機器學習(ML)是一組用于發現數據關系的編程技術。使用ML算法,您可以對數據進行聚類和分類,以執行建議或欺詐檢測之類的任務,并對銷售趨勢、風險分析和其他預測進行預測。機器學習曾經是學術數據科學家的領域,現在已經成為主流的業務流程,而像易于學習的R編程語言這樣的工具將高質量的數據分析交到任何程序員的手中。《使用R、tidyverse和mlr的機器學習》將教會您廣泛使用的ML技術,以及如何使用R編程語言及其強大的工具生態系統將它們應用于您自己的數據集。這本書會讓你開始!
對這項技術
機器學習技術準確而有效地識別數據中的模式和關系,并使用這些模型對新數據進行預測。ML技術甚至可以在相對較小的數據集上工作,使這些技能成為幾乎所有數據分析任務的強大盟友。R語言的設計考慮了數學和統計的應用。小型數據集是它的最佳選擇,它的現代數據科學工具(包括流行的tidyverse包)使R成為ML的自然選擇。
關于這本書
《使用R、tidyverse和mlr的機器學習》將教會您如何使用強大的R編程語言從數據中獲得有價值的見解。作者兼R專家Hefin Ioan Rhys以其引人入勝的、非正式的風格為ML基礎知識打下了堅實的基礎,并向您介紹了tidyverse,這是一套專門為實用數據科學設計的強大的R工具。有了這些基礎知識,您將更深入地研究常用的機器學習技術,包括分類、預測、約簡和聚類算法,并將每種技術應用于實際數據,從而對有趣的問題進行預測。
使用tidyverse包,您將轉換、清理和繪制您的數據,并在工作中使用數據科學最佳實踐。為了簡化您的學習過程,您還將使用R的mlr包,這是一個非常靈活的接口,用于各種核心算法,允許您以最少的編碼執行復雜的ML任務。您將探索一些基本概念,如過擬合、欠擬合、驗證模型性能,以及如何為您的任務選擇最佳模型。富有啟發性的圖片提供了清晰的解釋,鞏固了你的新知識。
無論您是在處理業務問題、處理研究數據,還是僅僅是一個有數據頭腦的開發人員,您都可以通過本實用教程立即構建自己的ML管道!
里面有什么
有興趣的數據科學專業人士可以通過本書學習Scikit-Learn圖書館以及機器學習的基本知識。本書結合了Anaconda Python發行版和流行的Scikit-Learn庫,演示了廣泛的有監督和無監督機器學習算法。通過用Python編寫的清晰示例,您可以在家里自己的機器上試用和試驗機器學習的原理。
所有的應用數學和編程技能需要掌握的內容,在這本書中涵蓋。不需要深入的面向對象編程知識,因為工作和完整的例子被提供和解釋。必要時,編碼示例是深入和復雜的。它們也簡潔、準確、完整,補充了介紹的機器學習概念。使用示例有助于建立必要的技能,以理解和應用復雜的機器學習算法。
對于那些在機器學習方面追求職業生涯的人來說,Scikit-Learn機器學習應用手冊是一個很好的起點。學習這本書的學生將學習基本知識,這是勝任工作的先決條件。讀者將接觸到專門為數據科學專業人員設計的蟒蛇分布,并將在流行的Scikit-Learn庫中構建技能,該庫是Python世界中許多機器學習應用程序的基礎。
你將學習
這本書是給誰的
Manning最暢銷的Java 8書籍已經被修訂為Java 9和Java 10!在Modern Java In Action中,讀者可以使用最新的特性和技術,在已有的Java語言技能的基礎上進行構建。
Java 9的發布建立在Java 8令人激動的基礎之上。除了Java 8的lambdas和streams之外,Java 9還添加了許多自己的新特性。它包含了新的庫特性來支持響應式編程,這為用戶提供了一種新的方式來思考編程和編寫更易于閱讀和維護的代碼。
本書通過提供真實的案例研究和示例,為使用Python庫進行機器學習提供了堅實的基礎。它涵蓋了諸如機器學習基礎、Python入門、描述性分析和預測分析等主題。包括高級機器學習概念,如決策樹學習、隨機森林、增強、推薦系統和文本分析。這本書在理論理解和實際應用之間采取了一種平衡的方法。所有的主題都包括真實世界的例子,并提供如何探索、構建、評估和優化機器學習模型的逐步方法。
人類從反饋中學習得最好——我們被鼓勵采取導致積極結果的行動,而被具有消極后果的決定所阻礙。這種強化過程可以應用到計算機程序中,使它們能夠解決經典編程所不能解決的更復雜的問題。深度強化學習實戰教你基本概念和術語的深度強化學習,以及實踐技能和技術,你將需要把它落實到你自己的項目。
