【導讀】ICML(International Conference on Machine Learning),即國際機器學習大會, 是機器學習領域全球最具影響力的學術會議之一,因此在該會議上發表論文的研究者也會備受關注。因疫情的影響, 今年第37屆ICML大會將于2020年7月13日至18日在線上舉行。據官方統計,ICML 2020共提交4990篇論文,接收論文1088篇,接收率為21.8%。與往年相比,接收率逐年走低。在會議開始前夕,專知小編為大家整理了ICML 2020圖神經網絡(GNN)的六篇相關論文供參考——核GNN、特征變換、Haar 圖池化、無監督圖表示、譜聚類、自監督GCN。
ICML 2020 Accepted Papers //icml.cc/Conferences/2020/AcceptedPapersInitial
ACL2020GNN_Part1、WWW2020GNN_Part1、AAAI2020GNN、ACMMM2019GNN、CIKM2019GNN、ICLR2020GNN
1. Convolutional Kernel Networks for Graph-Structured Data
作者:Dexiong Chen, Laurent Jacob, Julien Mairal
摘要:我們引入了一系列多層圖核,并在圖卷積神經網絡和核方法之間建立了新的聯系。我們的方法通過將圖表示為核特征映射序列將卷積核網絡推廣到圖結構數據,其中每個節點攜帶關于局部圖子結構的信息。一方面,核的觀點提供了一種無監督的、有表現力的、易于正規化的數據表示,這在樣本有限的情況下很有用。另一方面,我們的模型也可以在大規模數據上進行端到端的訓練,從而產生了新型的圖卷積神經網絡。我們的方法在幾個圖分類基準上取得了與之相當的性能,同時提供了簡單的模型解釋。
網址:
代碼鏈接:
2. GNN-FILM: Graph Neural Networks with Feature-Wise Linear Modulation 作者:Marc Brockschmidt
摘要:本文提出了一種新的基于特征線性調制(feature-wise linear modulation,FiLM)的圖神經網絡(GNN)。許多標準GNN變體僅通過每條邊的源的表示來計算“信息”,從而沿著圖的邊傳播信息。在GNN-FILE中,邊的目標節點的表示被附加地用于計算可以應用于所有傳入信息的變換,從而允許對傳遞的信息進行基于特征的調制。基于基線方法的重新實現,本文給出了在文獻中提到的三個任務上的不同GNN體系結構的實驗結果。所有方法的超參數都是通過廣泛的搜索找到的,產生了一些令人驚訝的結果:基線模型之間的差異比文獻報道的要小。盡管如此,GNN-FILE在分子圖的回歸任務上的表現優于基線方法,在其他任務上的表現也具有競爭性。
網址:
3. Haar Graph Pooling
作者:Yu Guang Wang, Ming Li, Zheng Ma, Guido Montufar, Xiaosheng Zhuang, Yanan Fan
摘要:深度圖神經網絡(GNNs)是用于圖分類和基于圖的回歸任務的有效模型。在這些任務中,圖池化是GNN適應不同大小和結構的輸入圖的關鍵因素。本文提出了一種新的基于壓縮Haar變換的圖池化操作-HaarPooling。HaarPooling實現了一系列池化操作;它是通過跟隨輸入圖的一系列聚類序列來計算的。HaarPooling層將給定的輸入圖變換為節點數較小、特征維數相同的輸出圖;壓縮Haar變換在Haar小波域中過濾出細節信息。通過這種方式,所有HaarPooling層一起將任何給定輸入圖的特征合成為大小一致的特征向量。這種變換提供了數據的稀疏表征,并保留了輸入圖的結構信息。使用標準圖卷積層和HaarPooling層實現的GNN在各種圖分類和回歸問題上實現了最先進的性能。
網址:
4. Interferometric Graph Transform: a Deep Unsupervised Graph Representation 作者:Edouard Oyallon
摘要:我們提出了Interferometric Graph Transform(IGT),這是一類用于構建圖表示的新型深度無監督圖卷積神經網絡。我們的第一個貢獻是提出了一種從歐幾里德傅立葉變換的推廣得到的通用復數譜圖結構。基于一個新穎的貪婪凹目標,我們的學習表示既包括可區分的特征,也包括不變的特征。通過實驗可以得到,我們的學習過程利用了譜域的拓撲,這通常是譜方法的一個缺陷,特別是我們的方法可以恢復視覺任務的解析算子。我們在各種具有挑戰性的任務上測試了我們的算法,例如圖像分類(MNIST,CIFAR-10)、社區檢測(Authorship,Facebook graph)和3D骨架視頻中的動作識別(SBU,NTU),在譜圖非監督環境下展示了一種新的技術水平。
網址:
5. Spectral Clustering with Graph Neural Networks for Graph Pooling
作者:Filippo Maria Bianchi, Daniele Grattarola, Cesare Alippi
摘要:譜聚類(SC)是發現圖上強連通社區的一種流行的聚類技術。SC可以在圖神經網絡(GNN)中使用,以實現聚合屬于同一簇的節點的池化操作。然而,Laplacian的特征分解代價很高,而且由于聚類結果是特定于圖的,因此基于SC的池化方法必須對每個新樣本執行新的優化。在本文中,我們提出了一種圖聚類方法來解決SC的這些局限性。我們建立了歸一化minCUT問題的連續松弛公式,并訓練GNN來計算最小化這一目標的簇分配。我們的基于GNN的實現是可微的,不需要計算譜分解,并且學習了一個聚類函數,可以在樣本外的圖上快速評估。從提出的聚類方法出發,我們設計了一個圖池化算子,它克服了現有圖池化技術的一些重要局限性,并在多個監督和非監督任務中取得了最好的性能。
網址:
6. When Does Self-Supervision Help Graph Convolutional Networks?
作者:Yuning You, Tianlong Chen, Zhangyang Wang, Yang Shen
摘要:自監督作為一種新興的技術已被用于訓練卷積神經網絡(CNNs),以提高圖像表示學習的可傳遞性、泛化能力和魯棒性。然而,自監督對操作圖形數據的圖卷積網絡(GCNS)的介紹卻很少被探索。在這項研究中,我們首次將自監督納入GCNS的系統探索和評估。我們首先闡述了將自監督納入GCNS的三種機制,分析了預訓練&精調和自訓練的局限性,并進而將重點放在多任務學習上。此外,我們還提出了三種新的GCNS自監督學習任務,并進行了理論分析和數值比較。最后,我們進一步將多任務自監督融入到圖對抗性訓練中。研究結果表明,通過合理設計任務形式和合并機制,自監督有利于GCNS獲得更強的泛化能力和魯棒性。
網址:
代碼鏈接:
【導讀】IJCAI(國際人工智能聯合會議,International Joint Conferences on Artificial Intelligence)作為人工智能領域最頂級的國際學術會議之一,IJCAI 的舉辦自然備受矚目。第29屆國際人工智能聯合會議和第17屆環太平洋國際人工智能會議原定于2020年7月11日在日本橫濱召開,但由于疫情影響,將延期半年,至 2021年1月召開。近期,IJCAI 2020 論文集已經放出來。在 4717 份有效投稿中,最終僅有 592 篇被接收,接收率為 12.6%,這也是 IJCAI 史上最低的接收率。我們發現在今年的IJCAI 2020會議上圖神經網絡相關的論文非常多,今天小編專門整理最新6篇圖神經網絡(GNN)應用在數據挖掘上的相關論文——多通道GNN、自適應時空圖卷積、會話流GNN、雙重注意力GNN、域自適應HIN、雙線性GNN
IJCAI 2020 Accepted Paper: //www.ijcai.org/Proceedings/2020/
IJCAI2020GNN_Part1、ICML2020GNN_Part1、KDD2020GNN_Part1、CVPR2020SGNN、CVPR2020GNN_Part2、CVPR2020GNN_Part1、WWW2020GNN_Part1、AAAI2020GNN、ACMMM2019GNN、
1、Multi-Channel Graph Neural Networks
作者:Kaixiong Zhou, Qingquan Song, Xiao Huang, Daochen Zha, Na Zou, Xia Hu
摘要:在許多學科中,圖結構數據的分類已變得越來越重要。已經觀察到,現實世界圖中的隱式或顯式分層社區結構可能對下游分類應用有用。利用層次結構的一種直接方法是利用池化算法將節點聚類為固定簇(cluster),然后逐層縮小輸入圖以學習池化圖。但是,池化縮小( pool shrinking)會舍棄圖的詳細信息,從而難以區分兩個非同構圖,并且固定簇忽略了節點固有的多重特征。為了補償縮小損失并了解各個節點的特性,我們提出了多通道圖神經網絡(MuchGNN)。受卷積神經網絡中提出的底層機制的啟發,我們定義了定制的圖卷積,以學習每一層的一系列圖通道,并按層次縮小圖以對合并的結構進行編碼。真實數據集上的實驗結果證明了MuchGNN優于最新方法。
網址:
2、GraphSleepNet: Adaptive Spatial-Temporal Graph Convolutional Networks for Sleep Stage Classification
作者:Ziyu Jia, Youfang Lin, Jing Wang, Ronghao Zhou, Xiaojun Ning, Yuanlai He, Yaoshuai Zhao
摘要:睡眠階段分類對于睡眠評估和疾病診斷至關重要。但是,如何有效利用大腦的空間特征和睡眠階段之間的轉換信息仍然是一個挑戰。特別地,由于對人腦的了解有限,為睡眠階段分類預定義合適的空間腦連接結構仍然是一個懸而未決的問題。在本文中,我們提出了一種新穎的深度圖神經網絡,名為GraphSleepNet,用于自動睡眠階段分類。GraphSleepNet的主要優點是可以自適應地學習以鄰接矩陣表示的不同腦電圖(EEG)通道之間的內在聯系,從而為時空圖卷積網絡(ST-GCN)提供服務,以進行睡眠階段分類。同時,ST-GCN由用于提取空間特征的圖形卷積和用于捕獲睡眠階段之間的轉換規則的時間卷積組成。蒙特利爾睡眠研究檔案(MASS)數據集上的實驗表明GraphSleepNet優于最新的基線。
