亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

深度學習(DL)容易受到分布外出和對抗性樣本的影響,從而導致不正確的輸出。為了使DL更健壯,最近提出了幾種后方法異常檢測技術來檢測(并丟棄)這些異常樣本。本研究試圖為基于DL的應用程序異常檢測的研究提供一個結構化的、全面的綜述。我們根據現有技術的基本假設和采用的方法為它們提供了一個分類。我們討論了每個類別中的各種技術,并提供了這些方法的相對優勢和劣勢。我們在這次調查中的目標是提供一個更容易,但更好地理解技術屬于不同的類別,在這方面的研究已經做了。最后,我們強調了在DL系統中應用異常檢測技術所面臨的未解決的研究挑戰,并提出了一些具有重要影響的未來研究方向。

付費5元查看完整內容

相關內容

 機器學習的一個分支,它基于試圖使用包含復雜結構或由多重非線性變換構成的多個處理層對數據進行高層抽象的一系列算法。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

目標檢測的任務是從圖像中精確且高效地識別、定位出大量預定義類別的物體實例。隨著深度學習的廣泛應用,目標檢測的精確度和效率都得到了較大提升,但基于深度學習的目標檢測仍面臨改進與優化主流目標檢測算法的性能、提高小目標物體檢測精度、實現多類別物體檢測、輕量化檢測模型等關鍵技術的挑戰。針對上述挑戰,本文在廣泛文獻調研的基礎上,從雙階段、單階段目標檢測算法的改進與結合的角度分析了改進與優化主流目標檢測算法的方法,從骨干網絡、增加視覺感受野、特征融合、級聯卷積神經網絡和模型的訓練方式的角度分析了提升小目標檢測精度的方法,從訓練方式和網絡結構的角度分析了用于多類別物體檢測的方法,從網絡結構的角度分析了用于輕量化檢測模型的方法。此外,對目標檢測的通用數據集進行了詳細介紹,從4個方面對該領域代表性算法的性能表現進行了對比分析,對目標檢測中待解決的問題與未來研究方向做出預測和展望。目標檢測研究是計算機視覺和模式識別中備受青睞的熱點,仍然有更多高精度和高效的算法相繼提出,未來將朝著更多的研究方向發展。

付費5元查看完整內容

題目: A Survey of Single-Scene Video Anomaly Detection

簡介: 這篇調查文章總結了關于單個場景的視頻饋送中的異常檢測主題的研究趨勢。 我們討論了各種問題的表述,公開可用的數據集和評估標準。 我們將過去的研究歸類并歸類為一個直觀的分類法。 最后,我們還提供了最佳實踐,并為將來的研究提供了一些可能的方向。

付費5元查看完整內容

題目: Anomalous Instance Detection in Deep Learning: A Survey

摘要:

深度學習(DL)容易受到分布不均勻和對抗性示例的影響,從而導致不正確的輸出。為了使DL更具有魯棒性,最近提出了幾種方法:異常檢測技術來檢測(并丟棄)這些異常樣本。本研究試圖為基于DL的應用程序異常檢測的研究提供一個結構化的、全面的概述。我們根據現有技術的基本假設和采用的方法為它們提供了一個分類。我們討論了每個類別中的各種技術,并提供了這些方法的相對優勢和劣勢。我們在這次調查中的目標是提供一個更容易并且更好理解的技術,這項技術是在這方面已經做過研究的,且屬于不同的類別的。最后,我們強調了在DL系統中應用異常檢測技術所面臨的未解決的研究挑戰,并提出了一些具有重要影響的未來研究方向。

付費5元查看完整內容

Deep Learning (DL) is vulnerable to out-of-distribution and adversarial examples resulting in incorrect outputs. To make DL more robust, several posthoc anomaly detection techniques to detect (and discard) these anomalous samples have been proposed in the recent past. This survey tries to provide a structured and comprehensive overview of the research on anomaly detection for DL based applications. We provide a taxonomy for existing techniques based on their underlying assumptions and adopted approaches. We discuss various techniques in each of the categories and provide the relative strengths and weaknesses of the approaches. Our goal in this survey is to provide an easier yet better understanding of the techniques belonging to different categories in which research has been done on this topic. Finally, we highlight the unsolved research challenges while applying anomaly detection techniques in DL systems and present some high-impact future research directions.

