Elm不僅僅是一種前沿的編程語言,它還為開發人員提供了一個升級構建web應用程序的方式的機會。
Elm in Action教會讀者如何使用Elm語言構建設計良好、性能良好的web應用程序。在閱讀過程中,他們將學習一個名為Photo Groove的應用程序,該程序將向他們展示如何構建應用程序的域和行為,如何維護一個令人愉快的模塊化架構,以及如何使用Elm語言交付高質量的產品。
首先加速介紹R生態系統、編程語言和工具,包括R腳本和RStudio。通過使用許多例子和項目,這本書教你如何將數據導入R,以及如何使用R處理這些數據。一旦基礎扎實,《實用R 4》的其余部分將深入具體的項目和例子,從使用R和LimeSurvey運行和分析調查開始。接下來,您將使用R和MouselabWeb執行高級統計分析。然后,您將看到在沒有統計信息的情況下R如何工作,包括如何使用R自動化數據格式化、操作、報告和自定義函數。
本書的最后一部分討論了在服務器上使用R;您將使用R構建一個腳本,該腳本可以運行RStudio服務器并監視報表源的更改,以便在發生更改時向用戶發出警報。這個項目包括定期電子郵件提醒和推送通知。最后,您將使用R創建一個定制的個人最重要信息的每日綱要報告,例如天氣報告、每日日歷、待辦事項等等。這演示了如何自動化這樣一個過程,以便用戶每天早上導航到相同的web頁面并獲得更新的報告。
你將學到什么
這本書是給誰的
Manning最暢銷的Java 8書籍已經被修訂為Java 9和Java 10!在Modern Java In Action中,讀者可以使用最新的特性和技術,在已有的Java語言技能的基礎上進行構建。
Java 9的發布建立在Java 8令人激動的基礎之上。除了Java 8的lambdas和streams之外,Java 9還添加了許多自己的新特性。它包含了新的庫特性來支持響應式編程,這為用戶提供了一種新的方式來思考編程和編寫更易于閱讀和維護的代碼。
介紹使用spaCy使用Python進行自然語言處理,spaCy是一個領先的Python自然語言處理庫。
使用Python和spaCy進行自然語言處理將向您展示如何快速輕松地創建聊天機器人、文本壓縮腳本和訂單處理工具等NLP應用程序。您將了解如何利用spaCy庫智能地從文本中提取含義;如何確定句子中詞語之間的關系(句法依賴分析);識別名詞、動詞和其他詞類(詞性標注);并將專有名詞分類,如人員、組織和地點(識別命名實體)。你甚至會學到如何將陳述轉換成問題來保持對話的進行。您還將學習如何:
每一章的“嘗試這個”部分鼓勵您通過擴展該書的示例腳本來處理更廣泛的輸入、添加錯誤處理和構建專業質量的應用程序,從而實踐您所學到的知識。在本書的最后,您將使用Python和spaCy創建自己的NLP應用程序。
Yuli Vasiliev是一名程序員、自由撰稿人和顧問,專門從事開源開發、Oracle數據庫技術和自然語言處理。
Introduction
Chapter 1: How Natural Language Processing Works Chapter 2: The Text-Processing Pipeline Chapter 3: Working with Container Objects and Customizing spaCy Chapter 4: Extracting and Using Linguistic Features Chapter 5: Working with Word Vectors Chapter 6: Finding Patterns and Walking Dependency Trees Chapter 7: Visualizations Chapter 8: Intent Recognition Chapter 9: Storing User Input in a Database Chapter 10: Training Models Chapter 11: Deploying Your Own Chatbot Chapter 12: Implementing Web Data and Processing Images Linguistic Primer
人類從反饋中學習得最好——我們被鼓勵采取導致積極結果的行動,而被具有消極后果的決定所阻礙。這種強化過程可以應用到計算機程序中,使它們能夠解決經典編程所不能解決的更復雜的問題。深度強化學習實戰教你基本概念和術語的深度強化學習,以及實踐技能和技術,你將需要把它落實到你自己的項目。
對這項技術
深度強化學習是一種機器學習的形式,人工智能智能體從自己的原始感官輸入中學習最優行為。系統感知環境,解釋其過去決策的結果,并使用這些信息優化其行為以獲得最大的長期回報。眾所周知,深度強化學習對AlphaGo的成功做出了貢獻,但這并不是它所能做的全部!更令人興奮的應用程序等待被發現。讓我們開始吧。
關于這本書