網址:
3、GraphFlow: Exploiting Conversation Flow with Graph Neural Networks for Conversational Machine Comprehension
作者:Yu Chen, Lingfei Wu, Mohammed J. Zaki
摘要:事實證明,與傳統MC相比,會話機器理解(MC)更具挑戰性,因為它需要更好地利用會話歷史記錄。但是,大多數現有方法無法有效地捕獲會話歷史記錄,因此難以處理涉及的指代或省略號的問題。此外,在對段落文本進行推理時,大多數人只是將其視為單詞序列,而沒有探索單詞之間豐富的語義關系。在本文中,我們首先提出一種簡單而有效的圖結構學習技術,以在每次對話轉折時動態構造一個具有問題和會話歷史意識的上下文圖。然后,我們提出了一種新穎的遞歸圖神經網絡,并在此基礎上,引入了一種flow機制來對一系列上下文圖中的時間依賴性進行建模。與現有的CoQA,QuAC和DoQA基準的最新技術相比,我們所提出的GRAPHFLOW模型可以有效地捕獲會話中的對話流,并顯示出可競爭的性能。此外,可視化實驗表明,我們提出的模型可以為推理過程提供良好的可解釋性。
網址:
4、GoGNN: Graph of Graphs Neural Network for Predicting Structured Entity Interactions
作者:Hanchen Wang, Defu Lian, Ying Zhang, Lu Qin, Xuemin Lin
摘要:實體交互預測在許多重要應用中至關重要,例如化學,生物學,材料科學和醫學。當每個實體由復雜結構(即結構化實體)表示時,該問題變得非常具有挑戰性,因為涉及兩種類型的圖:結構化實體的局部圖和捕獲結構化實體之間的交互的全局圖。我們注意到,現在有關結構化實體交互預測的工作無法正確利用圖模型的唯一圖。在本文中,我們提出了一種圖神經網絡圖(Graph of Graphs Neural Network,GoGNN),它以分層的方式提取結構化實體圖和實體交互圖中的特征。我們還提出了雙重注意機制,該機制使模型能夠在圖的兩個級別中保留鄰居的重要性。在現實世界的數據集上進行的大量實驗表明,GoGNN在兩個代表性的結構化實體交互預測任務上勝過了最新技術:化學-化學交互預測和藥物-藥物交互預測。
代碼:
網址:
5、Domain Adaptive Classification on Heterogeneous Information Networks
作者:Shuwen Yang, Guojie Song, Yilun Jin, Lun Du
摘要:異構信息網絡(HIN)是無處不在的結構,因為它們可以描述復雜的關系數據。由于這些數據的復雜性,很難在HIN上獲得足夠的標記數據,從而妨礙了HIN的分類。雖然領域適應(DA)技術已在圖像和文本中得到廣泛利用,但是異構性和復雜的語義對HIN上的領域自適應分類提出了特定的挑戰。一方面,HIN涉及多個級別的語義,這要求在它們之間進行域對齊。另一方面,由于域不變性特征是同質的并且對分類沒有信息,因此必須精心選擇域相似性和可區分性之間的權衡。在本文中,我們提出了多空間域自適應分類(MuSDAC)來解決HIN上的DA問題。具體來說,我們利用多通道共享權重GCN,將HIN中的節點投影到執行成對對齊的多個空間。此外,我們提出了一種啟發式采樣算法,該算法可以有效地選擇具有可區分性的通道組合,并采用移動平均加權投票(moving averaged weighted voting)方案來融合所選通道,從而最大程度地減少傳輸和分類損失。在成對數據集上進行的大量實驗證明了我們模型在HIN領域自適應分類和各個組成部分的貢獻方面的表現。
網址:
6、Bilinear Graph Neural Network with Neighbor Interactions
作者:Hongmin Zhu, Fuli Feng, Xiangnan He, Xiang Wang, Yan Li, Kai Zheng, Yongdong Zhang
摘要:圖神經網絡(GNN)是一個功能強大的模型,可用于學習表示形式并對圖形數據進行預測。對GNN的現有工作已將圖卷積定義為所連接節點的特征的加權和,以形成目標節點的表示形式。然而,加權和的運算假設相鄰節點彼此獨立,并且忽略它們之間可能的交互。當存在這樣的交互時,例如兩個鄰居節點的同時出現是目標節點特征的強烈信號,現有的GNN模型可能無法捕獲該信號。在這項工作中,我們認為在GNN中對相鄰節點之間的交互進行建模是十分重要的。我們提出了一種新的圖卷積算子,該算子通過鄰居節點表示的成對交互來增加加權和。我們將此框架稱為雙線性圖神經網絡( Bilinear Graph Neural Network ,BGNN),該框架可通過相鄰節點間的雙線性交互雙線性來提高GNN表示能力。特別是,我們分別基于著名的GCN和GAT指定了兩個名為BGCN和BGAT的BGNN模型。關于三個半監督節點分類的公開基準的實證結果證明了BGNN的有效性-BGCN(BGAT)在分類準確度方面比GCN(GAT)高1.6%(1.5%)。
代碼:
網址:
【導讀】ICML(International Conference on Machine Learning),即國際機器學習大會, 是機器學習領域全球最具影響力的學術會議之一,因此在該會議上發表論文的研究者也會備受關注。因疫情的影響, 今年第37屆ICML大會已于2020年7月13日至18日在線上舉行。據官方統計,ICML 2020共提交4990篇論文,接收論文1088篇,接收率為21.8%。與往年相比,接收率逐年走低。ICML官網公布了接受論文列表,小編發現基于Graph相關的paper依然很多,為此,上個月專知小編為大家整理了圖神經網絡相關的論文,這期小編繼續為大家奉上ICML 2020必讀的五篇圖神經網絡(GNN)相關論文-Part 2——貝葉斯GNN、連續GNN、Faster圖嵌入、深度GCN、圖Pooling、
ICML 2020 Accepted Paper: //proceedings.icml.cc/book/2020
ICML2020GNN_Part1、KDD2020GNN_Part1、CVPR2020SGNN、CVPR2020GNN_Part2、CVPR2020GNN_Part1、WWW2020GNN_Part1、AAAI2020GNN、ACMMM2019GNN、CIKM2019GNN、ICLR2020GNN、
1. Bayesian Graph Neural Networks with Adaptive Connection Sampling
作者:Arman Hasanzadeh, Ehsan Hajiramezanali, Shahin Boluki, Mingyuan Zhou, Nick Duffifield, Krishna Narayanan, Xiaoning Qian
摘要:我們提出了一個用于圖神經網絡(GNNs)自適應連接采樣(connection sampling)的統一框架,該框架概括了現有的用于訓練GNN的隨機正則化方法。該框架不僅緩解了深層GNNs的過平滑和過擬合趨勢,而且使得GNNs在圖分析任務中的不確定性學習成為可能。與現有的隨機正則化方法那樣使用固定的采樣率或手動調整它們作為模型超參數不同,我們的自適應連接采樣可以與GNN模型參數以全局和局部的方式聯合訓練。具有自適應連接采樣的GNN訓練在數學上等價于訓練貝葉斯GNN的有效近似。在基準數據集上的消融實驗結果驗證了自適應學習采樣率是在半監督節點分類任務中提高GNNs性能的關鍵,使其不容易過平滑和過擬合,具有更穩健的預測能力。
網址:
2.Continuous Graph Neural Networks
作者:Louis-Pascal A. C. Xhonneux, Meng Qu, Jian Tang
摘要:本文建立在圖神經網絡與傳統動力系統之間的聯系之上。我們提出了連續圖神經網絡(Continuous Graph Neural Networks, CGNN),由于CGNN可以看作是一種特定的離散化方案,它進一步推廣了現有的具有離散動力學的圖神經網絡。其核心思想是如何刻畫節點表示的連續動力學,即節點表示的導數。受現有的基于圖擴散的方法(如社會網絡上的PageRank模型和流行病模型)的啟發,我們將導數定義為當前節點表示、鄰居表示和節點初始值的組合。我們提出并分析了圖上的兩種可能的動力學--包括節點表示的每一維(也稱為特征通道)獨立改變或者彼此交互-這兩者都有理論上的合理性。所提出的連續圖神經網絡對過于過平滑具有較強的魯棒性,因此可以建立更深層次的網絡,從而能夠捕獲節點之間的長期依賴關系。在節點分類任務上的實驗結果證明了我們提出的方法在與基線模型競爭上的有效性。
網址:
3.Faster Graph Embeddings via Coarsening
作者:Matthew Fahrbach, Gramoz Goranci, Richard Peng, Sushant Sachdeva, Chi Wang
摘要:圖嵌入是一種普遍適用于機器學習任務的工具,如圖結構數據上的節點分類和連接預測。然而,即使我們只對相關頂點的一小部分感興趣,計算大規模圖嵌入的效率也是很低的。為了解決這個問題,我們提出了一種基于Schur補(Schur complements)的有效圖粗化方法,用于計算相關頂點的嵌入。我們證明了這些嵌入被不相關頂點上通過高斯消去法得到的Schur補圖精確地保存。由于計算Schur補的代價很高,我們給出了一個近似線性的時間算法,該算法在每次迭代中在相關頂點上生成一個粗化圖,該粗化圖在期望上與Schur補相匹配。我們在圖上進行的預測任務實驗表明,計算嵌入到粗化圖上,而不是整個圖上,在不犧牲精度的情況下,可以節省大量的時間。
網址:
4. Simple and Deep Graph Convolutional Networks
作者:Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, Yaliang Li