對這項技術
深度強化學習是一種機器學習的形式,人工智能智能體從自己的原始感官輸入中學習最優行為。系統感知環境,解釋其過去決策的結果,并使用這些信息優化其行為以獲得最大的長期回報。眾所周知,深度強化學習對AlphaGo的成功做出了貢獻,但這并不是它所能做的全部!更令人興奮的應用程序等待被發現。讓我們開始吧。
關于這本書
深度強化學習實戰中教你如何編程的代理人,學習和改善的直接反饋,從他們的環境。您將使用流行的PyTorch深度學習框架構建網絡,以探索從深度Q-Networks到策略梯度方法再到進化算法的強化學習算法。在你進行的過程中,你會將你所知道的應用到實際操作項目中,比如控制模擬機器人、自動化股票市場交易,甚至構建一個可以下圍棋的機器人。
里面有什么
掌握通過機器學習和深度學習識別和解決復雜問題的基本技能。使用真實世界的例子,利用流行的Python機器學習生態系統,這本書是你學習機器學習的藝術和科學成為一個成功的實踐者的完美伴侶。本書中使用的概念、技術、工具、框架和方法將教會您如何成功地思考、設計、構建和執行機器學習系統和項目。
使用Python進行的實際機器學習遵循結構化和全面的三層方法,其中包含了實踐示例和代碼。
第1部分側重于理解機器學習的概念和工具。這包括機器學習基礎,對算法、技術、概念和應用程序的廣泛概述,然后介紹整個Python機器學習生態系統。還包括有用的機器學習工具、庫和框架的簡要指南。
第2部分詳細介紹了標準的機器學習流程,重點介紹了數據處理分析、特征工程和建模。您將學習如何處理、總結和可視化各種形式的數據。特性工程和選擇方法將詳細介紹真實數據集,然后是模型構建、調優、解釋和部署。
第3部分探討了多個真實世界的案例研究,涵蓋了零售、交通、電影、音樂、營銷、計算機視覺和金融等不同領域和行業。對于每個案例研究,您將學習各種機器學習技術和方法的應用。動手的例子將幫助您熟悉最先進的機器學習工具和技術,并了解什么算法最適合任何問題。
實用的機器學習與Python將授權您開始解決您自己的問題與機器學習今天!
你將學習:
這本書是給誰看的 IT專業人士、分析師、開發人員、數據科學家、工程師、研究生
目錄:
Part I: Understanding Machine Learning
Chapter 12: Deep Learning for Computer Vision
在六個步驟中學習高級Python 3主題的基礎知識,所有這些都是為了讓您成為一個有價值的實踐者而設計的。這個更新版本的方法基于“六度分離”理論,該理論指出每個人和每件事都是最多六步之遙,并將每個主題分為兩部分: 理論概念和使用適當的Python 3包的實際實現。
您將從Python 3編程語言基礎、機器學習歷史、發展和系統開發框架開始。本文還介紹了一些關鍵的數據挖掘/分析概念,如探索性分析、特征降維、回歸、時間序列預測及其在Scikit-learn中的有效實現。您還將學習常用的模型診斷和調優技術。其中包括最優的類創建概率截止點、方差、偏差、裝袋、提升、集成投票、網格搜索、隨機搜索、貝葉斯優化和物聯網數據降噪技術。
最后,您將回顧先進的文本挖掘技術,推薦系統,神經網絡,深度學習,強化學習技術及其實現。本書中提供的所有代碼都將以iPython筆記本的形式提供,使您能夠嘗試這些示例并將其擴展到您的優勢。
你將學習
這本書是給誰看的
Python開發人員、數據工程師和機器學習工程師希望將他們的知識或職業擴展到機器學習領域。
主題: Mastering Machine Learning with Python in Six Steps
