVPR2020GNN_Part1、WWW2020GNN_Part1、AAAI2020GNN、ACMMM2019GNN、CIKM2019GNN、ICLR2020GNN、
1. Bayesian Graph Neural Networks with Adaptive Connection Sampling
作者:Arman Hasanzadeh, Ehsan Hajiramezanali, Shahin Boluki, Mingyuan Zhou, Nick Duffifield, Krishna Narayanan, Xiaoning Qian
摘要:我們提出了一個用于圖神經網絡(GNNs)自適應連接采樣(connection sampling)的統一框架,該框架概括了現有的用于訓練GNN的隨機正則化方法。該框架不僅緩解了深層GNNs的過平滑和過擬合趨勢,而且使得GNNs在圖分析任務中的不確定性學習成為可能。與現有的隨機正則化方法那樣使用固定的采樣率或手動調整它們作為模型超參數不同,我們的自適應連接采樣可以與GNN模型參數以全局和局部的方式聯合訓練。具有自適應連接采樣的GNN訓練在數學上等價于訓練貝葉斯GNN的有效近似。在基準數據集上的消融實驗結果驗證了自適應學習采樣率是在半監督節點分類任務中提高GNNs性能的關鍵,使其不容易過平滑和過擬合,具有更穩健的預測能力。
網址:
2.Continuous Graph Neural Networks
作者:Louis-Pascal A. C. Xhonneux, Meng Qu, Jian Tang
摘要:本文建立在圖神經網絡與傳統動力系統之間的聯系之上。我們提出了連續圖神經網絡(Continuous Graph Neural Networks, CGNN),由于CGNN可以看作是一種特定的離散化方案,它進一步推廣了現有的具有離散動力學的圖神經網絡。其核心思想是如何刻畫節點表示的連續動力學,即節點表示的導數。受現有的基于圖擴散的方法(如社會網絡上的PageRank模型和流行病模型)的啟發,我們將導數定義為當前節點表示、鄰居表示和節點初始值的組合。我們提出并分析了圖上的兩種可能的動力學--包括節點表示的每一維(也稱為特征通道)獨立改變或者彼此交互-這兩者都有理論上的合理性。所提出的連續圖神經網絡對過于過平滑具有較強的魯棒性,因此可以建立更深層次的網絡,從而能夠捕獲節點之間的長期依賴關系。在節點分類任務上的實驗結果證明了我們提出的方法在與基線模型競爭上的有效性。
網址:
3.Faster Graph Embeddings via Coarsening
作者:Matthew Fahrbach, Gramoz Goranci, Richard Peng, Sushant Sachdeva, Chi Wang
摘要:圖嵌入是一種普遍適用于機器學習任務的工具,如圖結構數據上的節點分類和連接預測。然而,即使我們只對相關頂點的一小部分感興趣,計算大規模圖嵌入的效率也是很低的。為了解決這個問題,我們提出了一種基于Schur補(Schur complements)的有效圖粗化方法,用于計算相關頂點的嵌入。我們證明了這些嵌入被不相關頂點上通過高斯消去法得到的Schur補圖精確地保存。由于計算Schur補的代價很高,我們給出了一個近似線性的時間算法,該算法在每次迭代中在相關頂點上生成一個粗化圖,該粗化圖在期望上與Schur補相匹配。我們在圖上進行的預測任務實驗表明,計算嵌入到粗化圖上,而不是整個圖上,在不犧牲精度的情況下,可以節省大量的時間。
網址:
4. Simple and Deep Graph Convolutional Networks
作者:Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, Yaliang Li
摘要:圖卷積網絡(GCNS)是一種強大的圖結構數據深度學習方法。最近,GCNS及其變體在真實數據集上的各個應用領域都顯示出了優異的性能。盡管取得了成功,但由于過平滑的問題,目前的大多數GCN模型都很淺。本文研究了深圖卷積網絡的設計與分析問題。我們提出了GCNII模型,它是對普通GCN模型的擴展,使用了兩個簡單而有效的技術:初始殘差和恒等映射(Identity mapping)。我們提供了理論和實驗證據,證明這兩種技術有效地緩解了過平滑問題。我們的實驗表明,深度GCNII模型在各種半監督和全監督任務上的性能優于最先進的方法。
網址:
5. Spectral Clustering with Graph Neural Networks for Graph Pooling
作者:Filippo Maria Bianchi, Daniele Grattarola, Cesare Alippi
摘要:譜聚類(SC)是發現圖上強連接社區的一種流行的聚類技術。SC可以在圖神經網絡(GNN)中使用,以實現聚合屬于同一集群節點的池化操作。然而,Laplacian特征分解的代價很高,而且由于聚類結果是特定于圖的,因此基于SC的池化方法必須對每個新樣本執行新的優化。在本文中,我們提出了一種圖聚類方法來解決SC的這些局限性。我們建立了歸一化minCUT問題的連續松弛(continuous relaxation )公式,并訓練GNN來計算最小化這一目標的聚類分配。我們的基于GNN的實現是可微的,不需要計算譜分解,并且學習了一個聚合函數,可以在樣本外的圖上快速評估。從提出的聚類方法出發,我們設計了一個圖池化算子,它克服了現有圖池化技術的一些重要局限性,并在多個監督和非監督任務中取得了最好的性能。
網址:
【導讀】ICML(International Conference on Machine Learning),即國際機器學習大會, 是機器學習領域全球最具影響力的學術會議之一,因此在該會議上發表論文的研究者也會備受關注。因疫情的影響, 今年第37屆ICML大會將于2020年7月13日至18日在線上舉行。據官方統計,ICML 2020共提交4990篇論文,接收論文1088篇,接收率為21.8%。與往年相比,接收率逐年走低。在會議開始前夕,專知小編為大家整理了ICML 2020圖神經網絡(GNN)的六篇相關論文供參考——核GNN、特征變換、Haar 圖池化、無監督圖表示、譜聚類、自監督GCN。
ICML 2020 Accepted Papers //icml.cc/Conferences/2020/AcceptedPapersInitial
ACL2020GNN_Part1、WWW2020GNN_Part1、AAAI2020GNN、ACMMM2019GNN、CIKM2019GNN、ICLR2020GNN
1. Convolutional Kernel Networks for Graph-Structured Data
作者:Dexiong Chen, Laurent Jacob, Julien Mairal
摘要:我們引入了一系列多層圖核,并在圖卷積神經網絡和核方法之間建立了新的聯系。我們的方法通過將圖表示為核特征映射序列將卷積核網絡推廣到圖結構數據,其中每個節點攜帶關于局部圖子結構的信息。一方面,核的觀點提供了一種無監督的、有表現力的、易于正規化的數據表示,這在樣本有限的情況下很有用。另一方面,我們的模型也可以在大規模數據上進行端到端的訓練,從而產生了新型的圖卷積神經網絡。我們的方法在幾個圖分類基準上取得了與之相當的性能,同時提供了簡單的模型解釋。
網址:
代碼鏈接:
2. GNN-FILM: Graph Neural Networks with Feature-Wise Linear Modulation 作者:Marc Brockschmidt
摘要:本文提出了一種新的基于特征線性調制(feature-wise linear modulation,FiLM)的圖神經網絡(GNN)。許多標準GNN變體僅通過每條邊的源的表示來計算“信息”,從而沿著圖的邊傳播信息。在GNN-FILE中,邊的目標節點的表示被附加地用于計算可以應用于所有傳入信息的變換,從而允許對傳遞的信息進行基于特征的調制。基于基線方法的重新實現,本文給出了在文獻中提到的三個任務上的不同GNN體系結構的實驗結果。所有方法的超參數都是通過廣泛的搜索找到的,產生了一些令人驚訝的結果:基線模型之間的差異比文獻報道的要小。盡管如此,GNN-FILE在分子圖的回歸任務上的表現優于基線方法,在其他任務上的表現也具有競爭性。
網址:
3. Haar Graph Pooling
作者:Yu Guang Wang, Ming Li, Zheng Ma, Guido Montufar, Xiaosheng Zhuang, Yanan Fan