摘要:圖卷積網絡(GCNS)是一種強大的圖結構數據深度學習方法。最近,GCNS及其變體在真實數據集上的各個應用領域都顯示出了優異的性能。盡管取得了成功,但由于過平滑的問題,目前的大多數GCN模型都很淺。本文研究了深圖卷積網絡的設計與分析問題。我們提出了GCNII模型,它是對普通GCN模型的擴展,使用了兩個簡單而有效的技術:初始殘差和恒等映射(Identity mapping)。我們提供了理論和實驗證據,證明這兩種技術有效地緩解了過平滑問題。我們的實驗表明,深度GCNII模型在各種半監督和全監督任務上的性能優于最先進的方法。
網址:
5. Spectral Clustering with Graph Neural Networks for Graph Pooling
作者:Filippo Maria Bianchi, Daniele Grattarola, Cesare Alippi
摘要:譜聚類(SC)是發現圖上強連接社區的一種流行的聚類技術。SC可以在圖神經網絡(GNN)中使用,以實現聚合屬于同一集群節點的池化操作。然而,Laplacian特征分解的代價很高,而且由于聚類結果是特定于圖的,因此基于SC的池化方法必須對每個新樣本執行新的優化。在本文中,我們提出了一種圖聚類方法來解決SC的這些局限性。我們建立了歸一化minCUT問題的連續松弛(continuous relaxation )公式,并訓練GNN來計算最小化這一目標的聚類分配。我們的基于GNN的實現是可微的,不需要計算譜分解,并且學習了一個聚合函數,可以在樣本外的圖上快速評估。從提出的聚類方法出發,我們設計了一個圖池化算子,它克服了現有圖池化技術的一些重要局限性,并在多個監督和非監督任務中取得了最好的性能。
網址:
【導讀】作為世界數據挖掘領域的最高級別的學術會議,ACM SIGKDD(國際數據挖掘與知識發現大會,簡稱 KDD)每年都會吸引全球領域眾多專業人士參與。今年的 KDD大會計劃將于 2020 年 8 月 23 日 ~27 日在美國美國加利福尼亞州圣地亞哥舉行。上周,KDD 2020官方發布接收論文,共有1279篇論文提交到Research Track,共216篇被接收,接收率16.8%。近期KDD官網公布了接受論文列表,為此,上個月專知小編為大家整理了圖神經網絡相關的論文,這期小編繼續為大家奉上KDD 2020必讀的五篇圖神經網絡(GNN)相關論文-Part 2——多層次GCN、無監督預訓練GCN、圖Hash、GCN主題模型、采樣
KDD 2020 Accepted Paper: //www.kdd.org/kdd2020/accepted-papers
KDD2020GNN_Part1、CVPR2020SGNN、CVPR2020GNN_Part2、CVPR2020GNN_Part1、WWW2020GNN_Part1、AAAI2020GNN、ACMMM2019GNN、CIKM2019GNN、ICLR2020GNN、EMNLP2019GNN、ICCV2019GNN_Part2、ICCV2019GNN_Part1、NIPS2019GNN、IJCAI2019GNN_Part1、IJCAI2019GNN_Part2、KDD2019GNN、
1. Multi-level Graph Convolutional Networks for Cross-platform Anchor Link Prediction
作者:Hongxu Chen, Hongzhi Yin, Xiangguo Sun, Tong Chen, Bogdan Gabrys, Katarzyna Musial
摘要:跨平臺的賬號匹配在社交網絡分析中發揮著重要作用,并且有利于廣泛的應用。然而,現有的方法要么嚴重依賴于高質量的用戶生成內容(包括用戶興趣模型),要么只關注網絡拓撲結構,存在數據不足的問題,這使得研究這個方向變得很困難。為了解決這一問題,我們提出了一種新的框架,該框架統一考慮了局部網絡結構和超圖結構上的多級圖卷積。該方法克服了現有工作中數據不足的問題,并且不一定依賴于用戶的人口統計信息。此外,為了使所提出的方法能夠處理大規模社交網絡,我們提出了一種兩階段的空間協調機制,在基于網絡分區的并行訓練和跨不同社交網絡的帳戶匹配中對齊嵌入空間。我們在兩個大規模的真實社交網絡上進行了廣泛的實驗。實驗結果表明,該方法的性能比現有的模型有較大幅度的提高。
網址:
2. GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training
作者:Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang, Jie Tang
摘要:圖表示學習已經成為解決現實問題的一種強有力的技術。包括節點分類、相似性搜索、圖分類和鏈接預測在內的各種下游圖學習任務都受益于它的最新發展。然而,關于圖表示學習的現有技術集中于領域特定的問題,并為每個圖訓練專用模型,這通常不可轉移到領域之外的數據。受自然語言處理和計算機視覺在預訓練方面的最新進展的啟發,我們設計了圖對比編碼(Graph Contrastive Coding,GCC)一個無監督的圖表示學習框架來捕捉跨多個網絡的通用網絡拓撲屬性。我們將GCC的預訓練任務設計為網絡內部和網絡之間的子圖級別的實例判斷,并利用對比學習來增強模型學習內在的和可遷移的結構表征能力。我們在三個圖學習任務和十個圖數據集上進行了廣泛的實驗。結果表明,GCC在一組不同的數據集上進行預訓練,可以獲得與從頭開始的特定任務訓練的方法相媲美或更好的性能。這表明,預訓練和微調范式對圖表示學習具有巨大的潛力。
網址:
代碼鏈接:
3. GHashing: Semantic Graph Hashing for Approximate Similarity Search in Graph Databases
作者:Zongyue Qin, Yunsheng Bai, Yizhou Sun
摘要:圖相似搜索的目的是根據給定的鄰近度,即圖編輯距離(GED),在圖形數據庫中找到與查詢最相似的圖。這是一個被廣泛研究但仍具有挑戰性的問題。大多數研究都是基于剪枝驗證框架,該框架首先對非看好的圖進行剪枝,然后在較小的候選集上進行驗證。現有的方法能夠管理具有數千或數萬個圖的數據庫,但由于其精確的剪枝策略,無法擴展到更大的數據庫。受到最近基于深度學習的語義哈希(semantic hashing)在圖像和文檔檢索中的成功應用的啟發,我們提出了一種新的基于圖神經網絡(GNN)的語義哈希,即GHash,用于近似剪枝。我們首先用真實的GED結果訓練GNN,以便它學習生成嵌入和哈希碼,以保持圖之間的GED。然后建立哈希索引以實現恒定時間內的圖查找。在回答一個查詢時,我們使用哈希碼和連續嵌入作為兩級剪枝來檢索最有希望的候選對象,并將這些候選對象發送到精確的求解器進行最終驗證。由于我們的圖哈希技術利用了近似剪枝策略,與現有方法相比,我們的方法在保持高召回率的同時,實現了顯著更快的查詢時間。實驗表明,該方法的平均速度是目前唯一適用于百萬級數據庫的基線算法的20倍,這表明GHash算法成功地為解決大規模圖形數據庫的圖搜索問題提供了新的方向。
網址:
4. Graph Structural-topic Neural Network
作者:Qingqing Long, Yilun Jin, Guojie Song, Yi Li, Wei Lin
摘要:圖卷積網絡(GCNS)通過有效地收集節點的局部特征,取得了巨大的成功。然而,GCNS通常更多地關注節點特征,而較少關注鄰域內的圖結構,特別是高階結構模式。然而,這種局部結構模式被顯示為許多領域中的節點屬性。此外,由于網絡很復雜,每個節點的鄰域由各種節點和結構模式的混合組成,不只是單個模式,所有這些模式上的分布都很重要。相應地,在本文中,我們提出了圖結構主題神經網絡,簡稱GraphSTONE,這是一種利用圖的主題模型的GCN模型,使得結構主題廣泛地從概率的角度捕捉指示性的圖結構,而不僅僅是幾個結構。具體地說,我們使用 anonymous walks和Graph Anchor LDA(一種LDA的變體,首先選擇重要的結構模式)在圖上建立主題模型,以降低復雜性并高效地生成結構主題。此外,我們設計了多視圖GCNS來統一節點特征和結構主題特征,并利用結構主題來指導聚合。我們通過定量和定性實驗對我們的模型進行了評估,我們的模型表現出良好的性能、高效率和清晰的可解釋性。
網址:
代碼鏈接:
5. Minimal Variance Sampling with Provable Guarantees for Fast Training of Graph Neural Networks
作者:Weilin Cong, Rana Forsati, Mahmut Kandemir, Mehrdad Mahdavi
摘要:抽樣方法(如節點抽樣、分層抽樣或子圖抽樣)已成為加速大規模圖神經網絡(GNNs)訓練不可缺少的策略。然而,現有的抽樣方法大多基于圖的結構信息,忽略了最優化的動態性,導致隨機梯度估計的方差較大。高方差問題在非常大的圖中可能非常明顯,它會導致收斂速度慢和泛化能力差。本文從理論上分析了抽樣方法的方差,指出由于經驗風險的復合結構,任何抽樣方法的方差都可以分解為前向階段的嵌入近似方差和后向階段的隨機梯度方差,這兩種方差都必須減小,才能獲得較快的收斂速度。我們提出了一種解耦的方差減小策略,利用(近似)梯度信息自適應地對方差最小的節點進行采樣,并顯式地減小了嵌入近似引入的方差。理論和實驗表明,與現有方法相比,該方法即使在小批量情況下也具有更快的收斂速度和更好的泛化能力。
網址:
【導讀】計算語言學協會(the Association for Computational Linguistics, ACL)年度會議作為頂級的國際會議,在計算語言學和自然語言處理領域一直備受關注。其接收的論文覆蓋了語義分析、文本挖掘、信息抽取、問答系統、機器翻譯、情感分析和意見挖掘等眾多自然語言處理領域的研究方向。今年,第58屆計算語言學協會(the Association for Computational Linguistics, ACL)年度會議將于2020年7月5日至10日在美國華盛頓西雅圖舉行。受COVID-19疫情影響,ACL 2020將全部改為線上舉行。本次ACL大會共提交了3429篇論文,共有571篇長論文、以及208篇短論文入選。不久之前,專知小編為大家整理了大會的圖神經網絡(GNN)相關論文,這期小編繼續為大家奉上ACL 2020圖神經網絡(GNN)相關論文-Part 2供參考——多文檔摘要、多粒度機器閱讀理解、帖子爭議檢測、GAE。