簡介: 分六個步驟探索高級Python 3主題的基本原理,所有這些步驟都是為了讓您成為一個有價值的實踐者而設計的。這個更新版本的方法是基于“六度分離”理論,它指出每個人和所有事物都是最大的六步,并將每一個主題呈現為兩個部分:理論概念和使用適當的Python 3包的實際實現。您將從Python3編程語言的基礎知識、機器學習歷史、演化和系統開發框架開始。本文還介紹了探索性分析、特征降維、回歸、時間序列預測等關鍵數據挖掘/分析概念及其在Scikit學習中的有效實現。您還將學習常用的模型診斷和調優技術。其中包括類創建的最佳概率截止點、方差、偏差、bagging、boosting、集成投票、網格搜索、隨機搜索、貝葉斯優化以及物聯網數據的降噪技術。最后,您將回顧高級文本挖掘技術、推薦系統、神經網絡、深度學習、強化學習技術及其實現。本書中提供的所有代碼都將以iPython筆記本的形式提供,使您能夠嘗試這些示例并將它們擴展到您的優勢。
作者簡介: Swamynathan Manohar 是一名數據科學從業者和一名狂熱的程序員,在數據倉庫、商業智能(BI)、分析工具開發、即席分析、預測建模、數據科學產品開發、咨詢等各種數據科學相關領域擁有超過14年的經驗,制定策略并執行分析計劃。
機器學習的核心是有效地識別數據中的模式和關系。許多任務,例如查找詞匯之間的關聯以便您能夠做出準確的搜索建議,或者在社交網絡中定位具有相似興趣的個人,很自然地以圖Graph的形式表達出來。圖驅動機器學習教你如何使用基于圖形的算法和數據組織策略來開發高級的機器學習應用程序。
對這項技術
對于任何涉及到大型數據集中的模式匹配的任務,基于圖的機器學習都是一個非常強大的工具。應用程序包括安全問題,如識別欺詐或檢測網絡入侵,應用程序領域,如社交網絡或自然語言處理,以及更好的用戶體驗,通過準確的推薦和智能搜索。通過將數據組織和分析為圖形,您的應用程序可以更流暢地使用以圖形為中心的算法(如最近鄰算法或頁面排名算法),在這些算法中,快速識別和利用相關關系非常重要。現代圖形數據存儲(如Neo4j或Amazon Neptune)是支持圖形機器學習的現成工具。
關于這本書
圖驅動機器學習向您介紹圖技術概念,強調圖在機器學習和大數據平臺中的作用。您將深入了解各種技術,包括數據源建模、算法設計、鏈接分析、分類和集群。在掌握核心概念之后,您將探索三個端到端項目,它們將演示體系結構、最佳設計實踐、優化方法和常見缺陷。作者亞歷山德羅·內格羅在構建基于圖形的機器學習系統方面的豐富經驗在每一章中都有所體現,你可以從他與真實客戶合作的實例和具體場景中學習!
里面有什么
題目: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition
書籍簡介: 通過最近的一系列突破,深度學習促進了整個機器學習領域的發展。現在,即使對這項技術一無所知的程序員也可以使用簡單、高效的工具來實現能夠從數據中學習的程序。這本實用的書告訴你怎么做。通過使用具體的例子、最小理論和兩個可用于生產的Python框架Scikit Learn和TensorFlow的作者Aurélien Géron幫助您直觀地理解用于構建智能系統的概念和工具。您將學習一系列技術,從簡單的線性回歸開始,然后進入深層神經網絡。每一章的練習都有助于你應用你所學的知識。
探索機器學習領域,特別是神經網絡
使用Scikit Learn端到端跟蹤示例機器學習項目
探索幾種訓練模型,包括支持向量機、決策樹、隨機森林和集成方法
利用TensorFlow庫建立和訓練神經網絡
深入研究神經網絡結構,包括卷積網絡、遞歸網絡和深度強化學習
學習深度神經網絡的訓練和縮放技術
作者簡介: Aurélien Géron,Kiwisoft的機器學習顧問,也是暢銷書《與Scikit-Learn、Keras和TensorFlow一起進行機器學習》的作者。此前,他曾領導YouTube的視頻分類團隊,是Wifirst的創始人和首席技術官,并在多個領域擔任顧問:金融(摩根大樓和法國興業銀行)、國防(加拿大國防部)和醫療(輸血)。他還出版了一些技術書籍(關于c++、WiFi和互聯網架構),他是巴黎多芬大學的講師。
題目: Machine Learning in Action
摘要: 這本書向人們介紹了重要的機器學習算法,介紹了使用這些算法的工具和應用程序,讓讀者了解它們在今天的實踐中是如何使用的。大部分的機器學習書籍都是討論數學,但很少討論如何編程算法。這本書旨在成為從矩陣中提出的算法到實際運行程序之間的橋梁。有鑒于此,請注意這本書重代碼輕數學。
代碼下載鏈接: //pan.baidu.com/s/1--8P9Hlp7vzJdvhnnhsDvw 提取碼:vqhg