摘要:深度圖神經網絡(GNNs)是用于圖分類和基于圖的回歸任務的有效模型。在這些任務中,圖池化是GNN適應不同大小和結構的輸入圖的關鍵因素。本文提出了一種新的基于壓縮Haar變換的圖池化操作-HaarPooling。HaarPooling實現了一系列池化操作;它是通過跟隨輸入圖的一系列聚類序列來計算的。HaarPooling層將給定的輸入圖變換為節點數較小、特征維數相同的輸出圖;壓縮Haar變換在Haar小波域中過濾出細節信息。通過這種方式,所有HaarPooling層一起將任何給定輸入圖的特征合成為大小一致的特征向量。這種變換提供了數據的稀疏表征,并保留了輸入圖的結構信息。使用標準圖卷積層和HaarPooling層實現的GNN在各種圖分類和回歸問題上實現了最先進的性能。
網址:
4. Interferometric Graph Transform: a Deep Unsupervised Graph Representation 作者:Edouard Oyallon
摘要:我們提出了Interferometric Graph Transform(IGT),這是一類用于構建圖表示的新型深度無監督圖卷積神經網絡。我們的第一個貢獻是提出了一種從歐幾里德傅立葉變換的推廣得到的通用復數譜圖結構。基于一個新穎的貪婪凹目標,我們的學習表示既包括可區分的特征,也包括不變的特征。通過實驗可以得到,我們的學習過程利用了譜域的拓撲,這通常是譜方法的一個缺陷,特別是我們的方法可以恢復視覺任務的解析算子。我們在各種具有挑戰性的任務上測試了我們的算法,例如圖像分類(MNIST,CIFAR-10)、社區檢測(Authorship,Facebook graph)和3D骨架視頻中的動作識別(SBU,NTU),在譜圖非監督環境下展示了一種新的技術水平。
網址:
5. Spectral Clustering with Graph Neural Networks for Graph Pooling
作者:Filippo Maria Bianchi, Daniele Grattarola, Cesare Alippi
摘要:譜聚類(SC)是發現圖上強連通社區的一種流行的聚類技術。SC可以在圖神經網絡(GNN)中使用,以實現聚合屬于同一簇的節點的池化操作。然而,Laplacian的特征分解代價很高,而且由于聚類結果是特定于圖的,因此基于SC的池化方法必須對每個新樣本執行新的優化。在本文中,我們提出了一種圖聚類方法來解決SC的這些局限性。我們建立了歸一化minCUT問題的連續松弛公式,并訓練GNN來計算最小化這一目標的簇分配。我們的基于GNN的實現是可微的,不需要計算譜分解,并且學習了一個聚類函數,可以在樣本外的圖上快速評估。從提出的聚類方法出發,我們設計了一個圖池化算子,它克服了現有圖池化技術的一些重要局限性,并在多個監督和非監督任務中取得了最好的性能。
網址:
6. When Does Self-Supervision Help Graph Convolutional Networks?
作者:Yuning You, Tianlong Chen, Zhangyang Wang, Yang Shen
摘要:自監督作為一種新興的技術已被用于訓練卷積神經網絡(CNNs),以提高圖像表示學習的可傳遞性、泛化能力和魯棒性。然而,自監督對操作圖形數據的圖卷積網絡(GCNS)的介紹卻很少被探索。在這項研究中,我們首次將自監督納入GCNS的系統探索和評估。我們首先闡述了將自監督納入GCNS的三種機制,分析了預訓練&精調和自訓練的局限性,并進而將重點放在多任務學習上。此外,我們還提出了三種新的GCNS自監督學習任務,并進行了理論分析和數值比較。最后,我們進一步將多任務自監督融入到圖對抗性訓練中。研究結果表明,通過合理設計任務形式和合并機制,自監督有利于GCNS獲得更強的泛化能力和魯棒性。
網址:
代碼鏈接:
【導讀】計算語言學協會(the Association for Computational Linguistics, ACL)年度會議作為頂級的國際會議,在計算語言學和自然語言處理領域一直備受關注。其接收的論文覆蓋了語義分析、文本挖掘、信息抽取、問答系統、機器翻譯、情感分析和意見挖掘等眾多自然語言處理領域的研究方向。今年,第58屆計算語言學協會(the Association for Computational Linguistics, ACL)年度會議將于2020年7月5日至10日在美國華盛頓西雅圖舉行。受COVID-19疫情影響,ACL 2020將全部改為線上舉行。本次ACL大會共提交了3429篇論文,共有571篇長論文、以及208篇短論文入選。不久之前,專知小編為大家整理了大會的圖神經網絡(GNN)相關論文,這期小編繼續為大家奉上ACL 2020圖神經網絡(GNN)相關論文-Part 2供參考——多文檔摘要、多粒度機器閱讀理解、帖子爭議檢測、GAE。
ACL2020GNN_Part1、WWW2020GNN_Part1、AAAI2020GNN、ACMMM2019GNN、CIKM2019GNN、ICLR2020GNN
1. Leveraging Graph to Improve Abstractive Multi-Document Summarization
作者:Wei Li, Xinyan Xiao, Jiachen Liu, Hua Wu, Haifeng Wang, Junping Du
摘要:捕捉文本單元之間關系圖對于從多個文檔中檢測顯著信息和生成整體連貫的摘要有很大好處。本文提出了一種神經抽取多文檔摘要(MDS)模型,該模型可以利用文檔的常見圖表示,如相似度圖和話語圖(discourse graph),來更有效地處理多個輸入文檔并生成摘要。我們的模型使用圖對文檔進行編碼,以捕獲跨文檔關系,這對于總結長文檔至關重要。我們的模型還可以利用圖來指導摘要的生成過程,這有利于生成連貫而簡潔的摘要。此外,預訓練的語言模型可以很容易地與我們的模型相結合,進一步提高了摘要的性能。在WikiSum和MultiNews數據集上的實驗結果表明,所提出的體系結構在幾個強大的基線上帶來了實質性的改進。
網址: //arxiv.org/abs/2005.10043
2. Document Modeling with Graph Attention Networks for Multi-grained Machine Reading Comprehension
作者:Bo Zheng, Haoyang Wen, Yaobo Liang, Nan Duan, Wanxiang Che, Daxin Jiang, Ming Zhou, Ting Liu
摘要:“自然問題”是一種具有挑戰性的新的機器閱讀理解基準,其中包含兩個答案:長答案(通常是一個段落)和短答案(長答案中的一個或多個實體)。盡管此基準測試的現有方法很有效,但它們在訓練期間單獨處理這兩個子任務,忽略了它們間的依賴關系。為了解決這個問題,我們提出了一種新穎的多粒度機器閱讀理解框架,該框架專注于對文檔的分層性質進行建模,這些文檔具有不同的粒度級別:文檔、段落、句子和詞。我們利用圖注意力網絡來獲得不同層次的表示,以便它們可以同時學習。長答案和短答案可以分別從段落級表示和詞級表示中提取。通過這種方式,我們可以對兩個粒度的答案之間的依賴關系進行建模,以便為彼此提供證據。我們聯合訓練這兩個子任務,實驗表明,我們的方法在長答案和短答案標準上都明顯優于以前的系統。
網址:
代碼鏈接:
3. Integrating Semantic and Structural Information with Graph Convolutional Network for Controversy Detection
作者:Lei Zhong, Juan Cao, Qiang Sheng, Junbo Guo, Ziang Wang
摘要:識別社交媒體上有爭議的帖子是挖掘公眾情緒、評估事件影響、緩解兩極分化觀點的基礎任務。然而,現有的方法不能1)有效地融合來自相關帖子內容的語義信息;2)保留回復關系建模的結構信息;3)正確處理與訓練集中主題不同的帖子。為了克服前兩個局限性,我們提出了主題-帖子-評論圖卷積網絡(TPC-GCN),它綜合了來自主題、帖子和評論的圖結構和內容的信息,用于帖子級別的爭議檢測。對于第三個限制,我們將模型擴展到分離的TPC-GCN(DTPC-GCN),將主題相關和主題無關的特征分離出來,然后進行動態融合。在兩個真實數據集上的大量實驗表明,我們的模型優于現有的方法。結果和實例分析表明,該模型能夠將語義信息和結構信息有機地結合在一起,具有較強的通用性。