ACL2020GNN_Part1、WWW2020GNN_Part1、AAAI2020GNN、ACMMM2019GNN、CIKM2019GNN、ICLR2020GNN
1. Leveraging Graph to Improve Abstractive Multi-Document Summarization
作者:Wei Li, Xinyan Xiao, Jiachen Liu, Hua Wu, Haifeng Wang, Junping Du
摘要:捕捉文本單元之間關系圖對于從多個文檔中檢測顯著信息和生成整體連貫的摘要有很大好處。本文提出了一種神經抽取多文檔摘要(MDS)模型,該模型可以利用文檔的常見圖表示,如相似度圖和話語圖(discourse graph),來更有效地處理多個輸入文檔并生成摘要。我們的模型使用圖對文檔進行編碼,以捕獲跨文檔關系,這對于總結長文檔至關重要。我們的模型還可以利用圖來指導摘要的生成過程,這有利于生成連貫而簡潔的摘要。此外,預訓練的語言模型可以很容易地與我們的模型相結合,進一步提高了摘要的性能。在WikiSum和MultiNews數據集上的實驗結果表明,所提出的體系結構在幾個強大的基線上帶來了實質性的改進。
網址: //arxiv.org/abs/2005.10043
2. Document Modeling with Graph Attention Networks for Multi-grained Machine Reading Comprehension
作者:Bo Zheng, Haoyang Wen, Yaobo Liang, Nan Duan, Wanxiang Che, Daxin Jiang, Ming Zhou, Ting Liu
摘要:“自然問題”是一種具有挑戰性的新的機器閱讀理解基準,其中包含兩個答案:長答案(通常是一個段落)和短答案(長答案中的一個或多個實體)。盡管此基準測試的現有方法很有效,但它們在訓練期間單獨處理這兩個子任務,忽略了它們間的依賴關系。為了解決這個問題,我們提出了一種新穎的多粒度機器閱讀理解框架,該框架專注于對文檔的分層性質進行建模,這些文檔具有不同的粒度級別:文檔、段落、句子和詞。我們利用圖注意力網絡來獲得不同層次的表示,以便它們可以同時學習。長答案和短答案可以分別從段落級表示和詞級表示中提取。通過這種方式,我們可以對兩個粒度的答案之間的依賴關系進行建模,以便為彼此提供證據。我們聯合訓練這兩個子任務,實驗表明,我們的方法在長答案和短答案標準上都明顯優于以前的系統。
網址:
代碼鏈接:
3. Integrating Semantic and Structural Information with Graph Convolutional Network for Controversy Detection
作者:Lei Zhong, Juan Cao, Qiang Sheng, Junbo Guo, Ziang Wang
摘要:識別社交媒體上有爭議的帖子是挖掘公眾情緒、評估事件影響、緩解兩極分化觀點的基礎任務。然而,現有的方法不能1)有效地融合來自相關帖子內容的語義信息;2)保留回復關系建模的結構信息;3)正確處理與訓練集中主題不同的帖子。為了克服前兩個局限性,我們提出了主題-帖子-評論圖卷積網絡(TPC-GCN),它綜合了來自主題、帖子和評論的圖結構和內容的信息,用于帖子級別的爭議檢測。對于第三個限制,我們將模型擴展到分離的TPC-GCN(DTPC-GCN),將主題相關和主題無關的特征分離出來,然后進行動態融合。在兩個真實數據集上的大量實驗表明,我們的模型優于現有的方法。結果和實例分析表明,該模型能夠將語義信息和結構信息有機地結合在一起,具有較強的通用性。
網址:
4. Knowledge Graph-Augmented Abstractive Summarization with Semantic-Driven Cloze Reward
作者:Luyang Huang, Lingfei Wu, Lu Wang
摘要:用于抽取摘要的序列到序列(sequence-to-sequence )模型已經被廣泛研究,但是生成的摘要通常受到捏造的內容的影響,并且經常被發現是near-extractive的。我們認為,為了解決這些問題,摘要生成器應通過輸入獲取語義解釋,例如通過結構化表示,以允許生成更多信息的摘要。在本文中,我們提出了一種新的抽取摘要框架--Asgard,它具有圖形增強和語義驅動的特點。我們建議使用雙重編碼器-序列文檔編碼器和圖形結構編碼器-來保持實體的全局上下文和局部特征,并且相互補充。我們進一步設計了基于多項選擇完形填空測試的獎勵,以驅動模型更好地捕捉實體交互。結果表明,我們的模型在紐約時報和CNN/每日郵報的數據集上都比沒有知識圖作為輸入的變體產生了更高的Rouge分數。與從大型預訓練的語言模型中優化的系統相比,我們也獲得了更好或可比的性能。評委進一步認為我們的模型輸出信息更豐富,包含的不實錯誤更少。
網址:
5. A Graph Auto-encoder Model of Derivational Morphology
作者:Valentin Hofmann, Hinrich Schutze, Janet B. Pierrehumberty
摘要:關于派生詞的形態良好性(morphological well-formedness, MWF)建模工作在語言學中被認為是一個復雜而困難的問題,并且這方面的研究工作較少。我們提出了一個圖自編碼器學習嵌入以捕捉派生詞中詞綴和詞干的兼容性信息。自編碼器通過將句法和語義信息與來自心理詞典的關聯信息相結合,很好地模擬了英語中的MWF。
網址:
【導讀】作為CCF推薦的A類國際學術會議,International ACM SIGIR Conference on Research and Development in Information Retrieval(國際計算機學會信息檢索大會,簡稱 SIGIR)在信息檢索領域享有很高的學術聲譽,每年都會吸引全球眾多專業人士參與。今年的 SIGIR 2020計劃將于 2020年7月25日~30日在中國西安舉行。本次大會共有555篇長文投稿,僅有147篇長文被錄用,錄用率約26%。專知小編提前為大家整理了六篇SIGIR 2020 基于圖神經網絡的推薦(GNN+RS)相關論文,這六篇論文分別出自中科大何向南老師和和昆士蘭大學陰紅志老師團隊,供大家參考——捆綁推薦、Disentangled GCF、服裝推薦、多行為推薦、全局屬性GNN
CVPR2020SGNN、CVPR2020GNN_Part2、CVPR2020GNN_Part1、WWW2020GNN_Part1、AAAI2020GNN、ACMMM2019GNN、CIKM2019GNN、ICLR2020GNN、EMNLP2019GNN、ICCV2019GNN_Part2、ICCV2019GNN_Part1、NIPS2019GNN、IJCAI2019GNN_Part1、IJCAI2019GNN_Part2、KDD2019GNN、ACL2019GNN、CVPR2019GNN
1. Bundle Recommendation with Graph Convolutional Networks
作者:Jianxin Chang, Chen Gao, Xiangnan He, Yong Li, Depeng Jin
摘要:捆綁推薦(Bundle recommendation )旨在推薦一組商品供用戶整體消費。現有的解決方案通過共享模型參數或多任務學習的方式將用戶項目交互建模集成到捆綁推薦中,然而,這些方法不能顯式建模項目與捆綁包(bundles)之間的隸屬關系,不能探索用戶選擇捆綁包時的決策。在這項工作中,我們提出了一個用于捆綁推薦的圖神經網絡模型BGCN(Bundle Graph Convolutional Network)。BGCN將用戶-項目交互、用戶-捆綁包交互和捆綁包-項目從屬關系統一到一個異構圖中。以項目節點為橋梁,在用戶節點和捆綁包節點之間進行圖卷積傳播,使學習到的表示能夠捕捉到項目級的語義。通過基于hard-negative采樣器的訓練,可以進一步區分用戶對相似捆綁包的細粒度偏好。在兩個真實數據集上的實驗結果表明,BGCN的性能有很高的提升,其性能比最新的基線高出10.77%到23.18%。
網址: //arxiv.org/abs/2005.03475
2. Disentangled Graph Collaborative Filtering
作者:Xiang Wang, Hongye Jin, An Zhang, Xiangnan He, Tong Xu, Tat-Seng Chua
摘要:從交互數據中學習用戶和項目的信息表示對于協同過濾(CF)至關重要。當前的嵌入函數利用用戶-項目關系來豐富表示,從單個用戶-項目實例演變為整體交互圖。然而,這些方法在很大程度上以統一的方式對關系進行建模,而忽略了用戶采用這些項目的意圖的多樣性,這可能是為了打發時間,為了興趣,或者為其他人(如家庭)購物。這種統一的對用戶興趣建模的方法很容易導致次優表示,不能對不同的關系建模并在表示中分清用戶意圖。在這項工作中,我們特別關注用戶意圖細粒度上的用戶-項目關系。因此,我們設計了一種新的模型- Disentangled圖協同過濾(Disentangled Graph Collaborative Filtering ,DGCF),來理清這些因素并產生disentangled的表示。具體地說,通過在每個用戶-項目交互意圖上的分布建模,我們迭代地細化意圖感知的交互圖和表示。同時,我們鼓勵不同的意圖獨立。這將生成disentangled的表示,有效地提取與每個意圖相關的信息。我們在三個基準數據集上進行了廣泛的實驗,DGCF與NGCF、DisenGCN和MacridV AE這幾個最先進的模型相比取得了顯著的改進。進一步的分析揭示了DGCF在分解用戶意圖和表示的可解釋性方面的優勢。
網址:
代碼鏈接:
.