論文題目: Salient Object Detection in the Deep Learning Era: An In-Depth Survey

論文摘要: 作為計算機視覺中的一個重要問題,圖像中的顯著目標檢測(SOD)近年來得到了越來越多的研究。最近在超氧化物歧化酶方面的進展主要是基于深度學習的解決方案(稱為深超氧化物歧化酶)。為了便于深入理解深層SODs,本文提供了一個全面的綜述,涵蓋了從算法分類到未解決的開放問題的各個方面。特別是,我們首先從網絡結構、監控級別、學習范式和對象/實例級別檢測等不同角度對深度超氧化物歧化酶算法進行了綜述。在此基礎上,總結了現有的SOD評價數據集和指標體系。然后,在前人工作的基礎上,認真編寫了一個完整的SOD方法的基準測試結果,并對對比結果進行了詳細的分析。另外,通過構造一個新的具有豐富屬性標注的SOD數據集,研究了不同屬性下的SOD算法的性能,這在以前的研究中是很少的。我們首次在現場進一步分析了deep-SOD模型的魯棒性和可轉移性。我們還研究了輸入擾動的影響,以及現有SOD數據集的通用性和硬度。最后,討論了超氧化物歧化酶存在的問題和挑戰,并指出了未來可能的研究方向。

付費5元查看完整內容

論文主題: Recent Advances in Deep Learning for Object Detection

論文摘要: 目標檢測是計算機視覺中的基本視覺識別問題,并且在過去的幾十年中已得到廣泛研究。目標檢測指的是在給定圖像中找到具有精確定位的特定目標,并為每個目標分配一個對應的類標簽。由于基于深度學習的圖像分類取得了巨大的成功,因此近年來已經積極研究了使用深度學習的對象檢測技術。在本文中,我們對深度學習中視覺對象檢測的最新進展進行了全面的調查。通過復習文獻中最近的大量相關工作,我們系統地分析了現有的目標檢測框架并將調查分為三個主要部分:(i)檢測組件,(ii)學習策略(iii)應用程序和基準。在調查中,我們詳細介紹了影響檢測性能的各種因素,例如檢測器體系結構,功能學習,建議生成,采樣策略等。最后,我們討論了一些未來的方向,以促進和刺激未來的視覺對象檢測研究。與深度學習。

付費5元查看完整內容

論文題目: A Survey of Deep Learning-based Object Detection

論文摘要: 目標檢測是計算機視覺中最重要和最具挑戰性的分支之一,它已廣泛應用于人們的生活中,例如監視安全性,自動駕駛等。隨著用于檢測任務的深度學習網絡的迅速發展,對象檢測器的性能得到了極大的提高。為了深入地了解目標檢測的主要發展狀況,在本次調查中,我們首先分析了現有典型檢測模型的方法并描述了基準數據集。之后,我們以系統的方式全面概述了各種目標檢測方法,涵蓋了一級和二級檢測器。此外,我們列出了傳統和新的應用程序。還分析了對象檢測的一些代表性分支。最后,我們討論了利用這些對象檢測方法來構建有效且高效的系統的體系結構,并指出了一組發展趨勢,以更好地遵循最新的算法和進一步的研究。

作者介紹: Licheng Jiao 1982年獲得中國上海交通大學博士學位,并分別于1984年和1990年獲得西安交通大學的博士學位。 1990年至1991年,他是西安電子科技大學雷達信號處理國家重點實驗室的博士后研究員。自1992年以來,焦博士一直是中國西安電子科技大學電子工程學院的教授,目前是電子工程學院的院長,也是智能感知與圖像理解重點實驗室的主任。 西安電子科技大學中國教育部 1992年,焦博士獲得了青年科學技術獎。 1996年,他獲得了中國教育部跨世紀專家基金的資助。 從1996年起,他被選為“中國第一級人才計劃”的成員。2006年,他被霍英東教育基金會授予高中青年教師獎一等獎。 從2006年起,他被選為陜西省特別貢獻專家。

付費5元查看完整內容

論文題目: Imbalance Problems in Object Detection: A Review

論文摘要: 在本文中,我們對物體檢測中的不平衡問題進行了全面回顧。 為了系統地分析問題,我們引入了兩種分類法; 一個解決問題,另一個解決方案。 按照問題的分類法,我們深入討論每個問題,并對文獻中的解決方案提出一個統一而又批判性的觀點。 此外,我們確定了有關現有不平衡問題以及以前未討論過的不平衡問題的主要開放問題。 此外,為了使我們的評論保持最新,我們提供了一個隨附的網頁。

付費5元查看完整內容

異常檢測是一個在各個研究領域和應用領域內得到廣泛研究的重要問題。本研究的目的有兩個方面:首先,我們對基于深度學習的異常檢測的研究方法進行了系統全面的綜述。此外,我們還回顧了這些方法對不同應用領域異常的應用,并評估了它們的有效性。我們根據所采用的基本假設和方法,將最先進的研究技術分為不同的類別。在每一類中,我們概述了基本的異常檢測技術,以及它的變體,并給出了關鍵的假設,以區分正常行為和異常行為。對于我們介紹的每一類技術,我們還介紹了它們的優點和局限性,并討論了這些技術在實際應用領域中的計算復雜性。最后,我們概述了研究中的未決問題和采用這些技術時所面臨的挑戰。

付費5元查看完整內容
北京阿比特科技有限公司