人類從反饋中學習得最好——我們被鼓勵采取導致積極結果的行動,而被具有消極后果的決定所阻礙。這種強化過程可以應用到計算機程序中,使它們能夠解決經典編程所不能解決的更復雜的問題。深度強化學習實戰教你基本概念和術語的深度強化學習,以及實踐技能和技術,你將需要把它落實到你自己的項目。
對這項技術
深度強化學習是一種機器學習的形式,人工智能智能體從自己的原始感官輸入中學習最優行為。系統感知環境,解釋其過去決策的結果,并使用這些信息優化其行為以獲得最大的長期回報。眾所周知,深度強化學習對AlphaGo的成功做出了貢獻,但這并不是它所能做的全部!更令人興奮的應用程序等待被發現。讓我們開始吧。
關于這本書
深度強化學習實戰中教你如何編程的代理人,學習和改善的直接反饋,從他們的環境。您將使用流行的PyTorch深度學習框架構建網絡,以探索從深度Q-Networks到策略梯度方法再到進化算法的強化學習算法。在你進行的過程中,你會將你所知道的應用到實際操作項目中,比如控制模擬機器人、自動化股票市場交易,甚至構建一個可以下圍棋的機器人。
里面有什么
Elm不僅僅是一種前沿的編程語言,它還為開發人員提供了一個升級構建web應用程序的方式的機會。
Elm in Action教會讀者如何使用Elm語言構建設計良好、性能良好的web應用程序。在閱讀過程中,他們將學習一個名為Photo Groove的應用程序,該程序將向他們展示如何構建應用程序的域和行為,如何維護一個令人愉快的模塊化架構,以及如何使用Elm語言交付高質量的產品。
地址:
//www.apress.com/gp/book/9781484251232
利用MATLAB的強大功能來應對深度學習的挑戰。本書介紹了深度學習和使用MATLAB的深度學習工具箱。您將看到這些工具箱如何提供實現深度學習所有方面所需的完整功能集。
在此過程中,您將學習建模復雜的系統,包括股票市場、自然語言和僅確定角度的軌道。您將學習動力學和控制,并使用MATLAB集成深度學習算法和方法。您還將使用圖像將深度學習應用于飛機導航。
最后,您將使用慣性測量單元對ballet pirouettes進行分類,并使用MATLAB的硬件功能進行實驗。
你會學到什么
這本書是給誰看的:
工程師、數據科學家和學生想要一本關于使用MATLAB進行深度學習的例子豐富的書。
題目:Applied Reinforcement Learning with Python With OpenAI Gym, Tensorflow, and Keras
深入研究強化學習算法,并通過Python將它們應用到不同的用例中。這本書涵蓋了重要的主題,如策略梯度和Q學習,并利用框架,如Tensorflow, Keras,和OpenAI Gym。
Python中的應用增強學習向您介紹了強化學習(RL)算法背后的理論和用于實現它們的代碼。您將在指導下了解OpenAI Gym的特性,從使用標準庫到創建自己的環境,然后了解如何構建強化學習問題,以便研究、開發和部署基于rl的解決方案。
你將學習:
這本書是給誰看的: 數據科學家、機器學習工程師和軟件工程師熟悉機器學習和深度學習的概念。
地址:
//www.springerprofessional.de/en/applied-reinforcement-learning-with-python/17098944
目錄:
第1章 強化學習導論
在過去的一年里,深度學習技術的不斷擴散和發展給各個行業帶來了革命性的變化。毫無疑問,這個領域最令人興奮的部分之一是強化學習(RL)。這本身往往是許多通用人工智能應用程序的基礎,例如學習玩視頻游戲或下棋的軟件。強化學習的好處是,假設可以將問題建模為包含操作、環境和代理的框架,那么代理就可以熟悉大量的任務。假設,解決問題的范圍可以從簡單的游戲,更復雜的3d游戲,自動駕駛汽車教學如何挑選和減少乘客在各種不同的地方以及教一個機械手臂如何把握對象和地點在廚房柜臺上。
第二章 強化學習算法
讀者應該知道,我們將利用各種深度學習和強化學習的方法在這本書。然而,由于我們的重點將轉移到討論實現和這些算法如何在生產環境中工作,我們必須花一些時間來更詳細地介紹算法本身。因此,本章的重點將是引導讀者通過幾個強化學習算法的例子,通常應用和展示他們在使用Open AI gym 不同的問題。
第三章 強化學習算法:Q學習及其變體
隨著策略梯度和Actor-Critic模型的初步討論的結束,我們現在可以討論讀者可能會發現有用的替代深度學習算法。具體來說,我們將討論Q學習、深度Q學習以及深度確定性策略梯度。一旦我們了解了這些,我們就可以開始處理更抽象的問題,更具體的領域,這將教會用戶如何處理不同任務的強化學習。
第四章 通過強化學習做市場
除了在許多書中發現的強化學習中的一些標準問題之外,最好看看那些答案既不客觀也不完全解決的領域。在金融領域,尤其是強化學習領域,最好的例子之一就是做市。我們將討論學科本身,提出一些不基于機器學習的基線方法,然后測試幾種基于強化學習的方法。
第五章 自定義OpenAI強化學習環境
在我們的最后一章,我們將專注于Open AI Gym,但更重要的是嘗試理解我們如何創建我們自己的自定義環境,這樣我們可以處理更多的典型用例。本章的大部分內容將集中在我對開放人工智能的編程實踐的建議,以及我如何編寫這個軟件的建議。最后,在我們完成創建環境之后,我們將繼續集中精力解決問題。對于這個例子,我們將集中精力嘗試創建和解決一個新的視頻游戲。
指南簡介
最近神經網絡在計算機視覺、機器翻譯和時間序列預測等問題上得到了重大突破,但它們也可以與強化學習算法相結合,創造出像AlphaGo這樣令人震驚的東西。強化學習指的是面向目標的算法,它學習如何獲得復雜的目標(目標)或在許多步驟中沿著特定的維度最大化;例如,在許多動作中最大化在游戲中贏得的分數。他們可以從一塊白板開始,在適當的條件下,他們可以達到超人的表現。就像一個被鞭打和糖果激勵的孩子,當他們做出錯誤的決定時,這些算法會受到懲罰,當他們做出正確的決定時,這些算法會得到獎勵——這就是強化。包含深度學習的強化算法可以在圍棋游戲中擊敗世界冠軍,也可以在玩許多阿塔里電子游戲的人類專家。雖然這聽起來微不足道,但與他們之前的成就相比,這是一個巨大的進步,目前的技術正在迅速進步。強化學習解決了將即時行為與其產生的延遲回報關聯起來的難題。與人類一樣,強化學習算法有時需要等待一段時間才能看到決策的成果。它們在延遲返回的環境中運行,在這種環境中,很難理解在許多時間步驟中哪些操作會導致哪些結果。強化學習算法可以期望在更模糊、真實的環境中執行得越來越好,同時可以從任意數量的可能動作中進行選擇,而不是從視頻游戲的有限選項中進行選擇。也就是說,隨著時間的推移,我們期望它們對實現現實世界中的目標是有價值的。Skymind將深度強化學習應用于真實世界用例的模擬,以幫助企業優化他們如何建立工廠、員工呼叫中心、建立倉庫和供應鏈以及管理流量。
內容目錄
MIT新書《強化學習與最優控制》,REINFORCEMENT LEARNING AND OPTIMAL CONTROL //web.mit.edu/dimitrib/www/Slides_Lecture13_RLOC.pdf