網址:
4. Knowledge Graph-Augmented Abstractive Summarization with Semantic-Driven Cloze Reward
作者:Luyang Huang, Lingfei Wu, Lu Wang
摘要:用于抽取摘要的序列到序列(sequence-to-sequence )模型已經被廣泛研究,但是生成的摘要通常受到捏造的內容的影響,并且經常被發現是near-extractive的。我們認為,為了解決這些問題,摘要生成器應通過輸入獲取語義解釋,例如通過結構化表示,以允許生成更多信息的摘要。在本文中,我們提出了一種新的抽取摘要框架--Asgard,它具有圖形增強和語義驅動的特點。我們建議使用雙重編碼器-序列文檔編碼器和圖形結構編碼器-來保持實體的全局上下文和局部特征,并且相互補充。我們進一步設計了基于多項選擇完形填空測試的獎勵,以驅動模型更好地捕捉實體交互。結果表明,我們的模型在紐約時報和CNN/每日郵報的數據集上都比沒有知識圖作為輸入的變體產生了更高的Rouge分數。與從大型預訓練的語言模型中優化的系統相比,我們也獲得了更好或可比的性能。評委進一步認為我們的模型輸出信息更豐富,包含的不實錯誤更少。
網址:
5. A Graph Auto-encoder Model of Derivational Morphology
作者:Valentin Hofmann, Hinrich Schutze, Janet B. Pierrehumberty
摘要:關于派生詞的形態良好性(morphological well-formedness, MWF)建模工作在語言學中被認為是一個復雜而困難的問題,并且這方面的研究工作較少。我們提出了一個圖自編碼器學習嵌入以捕捉派生詞中詞綴和詞干的兼容性信息。自編碼器通過將句法和語義信息與來自心理詞典的關聯信息相結合,很好地模擬了英語中的MWF。
網址:
【導讀】作為世界數據挖掘領域的最高級別的學術會議,ACM SIGKDD(國際數據挖掘與知識發現大會,簡稱 KDD)每年都會吸引全球領域眾多專業人士參與。今年的 KDD大會計劃將于 2020 年 8 月 23 日 ~27 日在美國美國加利福尼亞州圣地亞哥舉行。上周,KDD 2020官方發布接收論文,共有1279篇論文提交到Research Track,共216篇被接收,接收率16.8%。近期一些Paper放出來了,為此,專知小編提前為大家整理了五篇KDD 2020 圖神經網絡(GNN)相關論文,供大家參考。——圖結構學習、多元時間序列預測、負采樣、多任務多視角圖表示學習、多興趣推薦
CVPR2020SGNN、CVPR2020GNN_Part2、CVPR2020GNN_Part1、WWW2020GNN_Part1、AAAI2020GNN、ACMMM2019GNN、CIKM2019GNN、ICLR2020GNN、EMNLP2019GNN、ICCV2019GNN_Part2、ICCV2019GNN_Part1、NIPS2019GNN、IJCAI2019GNN_Part1、IJCAI2019GNN_Part2、KDD2019GNN、ACL2019GNN、CVPR2019GNN、
1. Graph Structure Learning for Robust Graph Neural Networks
作者:Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, Jiliang Tang
摘要:圖神經網絡(GNNs)是圖表示學習的有力工具。但是,最近的研究表明,GNN容易受到精心設計的擾動(稱為對抗攻擊)的攻擊。對抗性攻擊很容易欺騙GNN來預測下游任務。對于對抗攻擊的脆弱性使人們越來越關注在安全關鍵型應用中應用GNN。因此,開發穩健的算法來防御對抗攻擊具有重要意義。防御對抗攻擊的一個自然想法是清理受干擾的圖。很明顯,真實世界的圖共享一些內在屬性。例如,許多現實世界的圖都是低秩和稀疏的,兩個相鄰節點的特征往往是相似的。事實上,我們發現對抗攻擊很可能會違背這些圖的性質。因此,在本文中,我們利用這些特性來防御針對圖的對抗攻擊。特別是,我們提出了一個通用框架Pro-GNN,該框架可以從受這些特性指導的擾動圖中聯合學習結構圖和魯棒圖神經網絡模型。在真實圖上的大量實驗表明,即使在圖受到嚴重干擾的情況下,我們所提出的框架也比現有的防御方法獲得了顯著更好的性能。我們將Pro-GNN的實現發布到我們的DeepRobust存儲庫,以進行對抗性攻擊和防御。
網址: //arxiv.org/pdf/2005.10203.pdf
代碼鏈接:
2. Connecting the Dots: Multivariate Time Series Forecasting with Graph Neural Networks
作者:Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, Chengqi Zhang
摘要:多變量時間序列的建模長期以來一直吸引著來自經濟、金融和交通等不同領域的研究人員的關注。多變量時間序列預測背后的一個基本假設是其變量之間相互依賴,但現有方法未能充分利用變量對之間的潛在空間相關性。同時,近些年來,圖神經網絡(GNNs)在處理關系依賴方面表現出了很高的能力。GNN需要定義良好的圖結構來進行信息傳播,這意味著它們不能直接應用于事先不知道依賴關系的多變量時間序列。本文提出了一種專門針對多變量時間序列數據設計的通用圖神經網絡框架。該方法通過圖學習模塊自動提取變量間的單向關系,可以方便地集成變量屬性等外部知識。在此基礎上,提出了一種新的max-hop傳播層和一個dilated inception層來捕捉時間序列中的時間和空間依賴關系。圖學習、圖卷積和時間卷積模塊在端到端框架中聯合學習。實驗結果表明,我們提出的模型在4個基準數據集中的3個數據上優于最新的基線方法,并且在提供額外結構信息的兩個交通數據集上,與其他方法具有同等的性能。
網址:
3. Understanding Negative Sampling in Graph Representation Learning
作者:Zhen Yang, Ming Ding, Chang Zhou, Hongxia Yang, Jingren Zhou, Jie Tang
摘要:在最近的幾年中,對圖表示學習進行了廣泛的研究。盡管它有可能為各種網絡生成連續的嵌入,但是在大型節點集中得到有效高質量的表示仍然具有挑戰性。采樣是實現該性能目標的關鍵點。現有技術通常側重于正向節點對的采樣,而對負向采樣的策略探索不夠。為了彌補這一差距,我們從目標和風險兩個角度系統地分析了負采樣的作用,從理論上論證了負采樣在確定優化目標和結果方差方面與正采樣同等重要。據我們所知,我們是第一個推導該理論并量化負采樣分布應與其正采樣分布成正相關但亞線性相關的方法。在該理論的指導下,我們提出了MCNS,用自對比度近似法近似正分布,并通過Metropolis-Hastings加速負采樣。我們在5個數據集上評估了我們的方法,這些數據集涵蓋了19個實驗設置,涵蓋了廣泛的下游圖學習任務,包括鏈接預測,節點分類和個性化推薦。這些相對全面的實驗結果證明了其穩健性和優越性。
網址:
4. M2GRL: A Multi-task Multi-view Graph Representation Learning Framework for Web-scale Recommender Systems
作者:Menghan Wang, Yujie Lin, Guli Lin, Keping Yang, Xiao-ming Wu
摘要:將圖表示學習與多視圖數據(邊信息)相結合進行推薦是工業上的一種趨勢。現有的大多數方法可以歸類為多視圖表示融合,它們首先構建一個圖,然后將多視圖數據集成到圖中每個節點的單個緊湊表示中。這些方法在工程和算法方面都引起了人們的關注:1)多視圖數據在工業中是豐富而且有用的,并且可能超過單個矢量的容量;2)由于多視圖數據往往來自不同的分布,可能會引入歸納偏置(inductive bias)。在本文中,我們使用一種多視圖表示對齊方法來解決這個問題。特別地,我們提出了一個多任務多視角圖表示學習框架(M2GRL)來學習web級推薦系統中的多視角圖節點表示。M2GRL為每個單視圖數據構造一個圖,從多個圖中學習多個單獨的表示,并執行對齊以建立模型的交叉視圖關系。M2GRL選擇了一種多任務學習范式來聯合學習視圖內表示和交叉視圖關系。此外,M2GRL在訓練過程中利用同方差不確定性自適應地調整任務的損失權重。我們在淘寶部署了M2GRL,并對570億個實例進行了訓練。根據離線指標和在線A/B測試,M2GRL的性能明顯優于其他最先進的算法。對淘寶多樣性推薦的進一步研究表明,利用M2GRL產生的多種表征是有效的,對于不同側重點的各種工業推薦任務來說,M2GRL是一個很有前途的方向。