3. GCN-Based User Representation Learning for Unifying Robust Recommendation and Fraudster Detection
作者:Shijie Zhang, Hongzhi Yin, Tong Chen, Quoc Viet Nguyen Hung, Zi Huang, Lizhen Cui
摘要:近年來,推薦系統已經成為所有電子商務平臺中不可缺少的功能。推薦系統的審查評級數據通常來自開放平臺,這可能會吸引一群惡意用戶故意插入虛假反饋,試圖使推薦系統偏向于他們。此類攻擊的存在可能會違反高質量數據始終可用的建模假設,而這些數據確實會影響用戶的興趣和偏好。因此,構建一個即使在攻擊下也能產生穩定推薦的健壯推薦系統具有重要的現實意義。本文提出了一種基于GCN的用戶表示學習框架GraphRf,該框架能夠統一地進行穩健的推薦和欺詐者檢測。在其端到端學習過程中,用戶在欺詐者檢測模塊中被識別為欺詐者的概率自動確定該用戶的評級數據在推薦模塊中的貢獻;而在推薦模塊中輸出的預測誤差作為欺詐者檢測模塊中的重要特征。因此,這兩個組成部分可以相互促進。經過大量的實驗,實驗結果表明我們的GraphRf在魯棒評級預測和欺詐者檢測這兩個任務中具有優勢。此外,所提出的GraphRf被驗證為對現有推薦系統上的各種攻擊具有更強的魯棒性。
網址:
4. Hierarchical Fashion Graph Network for Personalized Outfit Recommendation
作者:Xingchen Li, Xiang Wang, Xiangnan He, Long Chen, Jun Xiao, Tat-Seng Chua
摘要:服裝推薦越來越受到網購服務商和時尚界的關注。與向用戶推薦單個單品(例如,朋友或圖片)的其他場景(例如,社交網絡或內容共享)不同,服裝推薦預測用戶對一組匹配良好的時尚單品的偏好。因此,進行高質量的個性化服裝推薦應滿足兩個要求:1)時尚單品的良好兼容性;2)與用戶偏好的一致性。然而,目前的研究主要集中在其中一個需求上,只考慮了用戶-全套服裝(outfit)或全套服裝-項目的關系,從而容易導致次優表示,限制了性能。在這項工作中,我們統一了兩個任務,服裝兼容性建模和個性化服裝推薦。為此,我們開發了一個新的框架,層次時尚圖網絡(HFGN),用于同時建模用戶、商品和成套服裝之間的關系。特別地,我們構建了一個基于用戶-全套服裝交互和全套服裝-項目映射的層次結構。然后,我們從最近的圖神經網絡中得到啟發,在這種層次圖上使用嵌入傳播,從而將項目信息聚合到一個服裝表示中,然后通過他/她的歷史服裝來提煉用戶的表示。此外,我們還對這兩個任務進行了聯合訓練,以優化這些表示。為了證明HFGN的有效性,我們在一個基準數據集上進行了廣泛的實驗,HFGN在NGNN和FHN等最先進的兼容性匹配模型基礎上取得了顯著的改進。
網址:
代碼鏈接:
5. Multi-behavior Recommendation with Graph Convolutional Networks
作者:Bowen Jin, Chen Gao, Xiangnan He, Depeng Jin, Yong Li
摘要:傳統的推薦模型通常只使用一種類型的用戶-項目交互,面臨著嚴重的數據稀疏或冷啟動問題。利用多種類型的用戶-項目交互(例如:點擊和收藏)的多行為推薦可以作為一種有效的解決方案。早期的多行為推薦研究未能捕捉到行為對目標行為的不同程度的影響。它們也忽略了多行為數據中隱含的行為語義。這兩個限制都使得數據不能被充分利用來提高對目標行為的推薦性能。在這項工作中,我們創新性地構造了一個統一的圖來表示多行為數據,并提出了一種新的模型--多行為圖卷積網絡(Multi-Behavior Graph Convolutional Network,MBGCN)。MBGCN通過用戶-項目傳播層學習行為強度,通過項目-項目傳播層捕獲行為語義,較好地解決了現有工作的局限性。在兩個真實數據集上的實驗結果驗證了該模型在挖掘多行為數據方面的有效性。我們的模型在兩個數據集上的性能分別比最優基線高25.02%和6.51%。對冷啟動用戶的進一步研究證實了該模型的實用性。
網址:
6. GAG: Global Atributed Graph Neural Network for Streaming Session-based Recommendation
作者:Ruihong Qiu, Hongzhi Yin, Zi Huang, Tong Chen
摘要:基于流會話的推薦(Streaming session-based recommendation,SSR)是一項具有挑戰性的任務,它要求推薦器系統在流媒體場景(streaming scenario)中進行基于會話的推薦(SR)。在電子商務和社交媒體的現實應用中,在一定時間內產生的一系列用戶-項目交互被分組為一個會話,這些會話以流的形式連續到達。最近的SR研究大多集中在靜態集合上,即首先獲取訓練數據,然后使用該集合來訓練基于會話的推薦器模型。他們需要對整個數據集進行幾個epoch的訓練,這在流式設置下是不可行的。此外,由于對用戶信息的忽視或簡單使用,它們很難很好地捕捉到用戶的長期興趣。雖然最近已經提出了一些流推薦策略,但它們是針對個人交互流而不是會話流而設計的。本文提出了一種求解SSR問題的帶有Wasserstein 庫的全局屬性圖(GAG)神經網絡模型。一方面,當新的會話到達時,基于當前會話及其關聯用戶構造具有全局屬性的會話圖。因此,GAG可以同時考慮全局屬性和當前會話,以了解會話和用戶的更全面的表示,從而在推薦中產生更好的性能。另一方面,為了適應流會話場景,提出了Wasserstein庫來幫助保存歷史數據的代表性草圖。在兩個真實數據集上進行了擴展實驗,驗證了GAG模型與最新方法相比的優越性。
網址:
【導讀】作為世界數據挖掘領域的最高級別的學術會議,ACM SIGKDD(國際數據挖掘與知識發現大會,簡稱 KDD)每年都會吸引全球領域眾多專業人士參與。今年的 KDD大會計劃將于 2020 年 8 月 23 日 ~27 日在美國美國加利福尼亞州圣地亞哥舉行。上周,KDD 2020官方發布接收論文,共有1279篇論文提交到Research Track,共216篇被接收,接收率16.8%。近期一些Paper放出來了,為此,專知小編提前為大家整理了五篇KDD 2020 圖神經網絡(GNN)相關論文,供大家參考。——圖結構學習、多元時間序列預測、負采樣、多任務多視角圖表示學習、多興趣推薦
CVPR2020SGNN、CVPR2020GNN_Part2、CVPR2020GNN_Part1、WWW2020GNN_Part1、AAAI2020GNN、ACMMM2019GNN、CIKM2019GNN、ICLR2020GNN、EMNLP2019GNN、ICCV2019GNN_Part2、ICCV2019GNN_Part1、NIPS2019GNN、IJCAI2019GNN_Part1、IJCAI2019GNN_Part2、KDD2019GNN、ACL2019GNN、CVPR2019GNN、
1. Graph Structure Learning for Robust Graph Neural Networks
作者:Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, Jiliang Tang
摘要:圖神經網絡(GNNs)是圖表示學習的有力工具。但是,最近的研究表明,GNN容易受到精心設計的擾動(稱為對抗攻擊)的攻擊。對抗性攻擊很容易欺騙GNN來預測下游任務。對于對抗攻擊的脆弱性使人們越來越關注在安全關鍵型應用中應用GNN。因此,開發穩健的算法來防御對抗攻擊具有重要意義。防御對抗攻擊的一個自然想法是清理受干擾的圖。很明顯,真實世界的圖共享一些內在屬性。例如,許多現實世界的圖都是低秩和稀疏的,兩個相鄰節點的特征往往是相似的。事實上,我們發現對抗攻擊很可能會違背這些圖的性質。因此,在本文中,我們利用這些特性來防御針對圖的對抗攻擊。特別是,我們提出了一個通用框架Pro-GNN,該框架可以從受這些特性指導的擾動圖中聯合學習結構圖和魯棒圖神經網絡模型。在真實圖上的大量實驗表明,即使在圖受到嚴重干擾的情況下,我們所提出的框架也比現有的防御方法獲得了顯著更好的性能。我們將Pro-GNN的實現發布到我們的DeepRobust存儲庫,以進行對抗性攻擊和防御。
網址: //arxiv.org/pdf/2005.10203.pdf
代碼鏈接:
2. Connecting the Dots: Multivariate Time Series Forecasting with Graph Neural Networks
作者:Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, Chengqi Zhang
摘要:多變量時間序列的建模長期以來一直吸引著來自經濟、金融和交通等不同領域的研究人員的關注。多變量時間序列預測背后的一個基本假設是其變量之間相互依賴,但現有方法未能充分利用變量對之間的潛在空間相關性。同時,近些年來,圖神經網絡(GNNs)在處理關系依賴方面表現出了很高的能力。GNN需要定義良好的圖結構來進行信息傳播,這意味著它們不能直接應用于事先不知道依賴關系的多變量時間序列。本文提出了一種專門針對多變量時間序列數據設計的通用圖神經網絡框架。該方法通過圖學習模塊自動提取變量間的單向關系,可以方便地集成變量屬性等外部知識。在此基礎上,提出了一種新的max-hop傳播層和一個dilated inception層來捕捉時間序列中的時間和空間依賴關系。圖學習、圖卷積和時間卷積模塊在端到端框架中聯合學習。實驗結果表明,我們提出的模型在4個基準數據集中的3個數據上優于最新的基線方法,并且在提供額外結構信息的兩個交通數據集上,與其他方法具有同等的性能。
網址:
3. Understanding Negative Sampling in Graph Representation Learning
作者:Zhen Yang, Ming Ding, Chang Zhou, Hongxia Yang, Jingren Zhou, Jie Tang
摘要:在最近的幾年中,對圖表示學習進行了廣泛的研究。盡管它有可能為各種網絡生成連續的嵌入,但是在大型節點集中得到有效高質量的表示仍然具有挑戰性。采樣是實現該性能目標的關鍵點。現有技術通常側重于正向節點對的采樣,而對負向采樣的策略探索不夠。為了彌補這一差距,我們從目標和風險兩個角度系統地分析了負采樣的作用,從理論上論證了負采樣在確定優化目標和結果方差方面與正采樣同等重要。據我們所知,我們是第一個推導該理論并量化負采樣分布應與其正采樣分布成正相關但亞線性相關的方法。在該理論的指導下,我們提出了MCNS,用自對比度近似法近似正分布,并通過Metropolis-Hastings加速負采樣。我們在5個數據集上評估了我們的方法,這些數據集涵蓋了19個實驗設置,涵蓋了廣泛的下游圖學習任務,包括鏈接預測,節點分類和個性化推薦。這些相對全面的實驗結果證明了其穩健性和優越性。