深度強化學習實戰中教你如何編程的代理人,學習和改善的直接反饋,從他們的環境。您將使用流行的PyTorch深度學習框架構建網絡,以探索從深度Q-Networks到策略梯度方法再到進化算法的強化學習算法。在你進行的過程中,你會將你所知道的應用到實際操作項目中,比如控制模擬機器人、自動化股票市場交易,甚至構建一個可以下圍棋的機器人。
里面有什么
Kafka in Action是構建基于Kafka的數據管道的實用指南。充滿了真實的用例和場景,這本書探討了Kafka最常見的用例,從簡單的日志記錄到管理用于消息路由、分析等的流數據系統。
在處理大數據、流數據或快速數據的系統中,確保數據管道正確是非常重要的。Apache Kafka是一個非常快的分布式流平臺,它不僅僅作為一個持久的日志或靈活的消息隊列來運行。
//www.manning.com/books/deep-learning-with-javascript
深度學習已經改變了計算機視覺、圖像處理和自然語言應用領域。多虧了TensorFlow.js,現在JavaScript開發人員可以無需依賴Python或R就能構建深度學習應用程序。使用JavaScript的深度學習向開發人員展示了如何將DL技術引入web。本書由TensorFlow庫的主要作者編寫,為在瀏覽器或Node上使用JavaScript進行深度學習的應用程序提供了有趣的用例和深入的指導。
關于技術
在瀏覽器或基于Node的后端中運行深度學習應用程序,為智能web應用程序開辟了令人興奮的可能性。使用TensorFlow.js庫,您可以用JavaScript構建和訓練深度學習模型。TensorFlow.js具有無與倫比的可擴展性,模塊化和響應能力,其可移植性確實令人眼前一亮。它的模型可以在JavaScript運行的任何地方運行,從而將ML推向應用程序堆棧的更上層。
關于這本書
在Deep Learning with JavaScript這本書中,您將學習使用TensorFlow.js來構建直接在瀏覽器中運行的深度學習模型。這本快節奏的書由Google工程師撰寫,是實用的,引人入勝且易于閱讀。通過以文本分析,語音處理,圖像識別和自學習游戲AI為特色的各種示例,您將掌握深度學習的所有基礎知識并探索高級概念,例如對現有模型進行再訓練以進行遷移學習和圖像生成。
書里面有什么
在瀏覽器中的圖像和語言處理
用客戶端數據調優ML模型
通過生成式深度學習創建文本和圖像
源代碼示例以進行測試和修改
總結
對象是Java、Python、c#等語言的核心概念。應用對象設計的最佳實踐意味著您的代碼將易于讀、寫和維護。對象設計風格指南捕捉了幾十種創建高質量的OO代碼的技術,這些代碼可以經受住時間的考驗。這些例子都是非常熟悉的偽代碼,您可以將這些教學技術應用于任何OO語言,從c++到PHP。
對這項技術
編寫良好的OO代碼是閱讀、修改和調試的樂趣。通過掌握本書中介紹的對象設計的通用最佳實踐來提升您的編碼風格。這些清晰呈現的規則適用于任何OO語言,最大限度地提高代碼庫的清晰度和持久性,并提高您和您的團隊的生產力。
關于這本書
對象設計風格指南提供了幾十種編寫面向對象代碼的專業技術。在其中,經驗豐富的開發人員Matthias Noback列出了構造對象、定義方法、更改和公開狀態等方面的設計規則。所有示例都使用非常熟悉的偽代碼,因此您可以按照自己喜歡的語言進行學習。在您探索對象設計的重要場景和挑戰時,您將一個案例一個案例地研究,然后通過一個簡單的web應用程序演示不同類型的對象如何有效地協同工作。
里面有什么
廣泛對象的通用設計規則
測試對象的最佳實踐
常見對象類型的目錄
每個章節的練習來測試你的對象設計技能
Manning2020新書《Practices of the Python Pro》,250頁pdf
專業開發人員知道編寫干凈、組織良好、易于維護的應用程序代碼的許多好處。通過學習和遵循已建立的模式和最佳實踐,您可以將您的代碼和您的職業生涯提升到一個新的水平。
通過Python Pro的實踐,您將學習如何使用非常流行的編程語言Python來設計專業級別的、干凈的、易于維護的軟件。您會發現一些容易理解的示例,它們使用偽代碼和Python來介紹軟件開發的最佳實踐,以及許多即時有用的技術,可以幫助您像專業人員一樣編寫代碼。
Python Pro的實踐教會您設計和編寫可理解、可維護和可擴展的專業質量的軟件。Dane Hillard是一名Python專業人員,他幫助許多開發人員完成了這一步,并且他知道這需要什么。通過一些有用的示例和練習,他可以告訴您何時、為什么以及如何模塊化代碼,如何通過減少復雜性來提高質量,等等。接受這些核心原則,您的代碼將變得更容易閱讀、維護和重用。
題目: Machine Learning in Action
摘要: 這本書向人們介紹了重要的機器學習算法,介紹了使用這些算法的工具和應用程序,讓讀者了解它們在今天的實踐中是如何使用的。大部分的機器學習書籍都是討論數學,但很少討論如何編程算法。這本書旨在成為從矩陣中提出的算法到實際運行程序之間的橋梁。有鑒于此,請注意這本書重代碼輕數學。
代碼下載鏈接: //pan.baidu.com/s/1--8P9Hlp7vzJdvhnnhsDvw 提取碼:vqhg