網址:
5. Controllable Multi-Interest Framework for Recommendation
作者:Yukuo Cen, Jianwei Zhang, Xu Zou, Chang Zhou, Hongxia Yang, Jie Tang
摘要:近年來,由于深度學習的快速發展,神經網絡在電子商務推薦系統中得到了廣泛的應用。我們將推薦系統形式化為一個序列推薦問題,目的是預測可能與用戶交互的下一個項目。最近的研究通常從用戶的行為序列中給出一個整體的嵌入。然而,統一的用戶嵌入不能反映用戶在一段時間內的多個興趣。本文提出了一種新穎的可控多興趣序列推薦框架,稱為ComiRec。我們的多興趣模塊從用戶行為序列中捕獲多個興趣,可用于從大規模項目集中檢索候選項目。然后將這些項目送入聚合模塊以獲得總體推薦。聚合模塊利用一個可控因素來平衡推薦的準確性和多樣性。我們在兩個真實的數據集Amazon和Taobao進行序列推薦實驗。實驗結果表明,我們的框架相對于最新模型取得了重大改進。我們的框架也已成功部署在離線阿里巴巴分布式云平臺上。
網址:
代碼鏈接:
【導讀】計算語言學協會(the Association for Computational Linguistics, ACL)年度會議作為頂級的國際會議,在計算語言學和自然語言處理領域一直備受關注。其接收的論文覆蓋了語義分析、文本挖掘、信息抽取、問答系統、機器翻譯、情感分析和意見挖掘等眾多自然語言處理領域的研究方向。今年,第58屆計算語言學協會(the Association for Computational Linguistics, ACL)年度會議將于2020年7月5日至10日在美國華盛頓西雅圖舉行。受COVID-19疫情影響,ACL 2020將全部改為線上舉行。為此,專知小編提前為大家整理了ACL 2020圖神經網絡(GNN)相關論文,讓大家先睹為快——事實驗證、法律文書、謠言檢測、自動摘要、情感分析。
WWW2020GNN_Part1、AAAI2020GNN、ACMMM2019GNN、CIKM2019GNN、ICLR2020GNN、EMNLP2019GNN、ICCV2019GNN_Part2、ICCV2019GNN_Part1、NIPS2019GNN、IJCAI2019GNN_Part1、IJCAI2019GNN_Part2、KDD2019GNN、ACL2019GNN、CVPR2019GNN、ICML2019GNN
1. Fine-grained Fact Verification with Kernel Graph Attention Network
作者:Zhenghao Liu, Chenyan Xiong, Maosong Sun, Zhiyuan Liu
摘要:事實驗證(Fact V erification)需要細粒度的自然語言推理能力來找到微妙的線索去識別句法和語義上正確但沒有強有力支持的聲明(well-supported claims)。本文提出了基于核方法的圖注意力網絡(KGAT),該網絡使用基于核的注意力進行更細粒度的事實驗證。給定一個聲明和一組形成證據圖潛在證據的句子,KGAT在圖注意力網絡中引入了可以更好地衡量證據節點重要性的節點核,以及可以在圖中進行細粒度證據傳播的邊緣核,以實現更準確的事實驗證。KGAT達到了70.38%的FEVER得分,在FEVER上大大超過了現有的事實驗證模型(FEVER是事實驗證的大規模基準)。我們的分析表明,與點積注意力相比,基于核的注意力更多地集中在證據圖中的相關證據句子和有意義的線索上,這是KGAT有效性的主要來源。
網址://arxiv.org/pdf/1910.09796.pdf
2. Distinguish Confusing Law Articles for Legal Judgment Prediction
作者:Nuo Xu, Pinghui Wang, Long Chen, Li Pan, Xiaoyan Wang, Junzhou Zhao
摘要:法律審判預測(LJP)是在給出案件事實描述文本的情況下,自動預測案件判決結果的任務,其在司法協助系統中具有良好的應用前景,為公眾提供方便的服務。實際上,由于適用于類似法律條款的法律案件很容易被誤判,經常會產生混淆的指控。在本文中,我們提出了一個端到端的模型--LADAN來解決LJP的任務。為了解決這一問題,現有的方法嚴重依賴領域專家,這阻礙了它在不同法律制度中的應用。為了區分混淆的指控,我們提出了一種新的圖神經網絡來自動學習混淆法律文章之間的細微差別,并設計了一種新的注意力機制,該機制充分利用學習到的差別從事實描述中提取令人信服的鑒別特征。在真實數據集上進行的實驗證明了我們的LADAN算法的優越性。
網址:
3. GCAN: Graph-aware Co-Attention Networks for Explainable Fake News Detection on Social Media
作者:Yi-Ju Lu, Cheng-Te Li
摘要:本文解決了在更現實的社交媒體場景下的假新聞檢測問題。給定源短文本推文和相應的沒有文本評論的轉發用戶序列,我們的目的是預測源推文是否是假的,并通過突出可疑轉發者的證據和他們關注的詞語來產生解釋。為了實現這一目標,我們提出了一種新的基于神經網絡的模型--圖感知協同注意網絡(GCAN)。在真實推文數據集上進行的廣泛實驗表明,GCAN的平均準確率比最先進的方法高出16%。此外,案例研究還表明,GCAN可以給出合理的解釋。
網址:
4. Heterogeneous Graph Neural Networks for Extractive Document Summarization
作者:Danqing Wang, Pengfei Liu, Yining Zheng, Xipeng Qiu, Xuanjing Huang
摘要:作為提取文檔摘要的關鍵步驟,跨句關系學習已經有了大量的研究方法。一種直觀的方法是將它們放入基于圖的神經網絡中,該網絡具有更復雜的結構來捕獲句間關系。本文提出了一種基于圖的異構神經網絡抽取摘要算法(HeterSUMGraph),該算法除句子外,還包含不同粒度的語義節點。這些額外的結點起到句子之間的中介作用,豐富了句子之間的關系。此外,通過引入文檔節點,我們的圖結構可以靈活地從單文檔設置自然擴展到多文檔設置。據我們所知,我們是第一個將不同類型的節點引入到基于圖的神經網絡中進行提取文檔摘要的,我們還進行了全面的定性分析,以考察它們的好處。
網址:
代碼鏈接:
5. Relational Graph Attention Network for Aspect-based Sentiment Analysis
作者:Kai Wang, Weizhou Shen, Yunyi Yang, Xiaojun Quan, Rui Wang
摘要:Aspect級的情感分析旨在確定在線評論中對某一特定方面的情感極性。最近的大多數努力采用了基于注意力的神經網絡模型來隱式地將aspect與觀點詞聯系起來。然而,由于語言的復雜性和單句中多個aspect的存在,這些模型往往混淆了它們之間的聯系。在本文中,我們通過對語法信息進行有效的編碼來解決這個問題。首先,我們通過重塑和修剪常規依賴關系樹,定義了一個以目標方面為根的統一的面向aspect的依賴樹結構。然后,我們提出了一種關系圖注意力網絡(R-GAT)來編碼新的樹結構用于情感預測。我們在SemEval 2014和Twitter數據集上進行了廣泛的實驗,實驗結果證實,該方法可以更好地建立aspect和觀點詞之間的聯系,從而顯著提高了圖注意網絡(GAT)的性能。
網址:
【導讀】國際萬維網大會(The Web Conference,簡稱WWW會議)是由國際萬維網會議委員會發起主辦的國際頂級學術會議,創辦于1994年,每年舉辦一屆,是CCF-A類會議。WWW 2020將于2020年4月20日至4月24日在中國臺灣臺北舉行。本屆會議共收到了1129篇長文投稿,錄用217篇長文,錄用率為19.2%。這周會議已經召開,會議論文集已經公開,大家可以自己查看感興趣的論文,專知小編繼續整理WWW 2020 系列論文,這期小編為大家奉上的是WWW 2020五篇知識圖譜+圖神經網絡(KG+GNN)相關論文,供大家參考!——多關系實體對齊、問答推理、動態圖實體鏈接、序列實體鏈接、知識圖譜補全。