網址:
4. M2GRL: A Multi-task Multi-view Graph Representation Learning Framework for Web-scale Recommender Systems
作者:Menghan Wang, Yujie Lin, Guli Lin, Keping Yang, Xiao-ming Wu
摘要:將圖表示學習與多視圖數據(邊信息)相結合進行推薦是工業上的一種趨勢。現有的大多數方法可以歸類為多視圖表示融合,它們首先構建一個圖,然后將多視圖數據集成到圖中每個節點的單個緊湊表示中。這些方法在工程和算法方面都引起了人們的關注:1)多視圖數據在工業中是豐富而且有用的,并且可能超過單個矢量的容量;2)由于多視圖數據往往來自不同的分布,可能會引入歸納偏置(inductive bias)。在本文中,我們使用一種多視圖表示對齊方法來解決這個問題。特別地,我們提出了一個多任務多視角圖表示學習框架(M2GRL)來學習web級推薦系統中的多視角圖節點表示。M2GRL為每個單視圖數據構造一個圖,從多個圖中學習多個單獨的表示,并執行對齊以建立模型的交叉視圖關系。M2GRL選擇了一種多任務學習范式來聯合學習視圖內表示和交叉視圖關系。此外,M2GRL在訓練過程中利用同方差不確定性自適應地調整任務的損失權重。我們在淘寶部署了M2GRL,并對570億個實例進行了訓練。根據離線指標和在線A/B測試,M2GRL的性能明顯優于其他最先進的算法。對淘寶多樣性推薦的進一步研究表明,利用M2GRL產生的多種表征是有效的,對于不同側重點的各種工業推薦任務來說,M2GRL是一個很有前途的方向。
網址:
5. Controllable Multi-Interest Framework for Recommendation
作者:Yukuo Cen, Jianwei Zhang, Xu Zou, Chang Zhou, Hongxia Yang, Jie Tang
摘要:近年來,由于深度學習的快速發展,神經網絡在電子商務推薦系統中得到了廣泛的應用。我們將推薦系統形式化為一個序列推薦問題,目的是預測可能與用戶交互的下一個項目。最近的研究通常從用戶的行為序列中給出一個整體的嵌入。然而,統一的用戶嵌入不能反映用戶在一段時間內的多個興趣。本文提出了一種新穎的可控多興趣序列推薦框架,稱為ComiRec。我們的多興趣模塊從用戶行為序列中捕獲多個興趣,可用于從大規模項目集中檢索候選項目。然后將這些項目送入聚合模塊以獲得總體推薦。聚合模塊利用一個可控因素來平衡推薦的準確性和多樣性。我們在兩個真實的數據集Amazon和Taobao進行序列推薦實驗。實驗結果表明,我們的框架相對于最新模型取得了重大改進。我們的框架也已成功部署在離線阿里巴巴分布式云平臺上。
網址:
代碼鏈接:
【導讀】作為計算機視覺領域的三大國際頂會之一,IEEE國際計算機視覺與模式識別會議 CVPR 每年都會吸引全球領域眾多專業人士參與。由于受COVID-19疫情影響,原定于6月16日至20日在華盛頓州西雅圖舉行的CVPR 2020將全部改為線上舉行。今年的CVPR有6656篇有效投稿,最終有1470篇論文被接收,接收率為22%左右。之前小編為大家整理過CVPR 2020 GNN 相關論文,這周小編繼續為大家整理了五篇CVPR 2020 圖神經網絡(GNN)相關論文,供大家參考——行為識別、少樣本學習、仿射跳躍連接、多層GCN、3D視頻目標檢測。
CVPR2020SGNN、CVPR2020GNN_Part2、CVPR2020GNN_Part1、WWW2020GNN_Part1、AAAI2020GNN、ACMMM2019GNN、CIKM2019GNN、ICLR2020GNN、EMNLP2019GNN、ICCV2019GNN_Part2、ICCV2019GNN_Part1、NIPS2019GNN、IJCAI2019GNN_Part1、IJCAI2019GNN_Part2、KDD2019GNN、ACL2019GNN、CVPR2019GNN
1. Disentangling and Unifying Graph Convolutions for Skeleton-Based Action Recognition
作者:Ziyu Liu, Hongwen Zhang, Zhenghao Chen, Zhiyong Wang, Wanli Ouyang
摘要:基于骨架的動作識別算法廣泛使用時空圖對人體動作動態進行建模。為了從這些圖中捕獲魯棒的運動模式,長范圍和多尺度的上下文聚合與時空依賴建模是一個強大的特征提取器的關鍵方面。然而,現有的方法在實現(1)多尺度算子下的無偏差長范圍聯合關系建模和(2)用于捕捉復雜時空依賴的通暢的跨時空信息流方面存在局限性。在這項工作中,我們提出了(1)一種簡單的分解(disentangle)多尺度圖卷積的方法和(2)一種統一的時空圖卷積算子G3D。所提出的多尺度聚合方法理清了不同鄰域中節點對于有效的遠程建模的重要性。所提出的G3D模塊利用密集的跨時空邊作為跳過連接(skip connections),用于在時空圖中直接傳播信息。通過耦合上述提議,我們開發了一個名為MS-G3D的強大的特征提取器,在此基礎上,我們的模型在三個大規模數據集NTU RGB+D60,NTU RGB+D120和Kinetics Skeleton 400上的性能優于以前的最先進方法。
網址: //arxiv.org/pdf/2003.14111.pdf
代碼鏈接: github.com/kenziyuliu/ms-g3d
2. DPGN: Distribution Propagation Graph Network for Few-shot Learning
作者:Ling Yang, Liangliang Li, Zilun Zhang, Xinyu Zhou, Erjin Zhou, Yu Liu
摘要:大多數基于圖網絡的元學習方法都是為實例的instance-level關系進行建模。我們進一步擴展了此思想,以1-vs-N的方式將一個實例與所有其他實例的分布級關系明確建模。我們提出了一種新的少樣本學習方法--分布傳播圖網絡(DPGN)。它既表達了每個少樣本學習任務中的分布層次關系,又表達了實例層次關系。為了將所有實例的分布層關系和實例層關系結合起來,我們構造了一個由點圖和分布圖組成的對偶全圖網絡,其中每個節點代表一個實例。DPGN采用雙圖結構,在更新時間內將標簽信息從帶標簽的實例傳播到未帶標簽的實例。在少樣本學習的大量基準實驗中,DPGN在監督設置下以5%~12%和在半監督設置下以7%~13%的優勢大大超過了最新的結果。
網址:
代碼鏈接:
3. Geometrically Principled Connections in Graph Neural Networks
作者:Shunwang Gong, Mehdi Bahri, Michael M. Bronstein, Stefanos Zafeiriou
摘要:圖卷積操作為以前認為遙不可及的各種圖形和網格處理任務帶來了深度學習的優勢。隨著他們的持續成功,人們希望設計更強大的體系結構,這通常是將現有的深度學習技術應用于非歐幾里得數據。在這篇文章中,我們認為幾何應該仍然是幾何深度學習這一新興領域創新的主要驅動力。我們將圖神經網絡與廣泛成功的計算機圖形和數據近似模型(徑向基函數(RBF))相關聯。我們推測,與RBF一樣,圖卷積層將從向功能強大的卷積核中添加簡單函數中受益。我們引入了仿射跳躍連接 (affine skip connections),這是一種通過將全連接層與任意圖卷積算子相結合而形成的一種新的構建塊。通過實驗證明了我們的技術的有效性,并表明性能的提高是參數數量增加的結果。采用仿射跳躍連接的算子在形狀重建、密集形狀對應和圖形分類等每一項任務上的表現都明顯優于它們的基本性能。我們希望我們簡單有效的方法將成為堅實的基準,并有助于簡化圖神經網絡未來的研究。
網址:
4. L^2-GCN: Layer-Wise and Learned Efficient Training of Graph Convolutional Networks
作者:Yuning You, Tianlong Chen, Zhangyang Wang, Yang Shen
摘要:圖卷積網絡(GCN)在許多應用中越來越受歡迎,但在大型圖形數據集上的訓練仍然是出了名的困難。它們需要遞歸地計算鄰居的節點表示。當前的GCN訓練算法要么存在隨層數呈指數增長的高計算成本,要么存在加載整個圖和節點嵌入的高內存使用率問題。本文提出了一種新的高效的GCN分層訓練框架(L-GCN),該框架將訓練過程中的特征聚合和特征變換分離開來,從而大大降低了時間和存儲復雜度。我們在圖同構框架下給出了L-GCN的理論分析,在溫和的條件下,與代價更高的傳統訓練算法相比L-GCN可以產生同樣強大的GCN。我們進一步提出了L2-GCN,它為每一層學習一個控制器,該控制器可以自動調整L-GCN中每一層的訓練周期。實驗表明,L-GCN比現有技術快至少一個數量級,內存使用量的一致性不依賴于數據集的大小,同時保持了還不錯的預測性能。通過學習控制器,L2-GCN可以將訓練時間進一步減少一半。
網址:
代碼鏈接:
補充材料:
5. LiDAR-based Online 3D Video Object Detection with Graph-based Message Passing and Spatiotemporal Transformer Attention
作者:Junbo Yin, Jianbing Shen, Chenye Guan, Dingfu Zhou, Ruigang Yang
摘要:現有的基于LiDAR的3D目標檢測算法通常側重于單幀檢測,而忽略了連續點云幀中的時空信息。本文提出了一種基于點云序列的端到端在線3D視頻對象檢測器。該模型包括空間特征編碼部分和時空特征聚合部分。在前一個組件中,我們提出了一種新的柱狀消息傳遞網絡(Pillar Message Passing Network,PMPNet)來對每個離散點云幀進行編碼。它通過迭代信息傳遞的方式自適應地從相鄰節點收集柱節點的信息,有效地擴大了柱節點特征的感受野。在后一組件中,我們提出了一種注意力時空轉換GRU(AST-GRU)來聚合時空信息,通過注意力記憶門控機制增強了傳統的ConvGRU。AST-GRU包含一個空間Transformer Attention(STA)模塊和一個時間Transformer Attention(TTA)模塊,分別用于強調前景對象和對齊動態對象。實驗結果表明,所提出的3D視頻目標檢測器在大規模的nuScenes基準測試中達到了最先進的性能。
網址:
代碼鏈接:
1、MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing(MixHop: 通過稀疏鄰域混合實現的高階圖卷積結構)
作者:Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr Harutyunyan, Greg Ver Steeg, Aram Galstyan
摘要:現有的基于圖神經網絡的半監督學習方法(如圖卷積網絡)不能學習一般的鄰域混合關系。為了解決這個缺點,我們提出了一個新的模型,MixHop,它可以通過在不同距離重復混合鄰居的特征表示來學習這些關系,包括不同的操作符。MixHop不需要額外的內存或計算復雜度,并且在一些具有挑戰性的baseline上性能更好。此外,我們建議使用稀疏正則化,使我們能夠可視化網絡如何跨不同的圖數據集對鄰居信息進行優先級排序。我們對所學體系結構的分析表明,每個數據集的鄰域混合是不同的。
網址://proceedings.mlr.press/v97/abu-el-haija19a.html
代碼鏈接:
2、Compositional Fairness Constraints for Graph Embeddings(圖嵌入的組合公平性約束)
作者:Avishek Bose, William Hamilton
摘要:學習高質量的節點嵌入是基于圖數據(如社交網絡和推薦系統)的機器學習模型的關鍵步驟。然而,現有的圖嵌入技術無法處理公平約束,例如,確保所學習的表示與某些屬性(如年齡或性別)不相關。在這里,我們引入一個對抗框架來對圖嵌入實施公平性約束。我們的方法是組合的,這意味著它可以靈活地適應推理過程中公平約束的不同組合。例如,在社會推薦的上下文中,我們的框架允許一個用戶要求他們的推薦對他們的年齡和性別都是不變的,同時也允許另一個用戶只對他們的年齡要求不變。在標準知識圖和推薦系統基準測試上的實驗突出了我們提出的框架的實用性。
網址:
代碼鏈接:
3、Learning Discrete Structures for Graph Neural Networks(學習圖神經網絡的離散結構)
作者:Luca Franceschi, Mathias Niepert, Massimiliano Pontil, Xiao He
摘要:圖神經網絡(GNNs)是一種流行的機器學習模型,已成功地應用于一系列問題。它們的主要優勢在于能夠顯式地合并數據點之間的稀疏和離散依賴結構。不幸的是,只有在這種圖結構可用時才能使用GNN。然而,在實踐中,真實世界中的圖常常是嘈雜的、不完整的,或者根本就不可用。在此基礎上,我們提出通過近似求解一個學習圖邊緣離散概率分布的雙層程序來共同學習圖卷積網絡(GCNs)的圖結構和參數。這不僅允許在給定圖不完整或損壞的場景中應用GCNs,還允許在圖不可用的場景中應用GCNs。我們進行了一系列的實驗,分析了該方法的行為,并證明了它比相關的方法有顯著的優勢。
網址:
代碼鏈接:
4、Graph U-Nets
作者:Hongyang Gao, Shuiwang Ji
摘要:我們研究了圖數據的表示學習問題。卷積神經網絡可以很自然地對圖像進行操作,但在處理圖數據方面存在很大的挑戰。由于圖像是二維網格上節點圖的特殊情況,圖的嵌入任務與圖像的分割等像素級預測任務具有天然的對應關系。雖然像U-Nets這樣的編解碼器結構已經成功地應用于許多圖像的像素級預測任務,但是類似的方法在圖數據上還是很缺乏。這是由于池化操作和上采樣操作對圖數據不是自然的。為了解決這些挑戰,我們提出了新的圖池化(gPool)和反池化(gUnpool)操作。gPool層根據節點在可訓練投影向量上的標量投影值,自適應地選擇節點,形成較小的圖。我們進一步提出了gUnpool層作為gPool層的逆操作。gUnpool層使用在相應gPool層中選擇的節點位置信息將圖恢復到其原始結構。基于我們提出的gPool和gUnpool層,我們開發了一個基于圖的編解碼器模型,稱為Graph U-Nets。我們在節點分類和圖分類任務上的實驗結果表明,我們的方法比以前的模型具有更好的性能。
網址:
代碼鏈接:
5、Graph Neural Network for Music Score Data and Modeling Expressive Piano Performance(圖神經網絡用于樂譜數據和鋼琴演奏表現力的建模)
作者:Dasaem Jeong, Taegyun Kwon, Yoojin Kim, Juhan Nam
摘要:樂譜通常被處理為一維序列數據。與文本文檔中的單詞不同,樂譜中的音符可以由復調性質同時演奏,并且每個音符都有自己的持續時間。在本文中,我們使用圖神經網絡表示樂譜的獨特形式,并將其應用于從樂譜中渲染表現力的鋼琴演奏。具體地,我們設計了使用note-level門控圖神經網絡和采用迭代反饋方法的雙向LSTM測量級層次注意網絡的模型。此外,為了對給定輸入分數的不同性能風格建模,我們使用了一個變分自編碼器。聽力測試結果表明,與baseline模型和層次注意網絡模型相比,我們提出的模型生成了更多的類人性能,而層次注意網絡模型將音樂得分處理為類詞序列。
網址:
代碼鏈接:
6、Graph Matching Networks for Learning the Similarity of Graph Structured Objects(用于學習圖結構物體相似性的圖匹配網絡)
作者:Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, Pushmeet Kohli
摘要:本文針對圖結構物體的檢索與匹配這一具有挑戰性的問題,做了兩個關鍵的貢獻。首先,我們演示了如何訓練圖神經網絡(GNN)在向量空間中嵌入圖,從而實現高效的相似性推理。其次,提出了一種新的圖匹配網絡模型,該模型以一對圖作為輸入,通過一種新的基于注意力的交叉圖匹配機制,對圖對進行聯合推理,計算出圖對之間的相似度評分。我們證明了我們的模型在不同領域的有效性,包括具有挑戰性的基于控制流圖的功能相似性搜索問題,該問題在軟件系統漏洞檢測中發揮著重要作用。實驗分析表明,我們的模型不僅能夠在相似性學習的背景下利用結構,而且它們還比那些為這些問題精心手工設計的領域特定baseline系統表現得更好。
網址:
7、Disentangled Graph Convolutional Networks(Disentangled圖卷積網絡)
作者:Jianxin Ma, Peng Cui, Kun Kuang, Xin Wang, Wenwu Zhu
摘要:真實世界圖形的形成通常來自于許多潛在因素之間高度復雜的交互作用。現有的基于圖結構數據的深度學習方法忽略了潛在因素的糾纏,使得學習表示不魯棒,難以解釋。然而,在圖神經網絡的研究中,如何將潛在因素分解出來的學習表示方法面臨著巨大的挑戰,并且在很大程度上還沒有得到探索。本文引入解糾纏(Disentangled)圖卷積網絡(DisenGCN)來學習disentangled節點表示。特別地,我們提出了一種新的鄰域路由機制,它能夠動態地識別可能導致節點與其相鄰節點之間產生邊的潛在因素,并相應地將相鄰節點分配到一個提取和卷積特定于該因素的特性的信道。從理論上證明了該路由機制的收斂性。實驗結果表明,我們提出的模型可以獲得顯著的性能提升,特別是當數據表明存在許多糾纏因素時。
網址:
8、GMNN: Graph Markov Neural Networks(GMNN: 圖馬爾可夫神經網絡)
作者:Meng Qu, Yoshua Bengio, Jian Tang
摘要:本文研究關系數據中的半監督對象分類問題,這是關系數據建模中的一個基本問題。在統計關系學習(如關系馬爾可夫網絡)和圖神經網絡(如圖卷積網絡)的文獻中,這一問題得到了廣泛的研究。統計關系學習方法可以通過條件隨機場對對象標簽的依賴關系進行有效的建模,用于集體分類,而圖神經網絡則通過端到端訓練學習有效的對象表示來分類。在本文中,我們提出了一種集兩種方法優點于一體的Graph Markov Neural Networks (GMNN)。GMNN利用條件隨機場對目標標簽的聯合分布進行建模,利用變分EM算法對其進行有效訓練。在E-step中,一個圖神經網絡學習有效的對象表示,逼近對象標簽的后驗分布。在M-step中,利用另一個圖神經網絡對局部標簽依賴關系進行建模。在對象分類、鏈路分類和無監督節點表示學習等方面的實驗表明,GMNN取得了較好的效果。
網址:
代碼鏈接:
9、Simplifying Graph Convolutional Networks(簡化圖卷積網絡)
作者:Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, Kilian Weinberger
摘要:圖卷積網絡(GCNs)及其變體得到了廣泛的關注,已成為學習圖表示的實際方法。GCNs的靈感主要來自最近的深度學習方法,因此可能會繼承不必要的復雜性和冗余計算。在本文中,我們通過連續消除非線性和折疊連續層之間的權重矩陣來減少這種額外的復雜性。我們從理論上分析了得到的線性模型,結果表明它對應于一個固定的低通濾波器,然后是一個線性分類器。值得注意的是,我們的實驗評估表明,這些簡化不會對許多下游應用程序的準確性產生負面影響。此外,生成的模型可以擴展到更大的數據集,這是自然可解釋的,并且比FastGCN的速度提高了兩個數量級。
網址:
代碼鏈接:
10、Position-aware Graph Neural Networks(位置感知圖神經網絡)
作者:Jiaxuan You, Rex Ying, Jure Leskovec
摘要:學習節點嵌入,捕捉節點在更廣泛的圖結構中的位置,對于圖上的許多預測任務是至關重要的。然而,現有的圖神經網絡(GNN)結構在獲取給定節點相對于圖中所有其他節點的position/location方面的能力有限。本文提出了一種計算位置感知節點嵌入的新型神經網絡—Position-aware Graph Neural Networks (P-GNNs)。P-GNN首先對錨節點集進行采樣,計算給定目標節點到每個錨集的距離,然后學習錨集上的非線性距離加權聚集方案。通過這種方式,P-GNNs可以捕獲節點相對于錨節點的位置。P-GNN有幾個優點: 它們具有歸納性,可擴展性,并且可以包含節點特征信息。我們將P-GNNs應用于多個預測任務,包括鏈路預測和社區檢測。我們顯示,P-GNNs始終優于最先進的GNNs, 在ROC AUC分數方面提高了66%。
網址:
代碼鏈接:
論文下載
百度云鏈接:
提取碼:vcc3
【導讀】CIKM 2019 (International Conference on Information and Knowledge Management),今年會議主題是 "AI for Future Life"。CIKM是數據庫、數據挖掘與內容檢索領域的旗艦會議。CIKM 2019共計收到1030篇長文有效投稿,其中200篇論文被大會錄用,總錄用率約19.4%。圖神經網絡(GNN)相關的論文依然很火爆,小編在官網上查看了,CIKM專門有專題,大約10篇長文接受為GNN專題論文。為此,專知小編提前為大家篩選了六篇GNN 長文論文供參考和學習!