WWW 2020 會議論文集: //dl.acm.org/doi/proceedings/10.1145/3366423
WWW2020GNN_Part1、AAAI2020GNN、ACMMM2019GNN、CIKM2019GNN、ICLR2020GNN、EMNLP2019GNN、ICCV2019GNN_Part2、ICCV2019GNN_Part1、NIPS2019GNN、IJCAI2019GNN_Part1、IJCAI2019GNN_Part2、KDD2019GNN、ACL2019GNN、CVPR2019GNN、ICML2019GNN
作者:Qi Zhu, Hao Wei, Bunyamin Sisman, Da Zheng, Christos Faloutsos, Xin Luna Dong and Jiawei Han
摘要:知識圖(如Freebase、Yago)是表示各類實體之間豐富真實信息的多關系圖。實體對齊是實現多源知識圖集成的關鍵步驟。它旨在識別涉及同一真實世界實體的不同知識圖中的實體。然而,現有的實體對齊系統忽略了不同知識圖的稀疏性,不能通過單一模型對多類型實體進行對齊。在本文中,我們提出了一種用于多類型實體對齊的聯合圖神經網絡(Collective Graph neural network),稱為CG-MuAlign。與以前的工作不同,CG-MuAlign聯合對齊多種類型的實體,共同利用鄰域信息并將其推廣到未標記的實體類型。具體地說,我們提出了一種新的集中聚集函數1)通過交叉圖和自注意力來緩解知識圖的不完全性,2)通過小批量訓練范例和有效的鄰域抽樣策略,有效地提高了可伸縮性。我們在具有數百萬個實體的真實知識圖上進行了實驗,觀察到了比現有方法更優越的性能。此外,我們的方法的運行時間比目前最先進的深度學習方法要少得多。
網址:
作者:Chen Zhao, Chenyan Xiong, Xin Qian and Jordan Boyd-Graber
摘要:我們介紹了Delft,一個事實問答系統,它將知識圖問答方法的細微和深度與更廣泛的free-文本結合在一起。Delft從Wikipedia構建了一個自由文本知識圖,以實體為節點和句子,其中實體同時出現做為邊。對于每個問題,Delft使用文本句子作為邊,找到將問題實體節點鏈接到候選對象的子圖,創建了密集且覆蓋率高的語義圖。一種新穎的圖神經網絡在free-文本圖上進行推理-通過沿邊句子的信息組合節點上的證據-以選擇最終答案。在三個問答數據集上的實驗表明,Delft能夠比基于機器閱讀的模型、基于BERT的答案排序和記憶網絡更好地回答實體豐富的問題。Delft的優勢既來自于其free-文本知識圖譜的高覆蓋率--是DBpedia關系的兩倍多--也來自于新穎的圖神經網絡,它基于豐富而嘈雜的free-文本證據進行推理。
網址:
作者:Junshuang Wu, Richong Zhang, Yongyi Mao, Hongyu Guo, Masoumeh Soflaei and Jinpeng Huai
摘要:實體鏈接將文檔中提及的命名實體映射到給定知識圖中的合適的實體,已被證明能夠從基于圖卷積網絡(GCN)對實體相關性建模中獲得顯著好處。然而,現有的GCN實體鏈接模型沒有考慮到,一組實體的結構化圖不僅依賴于給定文檔的上下文信息,而且在GCN的不同聚合層上自適應地變化,導致在捕捉實體之間的結構信息方面存在不足。在本文中,我們提出了一種動態的GCN體系結構來有效地應對這一挑戰。模型中的圖結構是在訓練過程中動態計算和修改的。通過聚合動態鏈接節點的知識,我們的GCN模型可以集中識別文檔和知識圖之間的實體映射,并有效地捕捉整個文檔中各個實體提及( mentions)之間的主題一致性。在基準實體連接數據集上的實證研究證實了我們提出的策略的優越性能和動態圖結構的好處。
網址:
作者:Yichao Zhou, Shaunak Mishra, Manisha Verma, Narayan Bhamidipati and Wei Wang
摘要:實體鏈接(EL)是將文本中提及的內容映射到知識庫(KB)中相應實體的任務。這項任務通常包括候選生成(CG)和實體消歧(ED)兩個階段。目前基于神經網絡模型的EL系統取得了較好的性能,但仍然面臨著兩個挑戰:(1)以往的研究在評估模型時沒有考慮候選實體之間的差異。事實上,候選集的質量(特別是黃金召回)對EL結果有影響。因此,如何提候選的素質需要引起更多的關注。(Ii)為了利用提及實體之間的主題一致性,提出了許多聚集ED的圖和序列模型。然而,基于圖的模型對所有候選實體一視同仁,這可能會引入大量的噪聲信息。相反,序列模型只能觀察先前引用的實體,而忽略了當前提及的實體與其后續實體之間的相關性。針對第一個問題,我們提出了一種基于多策略的CG方法來生成高召回率的候選集。對于第二個問題,我們設計了一個序列圖注意力網絡(SeqGat),它結合了圖和序列方法的優點。在我們的模型中,提及( mentions)是按順序處理的。在當前提到的情況下,SeqGAT對其先前引用的實體和后續實體進行動態編碼,并為這些實體分配不同的重要性。這樣既充分利用了主題的一致性,又減少了噪聲干擾。我們在不同類型的數據集上進行了實驗,并在開放的評測平臺上與以前的EL系統進行了比較。比較結果表明,與現有的方法相比,我們的模型有了很大的改進。
網址:
作者:Gaole He, Junyi Li, Wayne Xin Zhao, Peiju Liu and Ji-Rong Wen
摘要:知識圖補全(KGC)任務旨在自動推斷知識圖(KG)中缺失的事實信息。在本文中,我們采取了一個新的視角,旨在利用豐富的用戶-項目交互數據(簡稱用戶交互數據)來改進KGC任務。我們的工作靈感來自于觀察到許多KG實體對應于應用系統中的在線項目。然而,這兩種數據源的固有特性有很大的不同,使用簡單的融合策略很可能會損害原有的性能。為了應對這一挑戰,我們提出了一種新的對抗性學習方法,通過利用用戶交互數據來執行KGC任務。我們的生成器是從用戶交互數據中分離出來的,用來提高鑒別器的性能。鑒別器將從用戶交互數據中學習到的有用信息作為輸入,并逐步增強評估能力,以識別生成器生成的假樣本。為了發現用戶的隱含實體偏好,設計了一種基于圖神經網絡的協同學習算法,并與鑒別器進行聯合優化。這種方法有效地緩解了KGC任務的數據異構性和語義復雜性問題。在三個真實世界數據集上的廣泛實驗已經證明了我們在KGC任務上的方法的有效性。
網址:
【導讀】國際萬維網大會(The Web Conference,簡稱WWW會議)是由國際萬維網會議委員會發起主辦的國際頂級學術會議,創辦于1994年,每年舉辦一屆,是CCF-A類會議。WWW 2020將于2020年4月20日至4月24日在中國臺灣臺北舉行。由于疫情影響,這次會議在線上舉行,本屆會議共收到了1129篇長文投稿,錄用217篇長文,錄用率為19.2%。近期,隨著會議的臨近,有很多paper放出來,小編發現這次WWW 2020被圖神經網絡攻占,占比非常大,可見其火爆程度。這期小編繼續為大家奉上WWW 2020五篇GNN相關論文供參考——圖注意力主題模型、超圖學習、圖神經網絡Hash、多視角圖聚類、Graph Pooling。
WWW2020GNN_Part2、WWW2020GNN_Part1、AAAI2020GNN、ACMMM2019GNN、CIKM2019GNN、ICLR2020GNN、EMNLP2019GNN、ICCV2019GNN_Part2、ICCV2019GNN_Part1、NIPS2019GNN、IJCAI2019GNN_Part1、IJCAI2019GNN_Part2、KDD2019GNN、ACL2019GNN、CVPR2019GNN、ICML2019GNN
作者:Liang Yang, Fan Wu, Junhua Gu, Chuan Wang, Xiaochun Cao, Di Jin, and Yuanfang Guo
摘要:現有的主題模型(topic modeling)方法存在一些問題,包括概率潛在語義索引模型(Probablistic Latent Semantic Indexing,PLSI)過擬合問題、隱狄利克雷分配(Latent Dirichlet Allocation,LDA)模型不能能捕捉主題間豐富的主題相關性與推理復雜度高等問題。本文提出了一種新的方法來克服pLSI的過擬合問題,用嵌入單詞的平攤推理(amortized inference)作為輸入,代替LDA中的狄利克雷先驗。對于生成性主題模型,大量的自由隱變量是過擬合的根源。為了減少參數個數,平攤推理用一個具有共享(平攤)可學習參數的函數代替了對隱變量的推理。共享參數的數量是固定的,并且與語料庫的規模無關。為了克服平攤推理在獨立同分布(I.I.D)數據中應用的局限性,根據以下兩個觀察結果,我們提出了一種新的圖神經網絡--圖注意力主題網絡(GATON),用于對非I.I.D文檔的主題結構進行建模。首先,pLSI可以解釋為特定二分圖上的隨機塊模型(SBM)。其次,圖注意力網絡(GAT)可以解釋為SBM的半平攤推理(semi-amortized inference),它放寬了I.I.D數據的vanilla 平攤推理假設。GATON提供了一種新穎的基于圖卷積運算的方案,去聚合單詞相似度和單詞共現結構。具體地說,詞袋文檔表示被建模為二分圖拓撲。同時,將捕獲詞相似性的詞嵌入建模為詞節點的屬性,并采用詞頻向量作為文檔節點的屬性。基于加權(注意力)圖卷積操作,詞共現結構和詞相似度模式被無縫地集成在一起進行主題識別。大量實驗表明,GATON在主題識別方面的有效性不僅有利于文檔分類,而且能顯著細化輸入詞的嵌入。
網址://yangliang.github.io/pdf/www20.pdf
作者:Se-eun Yoon, Hyungseok Song, Kijung Shin, and Yung Yi
摘要:超圖提供了一種自然的表示組群關系的方法,其復雜性促使大量先前的工作采用某種形式抽象和簡化高階交互。然而,以下問題尚未得到解決:在解決超圖任務時,組群間交互的抽象程度需要多大?這些結果在不同的數據集中會有多大的不同?如果這個問題可以回答,將為如何在解決下游任務的復雜性和準確性之間權衡提供有用的工程指南。為此,我們提出了一種使用n投影圖( n-projected graph )的概念遞增表示群組交互的方法,該圖的累積量包含多達n種交互作用的信息,并隨著各種數據集的增長,量化解決任務的準確性。作為下游任務,我們考慮超邊預測,它是連接預測的擴展,是評估圖模型的典型任務。通過在15個真實數據集上的實驗,我們得出了以下信息:(a)收益遞減:較小地n足以獲得與接近完美近似值相當的精度,(b)疑難解答:隨著任務的挑戰性越來越大,n帶來了更多好處,(c)不可約性:當成對抽象化時,其成對交互并不能充分說明高階交互的數據集將失去很多準確性。
網址:
作者:Qiaoyu Tan, Ninghao Liu, Xing Zhao, Hongxia Yang, Jingren Zhou, and Xia Hu
摘要:工業推薦系統一般包括兩個階段:召回和排名。召回是指從海量的項目語料庫中高效地識別出數百個用戶可能感興趣的候選項目,而排名的目標是使用復雜的排名模型輸出精確的排名列表。近年來,圖表示學習在支持大規模高質量候選搜索方面受到了廣泛關注。盡管它在用戶-項目交互網絡中學習對象的嵌入向量方面是有效的,但在連續嵌入空間中推斷用戶偏好的計算代價是巨大的。在這項工作中,我們研究了基于圖神經網絡(GNNs)的哈希高質量檢索問題,并提出了一種簡單而有效的離散表示學習框架來聯合學習連續與離散編碼。具體地說,提出了一種基于GNN的深度哈希算法(HashGNN),它由兩部分組成,一個是用于學習節點表示的GNN編碼器,另一個是用于將表示編碼為哈希碼的哈希層。整個框架通過聯合優化以下兩個損失進行端到端的訓練,即通過重建觀察到的連接而產生的重建損失,以及通過保留哈希碼的相對順序產生的排序損失。我們還提出了一種基于直通估計器(straight through estimator ,STE)指導的離散優化策略。其主要思想是在連續嵌入指導下避免STE的反向傳播中的梯度放大,在這種情況下,我們從學習一個更容易模仿連續嵌入的更簡單的網絡開始,并使其在訓練過程中發展直至最終返回STE。在三個公開可用數據集和一個真實的阿里巴巴公司數據集的綜合實驗表明,我們的模型不僅可以達到連續模型的性能,而且在推理過程中運行速度快了好幾倍。
網址:
作者:Shaohua Fan, Xiao Wang, Chuan Shi, Emiao Lu, Ken Lin, and Bai Wang
摘要:多視圖圖聚類(Multi-view graph clustering)近年來受到了相當大的關注,它是一種尋找具有多個視圖的圖的分割方法,通常提供更全面但更復雜的信息。雖然多視圖圖聚類已經做了一些努力并取得了較好的效果,但大多數都是采用淺層模型來處理多視圖間的復雜關系,這可能會嚴重限制多視圖的圖信息建模能力。本文首次嘗試將深度學習技術應用于屬性多視圖圖聚類,提出了一種新的任務導向的One2Multi圖自編碼器聚類框架。One2Multi圖自編碼器能夠通過使用一個信息豐富的圖形視圖和內容數據來重建多個圖形視圖來學習節點嵌入。因此,可以很好地捕捉多個圖的共享特征表示。在此基礎上,我們還提出了一種自訓練聚類目標,以迭代地改善聚類結果。通過將自訓練和自編碼器重構集成到一個統一的框架中,我們的模型可以聯合優化適用于圖聚類的簇標簽分配和嵌入。在真實屬性多視圖圖數據集上的實驗很好地驗證了該模型的有效性。
網址:
作者:Liang Zhang, Xudong Wang, Hongsheng Li, Guangming Zhu, Peiyi Shen, Ping Li, Xiaoyuan Lu, Syed Afaq Ali Shah, and Mohammed Bennamoun
摘要:近年來,人們提出了各種處理圖數據的方法。然而,這些方法大多側重于圖的特征聚合,而不是圖的池化。此外,現有的top-k選擇圖池化方法存在一些問題。首先,在構建池化圖拓撲時,現有的top-k選擇方法只從單一的角度評價節點的重要性,這是簡單化和不客觀的。其次,未選中節點的特征信息在池化過程中直接丟失,必然導致大量的圖特征信息丟失。為了解決上述問題,我們提出了一種新穎的圖自適應池化方法,目標如下:(1)為了構造合理的池化圖拓撲,同時考慮了圖的結構信息和特征信息,增加了節點選擇的準確性和客觀性;(2)為了使池化的節點包含足夠有效的圖信息,在丟棄不重要的節點之前,先聚合節點特征信息;因此,所選擇的節點包含來自鄰居節點的信息,這可以增強未選擇節點的特征的使用。在四個不同的數據集上的實驗結果表明,我們的方法在圖分類中是有效的,并且優于最新的圖池化方法。
網址:
【導讀】國際萬維網大會(The Web Conference,簡稱WWW會議)是由國際萬維網會議委員會發起主辦的國際頂級學術會議,創辦于1994年,每年舉辦一屆,是CCF-A類會議。WWW 2020將于2020年4月20日至4月24日在中國臺灣臺北舉行。本屆會議共收到了1129篇長文投稿,錄用217篇長文,錄用率為19.2%。近期,隨著會議的臨近,有很多paper放出來,幾周前專知小編整理了WWW 2020圖神經網絡(GNN)比較有意思的論文,這期小編繼續為大家奉上WWW 2020五篇GNN相關論文供參考——對抗攻擊、Heterogeneous Graph Transformer、圖生成、多關系GNN、知識庫補全。
WWW2020GNN_Part1、AAAI2020GNN、ACMMM2019GNN、CIKM2019GNN、ICLR2020GNN、EMNLP2019GNN、ICCV2019GNN_Part2、ICCV2019GNN_Part1、NIPS2019GNN、IJCAI2019GNN_Part1、IJCAI2019GNN_Part2、KDD2019GNN、ACL2019GNN、CVPR2019GNN、ICML2019GNN
作者:Jia Li, Honglei Zhang, Zhichao Han, Yu Rong, Hong Cheng and Junzhou Huang
摘要:已經證明,添加了不可察覺擾動的對抗圖(adversarial graphs),會導致深層圖模型在節點/圖分類任務中失敗。在本文中,我們將對抗性圖擴展到困難得多的社區發現(community detection)問題上。我們關注黑盒攻擊,致力于隱藏目標個體,使其不被深度圖社區檢測模型檢測到,該模型在現實場景中有很多應用,例如,保護社交網絡中的個人隱私,理解交易網絡中的偽裝模式。我們提出了一個迭代學習框架,輪流更新兩個模塊:一個作為約束圖生成器,另一個作為替代社區發現模型。我們還發現,我們的方法生成的對抗圖可以遷移到其他基于社區發現模型的學習中。
作者:Ziniu Hu, Yuxiao Dong, Kuansan Wang and Yizhou Sun
摘要:近年來,圖神經網絡(GNNs)在結構化數據建模方面取得了突飛猛進的成功。然而,大多數GNN都是為同質圖(所有的節點和邊都屬于相同的類型)設計的,這使得這些GNN不能表示異構結構。在這篇文章中,我們提出了異構圖轉換器(HGT)結構來建模Web規模的異構圖。為了建模異構性,我們設計了與節點和邊類型相關的參數來表征對每條邊的異構關注,使得HGT能夠維護不同類型的節點和邊的專有表示。為了處理動態異構圖,我們將相對時間編碼技術引入到HGT中,能夠捕獲任意持續時間的動態結構依賴關系。為了處理Web規模的圖數據,我們設計了異構小批量圖采樣算法HGSamples,以實現高效和可擴展的訓練。在具有1.79億個節點和20億條邊的開放學術圖上的廣泛實驗表明,本文所提出的HGT模型在各種下游任務上的性能一致地比所有最新的GNN基線高出9%-21%。
網址:
代碼鏈接:
作者:Nikhil Goyal, Harsh Vardhan Jain and Sayan Ranu
摘要:圖生成模型在數據挖掘領域中得到了廣泛的研究。傳統的技術基于預定義分布的生成結構,而最近的技術已轉向直接從數據中學習此分布。雖然基于學習的方法在質量上有了顯著的提高,但仍有一些缺點需要解決。首先,學習圖的分布會帶來額外的計算開銷,這就限制了這些方法對大型圖數據庫的可擴展性。第二,許多方法只學圖結構,并沒有學習節點和邊的標簽(這些標簽編碼重要的語義信息會影響結構自身)。第三,現有技術往往包含領域的特定規則,缺乏通用性。第四,現有方法的實驗部分要么使用了較弱的評估指標,要么主要集中在合成數據或小數據集上,實驗不夠全面上。在這項工作中,我們提出了一種稱為GraphGen的域未知(domain-agnostic)技術來克服所有這些缺點,GraphGen使用最少的DFS代碼將圖轉換為序列。最小DFS碼是規范化的標簽,并且可以精確地捕捉圖結構和標簽信息。本文通過一種新的LSTM結構學習結構標簽和語義標簽之間復雜的聯合分布。在百萬級的真實圖數據集上的廣泛實驗表明,GraphGen的平均速度是最先進方法的4倍,同時在11個不同指標的綜合集合中質量明顯更好。
網址:
代碼鏈接:
作者:Wen Wang, Wei Zhang, Shukai Liu, Bo Zhang, Leyu Lin and Hongyuan Zha
摘要:基于會話的目標行為預測旨在預測要與特定行為類型(例如,點擊)交互的下一項。雖然現有的基于會話的行為預測方法利用強大的表示學習方法來編碼項目在低維空間中的順序相關性,但是它們受到一些限制。首先,之前的方法側重于只利用同一類型的用戶行為進行預測,而忽略了將其他行為數據作為輔助信息的潛力。當目標行為稀疏但很重要(例如,購買或共享物品)時,輔助信息尤為重要。其次,項目到項目的關系是在一個行為序列中單獨和局部建模的,缺乏一種規定的方法來更有效地全局編碼這些關系。為了克服這些局限性,我們提出了一種新的基于會話的多關系圖神經網絡模型(MGNN-SPred)。具體地說,我們基于來自所有會話的所有行為序列(涉及目標行為類型和輔助行為類型)構建多關系項目圖(Multi-Relational Item Graph,MRIG)。在MRIG的基礎上,MGNN-SPred學習全局項目與項目之間的關系,進而獲得用戶偏好分別作為為當前目標行為序列和輔助行為序列。最后,MGNN-SPred利用門控機制自適應地融合用戶表示,以預測與目標行為交互的下一項。在兩個真實數據集上的廣泛實驗證明了MGNN-SPred與最新的基于會話的預測方法相比的優越性,驗證了利用輔助行為和基于MRIG學習項目到項目關系的優點。
網址:
作者:Ermei Cao, Difeng Wang, Jiacheng Huang and Wei Hu
摘要:知識庫(KBS)已經逐漸成為許多人工智能應用的寶貴資產。雖然目前的許多知識庫相當大,但它們被是不完整的,特別是缺乏長尾實體(例如:不太有名的人)。現有的方法主要通過補全缺失連接或補齊缺失值來豐富知識庫。然而,它們只解決了充實知識庫問題的一部分,缺乏對長尾實體的具體考慮。在這篇文章中,我們提出了一種新穎的知識補齊方法,它從開放的Web中預測缺失的屬性并推斷出長尾實體的真實值。利用來自流行實體的先驗知識來改進每個充實步驟。我們在合成數據集和真實數據集上的實驗以及與相關工作的比較表明了該方法的可行性和優越性。
網址:
最近小編推出CVPR2019圖卷積網絡、CVPR2019生成對抗網絡、【可解釋性】,CVPR視覺目標跟蹤,CVPR視覺問答,醫學圖像分割,圖神經網絡的推薦,CVPR域自適應, ICML圖神經網絡,ICML元學習相關論文,反響熱烈。最近,ACL 2019最新接受文章出爐,大會共收到2905 篇論文投稿,其中660 篇被接收(接收率為22.7%)。小編發現,今年接受的文章結合GNN的工作有二三十篇,看來,圖神經網絡已經攻占NLP領域,希望其他領域的同學多多學習,看能否結合,期待好的工作!今天小編專門整理最新十篇ACL長文,圖神經網絡(GNN)+NLP—注意力機制引導圖神經網絡、Graph-to-Sequence、動態融合圖網絡、實體和關系抽取、Multi-hop閱讀理解、多模態上下文圖理解等。
1、Attention Guided Graph Convolutional Networks for Relation Extraction (注意力機制引導圖神經網絡的關系抽取)
ACL ’19
作者:Zhijiang Guo*, Yan Zhang* and Wei Lu
摘要:Dependency trees傳遞豐富的結構信息,這些信息對于提取文本中實體之間的關系非常有用。然而,如何有效利用相關信息而忽略Dependency trees中的無關信息仍然是一個具有挑戰性的研究問題。現有的方法使用基于規則的hard-pruning策略來選擇相關的部分依賴結構,可能并不總是產生最佳結果。本文提出了一種直接以全依賴樹為輸入的Attention Guided圖卷積網絡(AGGCNs)模型。我們的模型可以理解為一種soft-pruning方法,它自動學習如何有選擇地關注對關系提取任務有用的相關子結構。在包括跨句n元關系提取和大規模句級關系提取在內的各種任務上的大量結果表明,我們的模型能夠更好地利用全依賴樹的結構信息,其結果顯著優于之前的方法。
網址: //www.statnlp.org/paper/2019/attention-guided-graph-convolutional-networks-relation-extraction.html
代碼鏈接:
2、Cognitive Graph for Multi-Hop Reading Comprehension at Scale(大規模認知圖的Multi-Hop閱讀理解)
ACL ’19
作者:Ming Ding, Chang Zhou, Qibin Chen, Hongxia Yang, Jie Tang
摘要:我們提出了一種新的基于CogQA的web級文檔multi-hop問答框架。該框架以認知科學的對偶過程理論為基礎,通過協調隱式抽取模塊(System 1)和顯式推理模塊(System 2),在迭代過程中逐步構建認知圖,在給出準確答案的同時,進一步提供了可解釋的推理路徑。具體來說,我們基于BERT和graph neural network (GNN)的實現有效地處理了HotpotQA fullwiki數據集中數百萬個multi-hop推理問題的文檔,在排行榜上獲得了34.9的F1 score,而最佳競爭對手的得分為23.6。
網址:
代碼鏈接:
3、Coherent Comment Generation for Chinese Articles with a Graph-to-Sequence Model(使用Graph-to-Sequence模型為中文文章生成連貫的評論)
ACL ’19
作者:Wei Li, Jingjing Xu, Yancheng He, Shengli Yan, Yunfang Wu, Xu sun
摘要:自動文章評論有助于鼓勵用戶參與和在線新聞平臺上的互動。然而,對于傳統的基于encoder-decoder的模型來說,新聞文檔通常太長,這往往會導致一般性和不相關的評論。在本文中,我們提出使用一個Graph-to-Sequence的模型來生成評論,該模型將輸入的新聞建模為一個主題交互圖。通過將文章組織成圖結構,我們的模型可以更好地理解文章的內部結構和主題之間的聯系,這使得它能夠更好地理解故事。我們從中國流行的在線新聞平臺Tencent Kuaibao上收集并發布了一個大規模的新聞評論語料庫。廣泛的實驗結果表明,與幾個強大的baseline模型相比,我們的模型可以產生更多的連貫性和信息豐富性的評論。
網址:
代碼鏈接:
4、Dynamically Fused Graph Network for Multi-hop Reasoning(基于動態融合圖網絡的Multi-hop Reasoning)
ACL ’19
作者:Yunxuan Xiao, Yanru Qu, Lin Qiu, Hao Zhou, Lei Li, Weinan Zhang, Yong Yu
摘要:近年來,基于文本的問答(TBQA)得到了廣泛的研究。大多數現有的方法側重于在一段話內找到問題的答案。然而,許多有難度的問題需要來自兩個或多個文檔的分散文本的支持證據。本文提出了動態融合圖網絡(Dynamically Fused Graph Network ,DFGN),這是一種解決需要多個分散證據和推理的問題的新方法。受人類逐步推理行為的啟發,DFGN包含一個動態融合層,從給定查詢中提到的實體開始,沿著文本動態構建的實體圖進行探索,并逐步從給定文檔中找到相關的支持實體。我們在需要multi-hop reasoning的公共TBQA數據集HotpotQA上評估了DFGN。DFGN在公共數據集上取得了有競爭力的成績。此外,我們的分析表明,DFGN可以產生可解釋的推理鏈。
網址:
5、 Encoding Social Information with Graph Convolutional Networks for Political Perspective Detection in News Media(利用圖卷積網絡對Social Information進行編碼,用于新聞媒體中的政治傾向性檢測)
ACL ’19
作者:Chang Li, Dan Goldwasser
摘要:確定新聞事件在媒體中討論方式的政治視角是一項重要而富有挑戰性的任務。在這篇文章中,我們強調了將社交網絡置于情景化的重要性,捕捉這些信息如何在社交網絡中傳播。我們使用最近提出的一種表示關系信息的神經網絡結構——圖卷積網絡(Graph Convolutional Network)來捕獲這些信息,并證明即使在很少的social information分類中也可以得到顯著改進。
網址:
6、Graph Neural Networks with Generated Parameters for Relation Extraction(用于關系抽取的具有生成參數的圖神經網絡)
ACL ’19
作者:Hao Zhu, Yankai Lin, Zhiyuan Liu, Jie Fu, Tat-seng Chua, Maosong Sun
摘要:近年來,在改進機器學習領域的關系推理方面取得了一些進展。在現有的模型中,圖神經網絡(GNNs)是最有效的multi-hop關系推理方法之一。事實上,在關系抽取等自然語言處理任務中,multi-hop關系推理是必不可少的。本文提出了一種基于自然語言語句生成圖神經網絡(GP-GNNs)參數的方法,使神經網絡能夠對非結構化文本輸入進行關系推理。我們驗證了從文本中提取關系的GPGNN。 實驗結果表明,與baseline相比,我們的模型取得了顯著的改進。我們還進行了定性分析,證明我們的模型可以通過multi-hop關系推理發現更精確的關系。
網址:
7、Incorporating Syntactic and Semantic Information in Word Embeddings using Graph Convolutional Networks(使用圖卷積網絡在詞嵌入中結合句法和語義信息)
ACL ’19
作者:Shikhar Vashishth, Manik Bhandari, Prateek Yadav, Piyush Rai, Chiranjib Bhattacharyya, Partha Talukdar
摘要:詞嵌入已被廣泛應用于多種NLP應用程序中。現有的詞嵌入方法大多利用詞的sequential context來學習詞的嵌入。雖然有一些嘗試利用詞的syntactic context,但這種方法會導致詞表數的爆炸。在本文中,我們通過提出SynGCN來解決這個問題,SynGCN是一種靈活的基于圖卷積的學習詞嵌入的方法。SynGCN在不增加詞表大小的情況下利用單詞的dependency context。SynGCN學習的詞嵌入在各種內部和外部任務上都優于現有方法,在與ELMo一起使用時提供優勢。我們還提出了SemGCN,這是一個有效的框架,用于整合不同的語義知識,以進一步增強所學習的單詞表示。我們提供了兩個模型的源代碼,以鼓勵可重復的研究。
網址:
代碼鏈接:
8、 GraphRel: Modeling Text as Relational Graphs for Joint Entity and Relation Extraction(GraphRel: 將文本建模為關系圖,用于實體和關系抽取)
ACL ’19
作者:Tsu-Jui Fu, Peng-Hsuan Li, Wei-Yun Ma
摘要:本文提出了一種利用圖卷積網絡(GCNs)聯合學習命名實體和關系的端到端關系抽取模型GraphRel。與之前的baseline相比,我們通過關系加權GCN來考慮命名實體和關系之間的交互,從而更好地提取關系。線性結構和依賴結構都用于提取文本的序列特征和區域特征,并利用完整的詞圖進一步提取文本所有詞對之間的隱式特征。基于圖的方法大大提高了對重疊關系的預測能力。我們在兩個公共數據集NYT和webnlg上評估了GraphRel。結果表明,GraphRel在大幅度提高recall的同時,保持了較高的precision。GraphRel的性能也比之前的工作好3.2%和5.8% (F1 score),實現了關系抽取的最先進的方法。
網址:
代碼鏈接:
9、Multi-hop Reading Comprehension across Multiple Documents by Reasoning over Heterogeneous Graphs(通過對異構圖進行推理,實現跨多個文檔的Multi-hop閱讀理解)
ACL ’19
作者:Ming Tu, Guangtao Wang, Jing Huang, Yun Tang, Xiaodong He, Bowen Zhou
摘要:跨文檔的Multi-hop閱讀理解(RC)對單文本RC提出了新的挑戰,因為它需要對多個文檔進行推理才能得到最終答案。在本文中,我們提出了一個新的模型來解決multi-hop RC問題。我們引入了具有不同類型的節點和邊的異構圖,稱為異構文檔-實體(HDE)圖。HDE圖的優點是它包含不同粒度級別的信息,包括特定文檔上下文中的候選信息、文檔和實體。我們提出的模型可以對HDE圖進行推理,節點表示由基于co-attention 和 self-attention的上下文編碼器初始化。我們使用基于圖神經網絡(GNN)的消息傳遞算法,在提出的HDE圖上累積evidence。通過對Qangaroo WIKIHOP數據集的blind測試集的評估,我們的基于HDE圖的單模型給出了具有競爭力的結果,并且集成模型達到了最先進的性能。
網址:
10、Textbook Question Answering with Multi-modal Context Graph Understanding and Self-supervised Open-set Comprehension(多模態上下文圖理解和自監督開放集理解的Textbook問答)
ACL ’19
作者:Daesik Kim, Seonhoon Kim, Nojun Kwak
摘要:在本文中,我們介紹了一種解決教科書問答(TQA)任務的新算法。在分析TQA數據集時,我們主要關注兩個相關問題。首先,解決TQA問題需要理解復雜輸入數據中的多模態上下文。為了解決從長文本中提取知識特征并與視覺特征相結合的問題,我們從文本和圖像中建立了上下文圖,并提出了一種基于圖卷積網絡(GCN)的f-GCN模塊。其次,科學術語不會分散在各個章節中,而且主題在TQA數據集中是分開的。為了克服這個所謂的“領域外”問題,在學習QA問題之前,我們引入了一種新的沒有任何標注的自監督開放集學習過程。實驗結果表明,我們的模型明顯優于現有的最先進的方法。此外,消融研究證實,將f-GCN用于從多模態上下文中提取知識的方法和我們新提出的自監督學習過程對于TQA問題都是有效的。
網址:
下載鏈接: 提取碼:rr1c