作者:Zekun Li,Zeyu Cui,Shu Wu,Xiaoyu Zhang,Liang Wang;
摘要:點擊率(CTR)預測是在線廣告和推薦系統等網絡應用中的一項重要任務,其特點是多領域的。該任務的關鍵是對不同特征field之間的特征交互進行建模。最近提出的基于深度學習的模型遵循了一種通用的范式:首先將原始的稀疏輸入multi-filed特征映射到密集的field嵌入向量中,然后簡單地將其連接到深度神經網絡(DNN)或其他專門設計的網絡中,以學習高階特征交互。然而,特征field的簡單非結構化組合將不可避免地限制以足夠靈活和顯式的方式建模不同field之間復雜交互的能力。 在這項工作中,我們提出在一個圖結構中直觀地表示multi-field的特征,其中每個節點對應一個特征field,不同的field可以通過邊進行交互。因此,建模特征交互的任務可以轉換為對相應圖上的節點交互進行建模。為此,我們設計了一個新的模型-Feature Interaction Graph Neural Networks (Fi-GNN)。利用圖的強表征性,我們的模型不僅可以靈活、明確地對復雜的特征交互進行建模,而且可以為CTR預測提供良好的模型解釋。在兩個真實數據集上的實驗結果顯示了它的優越性。
網址: //www.zhuanzhi.ai/paper/4d6897c6a057a33539d3e6758c223a9c
2、Graph Convolutional Networks with Motif-based Attention
作者:John Boaz Lee,Ryan A. Rossi,Xiangnan Kong,Sungchul Kim,Eunyee Koh,Anup Rao;
摘要:深度卷積神經網絡在計算機視覺和語音識別領域的成功,使得研究人員開始研究該體系結構對圖結構數據的泛化。最近提出的一種稱為圖卷積網絡的方法能夠在節點分類方面取得最新的成果。然而,由于所提出的方法依賴于spectral圖卷積的局部一階近似,因此無法捕獲圖中節點間的高階相互作用。在這項工作中,我們提出了一個motif-based的圖注意力模型,稱為Motif Convolutional Networks,它通過使用加權多跳motif鄰接矩陣來捕獲高階鄰域,從而泛華了過去的方法。一個新的注意力機制被用來允許每個單獨的節點選擇最相關的鄰居來應用它的過濾器。我們在不同領域(社會網絡和生物信息學)的圖上評估了我們的方法,結果表明它能夠在半監督節點分類任務上勝過一組有競爭力的基準方法。其他結果證明了attention的有用性,表明不同的節點對不同的高階鄰域進行了優先排序。
網址:
作者:Guillaume Salha,Stratis Limnios,Romain Hennequin,Viet Anh Tran,Michalis Vazirgian;
摘要:圖自編碼器(AE)和變分自編碼器(VAE)是近年來出現的強有力的節點嵌入方法。特別是利用圖AE和VAE成功地解決了具有挑戰性的鏈路預測問題,目的是找出圖上的一些節點對是否被未觀察到的邊所連接。然而,這些模型側重于無向圖,因此忽略了鏈接的潛在方向,這限制了許多實際應用程序。在本文中,我們擴展了graph AE和VAE框架來解決有向圖中的鏈路預測問題。我們提出了一種新的gravity-inspired的解碼器方案,可以有效地從節點嵌入中重建有向圖。我們對標準graph AE和VAE表現較差的三種不同定向鏈路預測任務進行了實證評價。我們在三個真實世界的圖上獲得了具有競爭力的結果,超過了幾個流行的baseline。
網址:
4、Hashing Graph Convolution for Node Classification
作者:Wenting Zhao, Zhen Cui, Chunyan Xu, Chengzheng Li, Tong Zhang,Jian Yang;
摘要:圖數據卷積在non-gridded數據中的應用引起了人們的極大興趣。為了克服相鄰節點的排序和數量的影響,在以往的研究中,往往對局部接受域進行summing/average diffusion/aggregation。然而,這種壓縮成一個節點的方法容易造成節點間的signal entanglement,導致次優特征信息,降低了節點的可分辨性。針對這一問題,本文提出了一種簡單而有效的哈希圖卷積(HGC)方法,該方法通過在節點聚合中使用全局哈希和局部投影來進行節點分類。與傳統的完全collision聚合相比,hash-projection可以大大降低相鄰節點聚合時的collision概率。我們認為基于hash-projection的方法可以更好地保持甚至增加局部區域的原始差異,并得到進一步的改進。hash-projection的另一個附帶效果是將每個節點的接受域歸一化為一個共同大小的bucket空間,不僅避免了大小不同的鄰居節點及其順序的麻煩,而且使圖卷積運行起來就像標準的shape-girded卷積一樣。考慮到訓練樣本較小,我們在HGC中引入預測一致性正則化項來約束圖中未標記節點的得分一致性。HGC在transductive和inductive實驗環境下進行評估。在節點分類任務上的大量實驗表明,hash-projection確實可以提高性能,我們的HGC在所有實驗數據集上都取得了最新最好的結果。
網址:
5、Learning to Identify High Betweenness Centrality Nodes from Scratch: A Novel Graph Neural Network Approach
作者:Changjun Fan,Li Zeng,Yuhui Ding,Muhao Chen,Yizhou Sun,Zhong Liu;
摘要: Betweenness centrality (BC)是網絡分析中廣泛使用的一種中心性度量,它試圖通過最短路徑的比例來描述網絡中節點的重要性。它是許多有價值的應用的關鍵,包括社區檢測和網絡拆除。由于時間復雜度高,在大型網絡上計算BC分數在計算上具有挑戰性。許多基于采樣的近似算法被提出以加速BC的估計。然而,這些方法在大規模網絡上仍然需要相當長的運行時間,并且它們的結果對網絡的微小擾動都很敏感。 在這篇論文中,我們主要研究如何有效識別圖中BC最高的top k節點,這是許多網絡應用程序所必須完成的任務。與以往的啟發式方法不同,我們將該問題轉化為一個學習問題,并設計了一個基于encoder-decoder的框架作為解決方案。具體來說,encoder利用網絡結構將每個節點表示為一個嵌入向量,該嵌入向量捕獲節點的重要結構信息。decoder將每個嵌入向量轉換成一個標量,該標量根據節點的BC來標識節點的相對rank。我們使用pairwise ranking損失來訓練模型,以識別節點的BC順序。通過對小規模網絡的訓練,該模型能夠為較大網絡的節點分配相對BC分數,從而識別出高排名的節點。在合成網絡和真實世界網絡上的實驗表明,與現有的baseline相比,我們的模型在沒有顯著犧牲準確性的情況下大大加快了預測速度,甚至在幾個大型真實世界網絡的準確性方面超過了最先進的水平。
網址:
6、Relation-Aware Graph Convolutional Networks for Agent-Initiated Social E-Commerce Recommendation
作者:Fengli Xu,Jianxun Lian,Zhenyu Han,Yong Li,Yujian Xu,Xing Xie;
摘要:近年來,agent-initiated社交電子商務模式取得了巨大的成功,這種模式鼓勵用戶成為銷售代理商,通過他們的社交關系來推廣商品。這種類型的社交電子商務中的復雜交互可以表述為異構信息網絡(HIN),其中三種節點之間的關系有多種類型,分別為用戶、銷售代理和商品。學習高質量的節點嵌入是研究的重點,圖卷積網絡(GCNs)是近年來發展起來的最先進的表示學習方法。然而,現有的GCN模型在建模異構關系和有效地從大量鄰域中采樣相關接收域方面都存在基本的局限性。為了解決這些問題,我們提出了RecoGCN(a RElation-aware CO-attentive GCN model)來有效地聚合HIN中的異構特征。它彌補了目前GCN在使用關系感知聚合器建模異構關系方面的局限性,并利用語義感知元路徑為每個節點開辟簡潔和相關的接受域。為了有效地融合從不同元路徑中學習到的嵌入,我們進一步提出了一種co-attentive機制,通過關注用戶、銷售代理和商品之間的三種交互來動態地為不同的元路徑分配重要性權重。在真實數據集上的大量實驗表明,RecoGCN能夠學習HIN中有意義的節點嵌入,并且在推薦任務中始終優于baseline方法。
網址: