諸如困難目標、嵌入復雜雜波和相互競爭的背景目標設置以及日益嚴重的有意和無意 RF 干擾等幾個因素,繼續增加現代高性能雷達的復雜性和挑戰。認知型全自適應雷達(CoFAR)的推出是為了應對日益復雜的工作環境的挑戰。CoFAR的特點是通過感知-學習-適應(SLA)方法學習和理解完整的多維雷達信道(目標、雜波、干擾等),實現完全自適應發射、接收和控制器/調度器功能。該系統能夠通過估計由雜波和其他干擾信號組成的雷達信道,共同優化自適應發射和接收功能。
隨后的脈沖或相干脈沖間隔(CPI)的雷達波形和CoFAR的接收濾波器基本上是利用對雷達信道的了解來計算的,其中包括雜波和其他干擾信號。在實踐中,信道信息是未知的,應該從探測信號中估計。因此,這些CoFAR系統的有效性高度依賴于雷達信道的靜止性以及信道估計算法的準確性。我們開發了新的信道估計算法,利用了相鄰脈沖的信道脈沖響應之間的關系。所提出的算法優于傳統的無約束的最小二乘法解決方案。
我們還解決了下一步的問題,該框架涉及一個由 "我們 "和 "對手 "組成的對抗性信號處理問題。"我們 "指的是一種資產,如無人機/UAV或探測 "對手 "認知雷達的電磁信號。認知型傳感器將我們在噪聲中的運動狀態作為觀察對象。然后,它使用貝葉斯跟蹤器來更新我們狀態的后驗分布,并根據這個后驗選擇一個行動。我們在噪聲中觀察傳感器的行動。鑒于對 "我們的 "狀態序列和對手的傳感器所采取的觀察到的行動的了解,我們將重點放在以下相互關聯的方面。我們認為敵方雷達通過實施維納濾波器來選擇其發射波形以跟蹤目標,從而使其信號-雜波-噪聲比(SCNR)最大化。通過觀察雷達選擇的最佳波形,我們將制定一個智能策略來估計對手的認知雷達信道,然后通過信號相關的干擾產生機制來迷惑對手的雷達。
2020財年的研究報告分為兩大重點:
我們的主要目的是開發一種新的信道估計算法,以改善無約束的最小二乘法解決方案,特別是在低信噪比的情況下,因為沒有任何約束的最小二乘法解決方案受到低信噪比值的影響。我們提出了在余弦相似性約束和前一個脈沖的信道脈沖響應與當前脈沖之間的內積約束下的約束最小二乘法問題,該信道脈沖響應正在被估計。
我們首先研究了RFView數據集中相鄰脈沖的信道脈沖響應之間的余弦相似度測量和內積值,觀察到較近的脈沖之間的信道脈沖響應顯示出較高的余弦相似度和內積值。我們還觀察到,無約束的最小二乘法解決方案顯示出更低的余弦相似度值,尤其是在低信噪比環境下。
然后,我們提出了一個新的帶有余弦相似性約束的約束最小平方問題,以改善最小平方解。由于最小二乘法的解決方案不符合余弦相似性約束的理想值,我們強制要求估計的信道脈沖響應有一個理想的余弦相似性測量。由此產生的優化問題是一個非凸問題,然而,我們將其轉換為一個非凸的二次約束二次程序,對其而言,強對偶性是成立的。此外,我們觀察到,無論信噪比水平如何,相鄰信道脈沖響應之間的內積值都不會變化。我們將內積約束添加到帶有余弦相似性約束的非凸式QCQP中,然后得出一個凸式優化問題。
我們使用RFView的真實數據集,提供了所提方法與傳統的無約束租賃平方解決方案的數值結果。我們表明,所提出的兩種方法都優于最小二乘法的解決方案。這也表明,具有余弦相似性約束和內積約束的凸問題顯示出最好的性能,盡管計算復雜度比具有余弦相似性約束的非凸QCQP低得多。我們還提供了使用RFView挑戰數據集的仿真結果,帶有內積約束的凸問題在挑戰數據集中表現良好。
我們考慮了涉及認知雷達的相互關聯的對抗性推理問題,并解決了如何在物理層層面設計干擾來迷惑雷達,從而迫使它改變發射波形。對手雷達通過實施維納濾波器來選擇目標跟蹤的發射波形,以使其信號-雜波-噪聲比(SCNR)最大化。通過觀察雷達選擇的最佳波形,我們開發了一種智能策略來估計對手的認知雷達信道,然后通過信號相關的干擾生成機制來迷惑對手的雷達。
我們的目標是使我們產生的干擾的信號功率最小化,同時確保對手雷達的SCNR不超過預先定義的閾值。其設置示意圖見圖1。
圖1. 涉及對抗性認知雷達和我們的發射信道、雜波信道和干擾信道的示意圖。我們在噪聲中觀察雷達的波形W。我們的目的是設計干擾信道P來迷惑認知雷達。
我們首先描述了認知型雷達如何根據其感知的干擾來優化選擇其波形的特點。該雷達的目標是選擇使其SCNR最大化的最佳波形。然后,我們設計最佳干擾信號,通過解決一個概率約束的優化問題來迷惑對手的認知雷達。最佳干擾信號使其功率最小,從而使雷達的SCNR以規定的概率低于閾值。為了解決由此產生的非凸優化問題,我們首先從觀測中估計發射和雜波信道脈沖響應,并使用信道脈沖響應的估計值來產生干擾信號。
認知型雷達在其目標脈沖響應和傳遞函數的方向上使其能量最大化。只要我們從脈沖中準確估計出目標信道的傳遞函數,我們就可以立即產生與信號相關的干擾,使目標回波無效。即使在我們自適應地進行估計后,雜波信道脈沖響應發生變化,因為目標信道在較長時間內是靜止的。因此,在我們結束估計后,信號依賴干擾將在幾個脈沖中成功工作。這種方法的主要收獲是,我們正在利用認知雷達通過優化與環境有關的波形來提供其信道信息的事實。
本報告介紹了在三個主要議題方面取得的成果:
對小型無人機系統(SUAS)的分布式團隊進行實驗驗證,以協調執行復雜的行為。
開發了一個現實的多架無人機模擬器,以應用強化學習技術來協調一組小型無人機系統以達到特定目的。
設計并驗證了安裝在無人機上的帶有主動多輸入多輸出(MIMO)毫米波雷達傳感器的融合光學相機。
與驗證SUAS團隊有關的工作提出并實驗測試了我們的態勢感知、分布式SUAS團隊所使用的框架,該團隊能夠以自主方式實時運行,并在受限的通信條件下運行。我們的框架依賴于三層方法:(1)操作層,在這里做出快速的時間和狹窄的空間決定;(2)戰術層,在這里為智能體團隊做出時間和空間決定;以及(3)戰略層,在這里為智能體團隊做出緩慢的時間和廣泛的空間決定。這三層由一個臨時的、軟件定義的通信網絡協調,即使在通信受限的情況下,也能確保各層的智能體小組和團隊之間的信息傳遞稀少而及時。實驗結果顯示,一個由10個小型無人機系統組成的團隊負責在一個開放區域搜索和監測一個人。在操作層,我們的用例介紹了一個智能體自主地進行搜索、探測、定位、分類、識別、跟蹤和跟蹤該人,同時避免惡意碰撞。在戰術層,我們的實驗用例介紹了一組多個智能體的合作互動,使其能夠在更廣泛的空間和時間區域內監測目標人物。在戰略層,我們的用例涉及復雜行為的檢測--即被跟蹤的人進入汽車并逃跑,或者被跟蹤的人離開汽車并逃跑--這需要戰略反應以成功完成任務。
目標搜索和檢測包括各種決策問題,如覆蓋、監視、搜索、觀察和追逐-逃避以及其他問題。我們開發了一種多智能體深度強化學習(MADRL)方法來協調一組飛行器(無人機),以定位未知區域內的一組靜態目標。為此,我們設計了一個現實的無人機模擬器,它復制了真實實驗的動態和擾動,包括從實驗數據中提取的統計推斷,用于其建模。我們的強化學習方法,利用這個模擬器進行訓練,能夠為無人機找到接近最優的政策。與其他最先進的MADRL方法相比,我們的方法在學習和執行過程中都是完全分布式的,可以處理高維和連續的觀察空間,并且不需要調整額外的超參數。
為了給在受限通信條件下運行的SUAS開發一個分布式的分類和協調框架,我們的第一個目標是在無人駕駛飛行器(UAV)上建立一個多傳感器系統,以獲得高探測性能。眾所周知,安裝在無人機上的光學和熱傳感器已被成功用于對難以進入的區域進行成像。然而,這些傳感器都不提供關于場景的范圍信息;因此,它們與高分辨率毫米波雷達的融合有可能改善成像系統的性能。我們提出了一個配備了無源光學攝像機和有源多輸入多輸出(MIMO)毫米波雷達傳感器的下視無人機系統的初步實驗結果。毫米波雷達的三維成像是通過收集通過運動線的數據來實現的,從而產生一個合成孔徑,并使用垂直于運動軌跡的結線MIMO陣列。我們的初步結果顯示,融合的光學和毫米波圖像提供了形狀和范圍信息,最終導致無人機系統的成像能力增強。
這個項目的目標是開發在具有挑戰性的多目標環境中自主分布式傳感器管理和融合所需的基礎方法。這涉及到開發能夠自動跟蹤多個目標的算法,根據從具有數據關聯不確定性和高誤報率的多個平臺收到的信息進行分類并分配資源。在研究者最近在多目標跟蹤和分布式傳感器融合方面的發展基礎上,該工作方案開發了能夠在大規模多傳感器多目標跟蹤應用中基于信息理論標準實現自主傳感器分配的方法。這是通過重新評估信息理論中的關鍵工具來實現的,這些工具適用于基于點過程理論的多目標監視的挑戰,該理論旨在適應單個目標的狀態和目標數量的不確定性。所開發的信息理論方法被應用于多傳感器問題,使人們能夠決定如何分配傳感器資源,以及完善對場景的認識。所開發的工具將有助于減少監測單一傳感器饋電的勞動密集型負擔,并能做出適應性決定,以優化多模式網絡的運行,并增強對監測區域的整體認識。對多目標跟蹤情景的信息理論表述的關注,將使人們能夠驗證傳感器饋電是否能夠可靠地融合,以避免數據損壞的可能性。該項目在智能傳感方面提供了關鍵的先進技術,以實現動態環境中的連續和適應性監視。這些將是可擴展的,可用于從多個分布式傳感器對許多目標進行大規模跟蹤。
該項目的總體目標是研究和開發基于信息理論原則的分布式多傳感器多目標系統的自主傳感器控制的新策略:
為大規模系統的多目標跟蹤開發可擴展的解決方案。
開發基于信息論原理的多傳感器融合的分布式解決方案。
確定多傳感器多目標跟蹤系統可以交換多少信息。
該項目為多傳感器多目標跟蹤開發了基本的解決方案:
對許多目標進行大規模跟蹤。問題的規模越來越大,因此解決方案需要可擴展,跟蹤許多目標需要減輕組合復雜性的算法。多目標跟蹤的低復雜度解決方案將被開發出來,并在復雜環境中進行測試。開發了一種用于穩健地跟蹤大量目標的方法,該方法在目標數量和測量數量上是可擴展的,這使得數百萬目標可以被跟蹤。
確定多傳感器多目標跟蹤系統的信息含量。在具有高密度信息的傳感器網絡中,帶寬可能是多傳感器多目標跟蹤的一個制約因素。這個項目得出了確定用于多目標跟蹤的傳感器網絡的信息含量的結果。預計這將有助于評估傳感網絡的效率和有效性,并與發送數據的數量和頻率相平衡。
來自多個傳感器的數據的分布式整合。操作員需要根據來自多個跟蹤系統的信息做出決定,以提高整體的態勢感知。為多傳感器集成開發了一種分布式多傳感器多目標跟蹤的新方法,該方法可減輕來自不準確或誤導性數據源的損壞。
對多目標監視應用中的威脅進行評估。對許多物體的大規模跟蹤能夠識別直接威脅。然而,有些威脅可能比其他威脅更有針對性。開發了一種新的對抗性風險的表述,為操作人員提供態勢感知,以幫助確定傳感資產的優先次序。
目標跟蹤估計器的性能界限。費舍爾信息的倒數,即克拉默-拉奧約束,為參數的估計器提供了一個約束,是統計分析的基礎。它為一個參數提供了一個可實現的最小方差或協方差。根據量子場理論的數學概念,為點過程推導出克拉默-拉奧約束,將這一概念推廣到具有空間變量的變量。
本文介紹了在卡勒獎學金第一年內進行的研究,研究如何自主控制檢查平臺向故障平臺行駛以完成檢查相關任務。這項研究的目的是開發一個有限時間的相對位置控制框架,使檢查衛星能夠安全地接近發生故障的平臺,因為平臺的通信能力受到阻礙,導致其在接近過程中根本無法通信。故障平臺導致獨特的挑戰,即平臺的狀態被認為是先驗未知的,檢查器可能無法從故障平臺提供的準確和連續的信息中受益;故障平臺也可能受到機動和干擾。
在該獎學金的第一期內,使用 MATLAB 和 Simulink 開發了仿真軟件,以演示檢查平臺與故障平臺執行會合操作。首先引入基于視線的相對運動模型,直接使用導航信息,然后以自適應非奇異終端滑模控制器的形式開發魯棒控制框架,以確保閉環系統穩定并保證有限時間收斂到所需的狀態。然后在最終討論未來的工作和目標之前展示和討論模擬結果。
在有環境因素的城市區域內安全有效地使用四旋翼飛行器,對美國軍事和民用部門具有巨大的重要性。本技術報告探討了一個高度適應性的模擬設置,其中有一個包含學習元素的非線性控制器。其他模型因素--如無人機的幾何形狀、權重和風的力量--在所提出的框架內很容易被修改。用虛幻引擎進行的模擬,可以結合現實世界的城市數據、現實的風和現有的開源軟件。
無人系統和無人駕駛航空系統(UAS)的使用在全世界的軍隊中激增,在通信、監視、偵察和戰斗中都有應用(Nacouzi等人,2018)。在敵對地區,無人機系統將受到多種威脅,包括網絡和物理威脅,以及環境危害。生存和任務的成功往往取決于以最小的通信或依賴全球導航衛星系統(GNSS)的能力,如GPS(Guvenc等人,2018;Sathyamoorthy等人,2020;Fan等人,2022)。例如,無人機系統的通信可用于檢測和獲得無人機系統的位置,而基于衛星的導航很容易被欺騙或干擾,因為信號非常弱。其他傳感器也經常被用來增強GNSS的位置分析,并可以用來取代它,如光學系統--包括照相機、雷達、光探測和測距(LiDAR)系統和慣性測量單元(IMU)(Angelino等人,2012)。這些都提出了自己的挑戰。慣性測量單元是標準設備,但只能檢測線性和角加速度,同時通過檢測地球的局部磁場來確定方向(共9個自由度)。因此,位置誤差,即測量的加速度的第二個時間積分,會隨著時間的推移而累積。在使用IMU進行UAS導航時,其他令人擔憂的來源包括環境影響(即風或降水)。 UAS結構的物理變化,如增加一個傳感器或武器包,包括武器發射后的變化,使工作進一步復雜化。這種質量和質量分布的變化改變了UAS的質量中心和慣性張量。光學傳感器、雷達和LiDAR系統增加了重量,并經常發射射頻或光,使它們更容易被探測到和/或需要處理資源。增加的重量和/或處理可能對電池壽命產生不利影響,從而影響運行時間和整體可靠性。
為了解決這些問題,我們正在研究在大風環境中使用控制算法,以了解IMU信號如何在控制中被用來考慮(和/或改變)UAS的位置計算。再加上不確定性措施,這些最終可用于檢測UAS飛行性能的變化,或對GNSS信號的欺騙。
城市環境是安全和可靠的無人機系統運行的第二個關注領域(Watkins 2020)。它們被認為是國防部行動的一個挑戰領域,也是政府和商業服務的一個巨大的技術增長領域。在這份報告中,我們展示了一個模擬空間,我們正在建立專門用于模擬城市環境中的無人機系統,以解決自主和半自主控制的問題,重點是環境的相互作用,包括風和靜態碰撞威脅。物理學和控制的關鍵部分直接用C++實現。除此之外,在可能的情況下,我們正在利用當前的免費和開源資源(即軟件、軟件框架和數據),但要注意的是,我們包括使用一些在產品商業化成功后需要付費的工具。我們采取了一種模塊化的方法,隨著其他軟件框架和系統的成熟,將能夠靈活地過渡到其他軟件框架和系統。我們目前的系統已經基于用于小型無人機系統的PX4控制器庫和實時發布-訂閱(RTPS)數據傳輸協議。RTPS應能使我們的發展在其他工具成熟時過渡到其他工具,并使用通用的應用編程接口(即API)過渡到其他工具和數據,如計算的風數據。對于圖形和用戶界面,我們使用虛幻引擎(UE)(Matej 2016),這是一個游戲引擎,提供最先進的圖形功能和我們的模型中使用的一些物理學--最重要的是無人機系統和其環境之間的碰撞檢測。
第2-4節詳細介紹了整個模擬的主要計算部分:納入現實世界的城市數據,生成現實的風模型,無人機的幾何和物理建模,以及線性和非線性控制。我們對整體模擬的這些主要部分中的每一個都依賴開源軟件,如UE、OpenStreetMap(OSM)(Anderson等人,2019年)、Mapbox和AirSim(Shah等人,2017年),并根據需要詳細說明(見圖1;例如,真實城市的模型導入游戲引擎中)。第5節和第6節提供了樣本結果和結語。
圖1 將城市數據納入UE進行大規模模擬的兩個例子。伊利諾伊州的芝加哥(上);弗吉尼亞州的水晶城(下)。這兩張圖片都是使用開源工具創建的,將開源的Mapbox城市數據導入UE中。
量子技術正被部署在太空中。這些系統的目標靈敏度、穩定性和精確度可能會受到相對論效應的影響,并反過來允許它們作為基本物理學的新探測器使用。
描述光子的定位和光學干涉測量中的重力效應
確定計量學和時間保持中自旋-重力耦合的影響
設計愛因斯坦等效原理(EEP)的天基全光學測試
在一個新的環境中測試愛因斯坦相對論的基本前提:確定自旋與慣性和加速度相互作用的形式并設計新的測試方法
1.我們引入了一個方便的形式體系來評估在一般彎曲背景上傳播的光信號相位。它使我們能夠在一般相對論背景下的大規模光學干涉測量中獲得頻率偏移和相位差之間的透明關系,并推導出單程和雙程方案中的多普勒效應的緊湊表達。我們的方案很容易適用于靜止的空間,特別是近地實驗,其中幾何形狀是用參數化的后牛頓近似法描述的。
2.非引力實驗的局部位置不變性,這需要引力紅移是愛因斯坦等效原理(EEP)的關鍵因素。引力紅移的精確測量僅在標準模型的費米子部門中嚴格約束對EEP的違反。利用光干涉測量法的建議受到一階多普勒效應的影響,它主導了測試EEP所必需的弱引力信號,使其不可行。在這里,我們提出了一個新的方案來測試EEP,它是基于雙重大距離光學干涉測量的。通過操縱在兩個地點檢測到的不同引力勢能的相移,有可能抵消一階多普勒效應,觀察到EEP所隱含的引力紅移,將其潛在的違反限制在~10-5的自然精度范圍內。我們介紹了在后牛頓框架內對這一建議的詳細分析,以及對預期信號的模擬,特別是側重于高偏心率軌道,以便區分信號和多普勒位移。
3.檢驗基礎物理學的進展依賴于我們測量超小物理量的能力。以40Ca+被困離子系統為例,我們表明用目前的技術可以測量一個極弱的合成磁場(在10-19T的規模)。這種改進的靈敏度可以用來測試影響等價原理的自旋耦合效應,如果存在的話,可能會影響擬議的糾纏光鐘陣列的性能。新穎的降噪方案是基于量子芝諾效應的,并將作為某些類別的量子優化算法中糾錯協議的一部分進行研究。
現代數字雷達在其波形、雷達參數設置和傳輸方案方面提供了前所未有的靈活性,以支持多種雷達系統目標,包括目標探測、跟蹤、分類和其他功能。這種靈活性為提高系統性能提供了潛力,但需要一個閉環感知和響應方法來實現這種潛力。完全自適應雷達(FAR),也被稱為認知雷達,是模仿認知的感知-行動周期(PAC),以這種閉環方式適應雷達傳感器。在這項工作中,我們將FAR概念應用于雷達資源分配(RRA)問題,以決定如何將有限的雷達資源如時間、帶寬和天線波束寬度分配給多個相互競爭的雷達系統任務,并決定每個任務的傳輸參數,使雷達資源得到有效利用,系統性能得到優化。
已經提出了一些感知-行動的RRA方法。這一領域的最新工作被稱為認知雷達資源管理,而較早的相關工作則被稱為簡單的傳感器管理或資源分配。這些算法依賴于兩個基本步驟。首先,它們以概率方式捕獲(感知)監視區域的狀態。其次,他們使用這種概率描述,通過確定哪些行動有望實現效用最大化來選擇未來的傳感行動。
任何RRA算法的一個關鍵挑戰是平衡目標探測、跟蹤、分類和其他雷達任務的多個競爭性目標。這一點通過優化步驟中用于選擇下一步雷達行動的目標函數來解決。目標函數也被稱為收益、標準、價值或成本函數。因此,以適合優化的數學形式闡明系統目標,對完全自適應雷達資源分配(FARRA)系統的運行至關重要。隨著可用于適應的參數數量和雷達系統任務數量的增加,這變得越來越困難。這種優化有兩種基本方法:任務驅動和信息驅動。
在任務驅動的方法中,為每個任務指定性能服務質量(QoS)要求,如探測目標的預期時間或跟蹤的均方根誤差(RMSE),并通過加權各種任務的效用來構建一個綜合目標函數。這樣做的好處是能夠分別控制任務性能,并確定任務的相對重要性。然而,它需要用戶有大量的領域知識和判斷力,以指定任務要求和傳感器成本,并構建成本/效用函數和加權,以結合不同的任務性能指標。
在信息驅動的方法中,一個全局信息測量被優化。常見的信息測量包括熵、相互信息(MI)、Kullback-Leibler分歧(KLD)和Renyi(alpha)分歧。信息指標隱含地平衡了一個雷達可能獲得的不同類型的信息。這具有為所有任務提供共同的衡量標準(信息流)的理想特性,但沒有明確優化諸如RMSE等任務標準。因此,信息理論的衡量標準可能很難被終端用戶理解并歸結為具體的操作目標。此外,如果沒有額外的特別加權,它們不允許單獨控制任務,并可能產生以犧牲其他任務為代價而過度強調某些任務的解決方案,或者選擇在用戶偏好判斷下只提供邊際收益的傳感器行動。
在這項工作中,我們考慮一個雷達系統對多個目標進行同步跟蹤和分類。基于隨機優化的FAR框架[28],為我們的PAC提供了結構。我們開發并比較了用于分配系統資源和設置雷達傳輸參數的任務和信息驅動的FARRA算法,并在模擬機載雷達場景和俄亥俄州立大學的認知雷達工程工作區(CREW)實驗室測試平臺上說明其性能。這項工作結合并擴展了我們以前在傳感器管理[8-14]和FAR[18, 21, 27, 29-31]的工作。初步版本發表于[32]。結果表明,任務和信息驅動的算法具有相似的性能,但選擇不同的行動來實現其解決方案。我們表明,任務和信息驅動的算法實際上是基于共同的信息理論量,所以它們之間的區別在于所使用的指標的粒度和指標的加權程度。
本章的組織結構如下。在第10.2節中,我們提供了FAR框架的概述,在第10.3節中,我們通過為這個問題指定FAR框架的組成部分來開發多目標多任務FARRA系統模型。在第10.4節中,我們描述了組成FARRA PAC的感知和執行處理器,包括我們采用的任務和基于信息的目標函數。在第10.5節中,我們提供了比較優化方法的機載雷達仿真結果,在第10.6節中,我們展示了CREW測試平臺的結果。最后,第10.7節介紹了這項工作的結論。
單個PAC的FAR框架是在[18, 27]中開發的,在此總結一下。圖10.1是一個系統框圖。PAC由感知處理器和執行處理器組成。PAC通過硬件傳感器與外部環境互動,通過感知處理器和執行處理器與雷達系統互動。感知處理器接收來自硬件傳感器的數據,并將其處理為對環境的感知。該感知被傳遞給雷達系統以完成系統目標,并傳遞給執行處理器以決定下一步行動。執行處理器接收來自感知處理器的感知以及來自雷達系統的要求,并解決一個優化問題以決定下一個傳感器的行動。執行處理器通知硬件傳感器下一次觀察的設置,傳感器收集下一組數據,然后循環往復。
圖10.1: 單一PAC FAR框架
認知或完全自適應雷達(FAR)是一個受生物系統啟發的研究領域,其重點是開發一個能夠自主適應其特性的雷達系統,以實現各種不同的任務,如改進環境感知和光譜靈活性。FAR框架在一個軟件定義的雷達(SDR)系統和模擬感知行動周期(PAC)的環境中實現了一個動態反饋回路(感知、學習、適應)。FAR框架在SDRs上的實現依賴于基于求解器的優化技術,用于其行動選擇。然而,隨著優化復雜性的增加,對解決方案收斂的時間產生了嚴重影響,這限制了實時實驗。此外,許多 "認知雷達 "缺乏記憶組件,導致對類似/熟悉的感知進行重復的優化程序。
利用現有的FAR框架模型,在神經網絡的啟發下進行了完善。通過使用神經網絡、機器學習的一個子集和其他機器學習的概念,對應用于單一目標跟蹤的FAR框架基于求解器的優化組件進行了替換。靜態前饋神經網絡和動態神經網絡在模擬和實驗環境中被訓練和實施。神經網絡和基于求解器的優化方法之間的性能比較表明,基于靜態神經網絡的方法具有更快的運行時間,這導致了更多的感知,有時通過較低的資源消耗獲得更好的性能。還對靜態前饋神經網絡、動態遞歸神經網絡和求解器的模擬結果進行了比較。這些比較進一步支持了神經網絡能夠通過納入學習為認知雷達提供記憶組件的概念,從而走向真正的認知雷達。還進行了額外的研究,以進一步顯示神經網絡在雷達快速生成波形的應用中的優勢。
FAR框架也從單目標跟蹤FAR框架擴展到多目標跟蹤。FAR框架的多目標實現顯示了自適應雷達技術在多目標環境中的優勢,由于場景中存在的目標數量增加以及需要解決所有目標,復雜性也隨之增加。由于多目標環境,對現有的成本函數和探測/跟蹤框架進行了改進和補充。實驗和模擬結果證明了FAR框架的好處,它使一個穩健的自適應算法能夠在多目標環境下改善跟蹤和有效的資源管理。
除此之外,分層完全自適應雷達(HFAR)框架也被應用于需要執行多個任務系統的資源分配問題。分層完全自適應雷達的任務靈活性(HFAR-TF)/自主決策(ADM)工作將HFAR框架應用于一個需要參與平衡多項任務的系統:目標跟蹤、分類和目標意圖辨別("朋友"、"可能的敵人 "和 "敵人")。
本博士論文的目標是將這些目標結合起來,形成一個建立改進當前認知雷達系統的方法的基礎。這是通過融合機器學習概念和完全自適應雷達理論來實現的,以實現真正的認知雷達的實時操作,同時也將自適應雷達概念推進到新的應用中。
現代雷達系統的發展促進了軟件定義雷達(SDR)系統能夠實現動態反饋回路行為,與傳統雷達不同。傳統雷達的前饋性質依賴于感知環境的假設特性,產生固定的參數設置,以保證預定的信號干擾加噪聲比(SINR)或雷達任務性能。然而,動態/變化的環境會導致任務性能下降或系統資源的管理不善。缺乏對雷達前端特性的自適應控制會導致雷達后端的信號處理工作增加,嚴重依賴雷達操作員或根據最壞情況設置靜態的雷達系統參數。
完全自適應雷達(FAR)框架旨在利用現代SDR系統實現的傳感器參數多樣性,允許自主適應雷達波形特征,以實現更好的環境感知和雷達任務性能。FAR框架的自主性質也轉向將雷達操作員的角色轉變為咨詢角色,以及減少用于目標信息提取的額外信號處理負擔。
FAR框架通過試圖模仿動物和人類中存在的認知的神經科學概念來實現自主適應。正如[2,3,4,5]所討論的,認知過程必須包括五個主要元素:感知、注意和分析(智能)、行動和記憶。在[6]中,Haykin討論了傳統主動雷達、FAR和認知雷達之間的區別。 雖然FAR能夠通過反饋鏈路將接收機感知的環境與發射機的波形探測聯系起來,實現對環境的更好感知,但由于缺乏 "真正"學習所需的長期記憶,它的智能受到限制。
為了在認知雷達處理中進行優化,經常使用非線性函數。這些非線性函數在優化塊中實現,可以通過非線性約束目標函數的最小化進行雷達參數選擇和更新。對于FAR框架,這種 "執行優化"是在一個 "執行處理器塊 "中實現的,它試圖在服務質量(QoS)方法中平衡捕捉雷達系統基于任務的性能(性能成本)和傳感器資源消耗(測量成本)的成本函數。
在FAR框架中,執行優化被視為最關鍵的組成部分。在FAR框架中,通過結合注意力和分析,利用目標狀態的跟蹤和過去觀察的先驗知識(記憶)來選擇最佳參數指數選擇,執行處理器實現了"有限學習"。由于執行處理器中調用的傳感器參數選擇的性質,雷達波形參數被映射到雷達任務和目標性能上,給定的是先驗知識。此外,由于這種基于優化的適應性,隨著優化的復雜性增加,解決收斂的時間也在增加,因此限制了實時能力。
在概念上與FAR相似,機器學習是人工智能下的一個研究領域,它研究人類如何獲得知識,或學習,并在機器中表示這些概念。機器學習的一個子課題是神經網絡,通過它們的能力來模擬和實現學習過程,關聯、模式識別和關系建模都是神經網絡的有效任務,它可以用來提供對系統處理的較低影響,并通過識別/記憶開始學習。
學習被證明是認知系統中的一個關鍵組成部分,導致人們相信學習是認知雷達的一個主要組成部分。在[5]中,學習被定義為使用過去的信息來提高一個人的局部成功度。 然而,為了充分地從記憶和行動中學習,實時能力和性能必須是可行的。正如前面所討論的,由于用于行動選擇的優化,可以看出,隨著問題的復雜性增加,優化的計算成本也在增加。高計算成本和缺乏記憶對實現 "正式 "認知系統構成挑戰。
在FAR和認知雷達研究領域已經取得了許多進展:然而,大多數集中在缺乏長期記憶和聯想的自適應系統上。同樣,在基于神經網絡和機器學習的雷達研究方面也取得了許多進展,但大多數集中在基于分類和圖像識別的問題上。 本博士研究將著重于展示包括基于回歸的神經網絡如何通過降低對系統處理的影響來改善FAR的現有性能,并通過包括更強的記憶概念和將其擴展到展示學習來幫助認知雷達任務的執行,從而促成開發一個 "真正 "的認知系統。
這里討論的工作對認知雷達領域的貢獻如下:
通過用前饋神經網絡取代執行處理器中的優化組件,以降低對系統處理的影響并整合其固有的識別/記憶組件,開發了一個神經網絡啟發的FAR框架,即基于神經網絡控制的全適應雷達(FAR-NN)。
收集了不同參數適應情況下的模擬和實時實驗結果,并對局部解算器的實施和神經網絡進行了比較,結果表明靜態前饋神經網絡能夠實現較低的測量成本、更快的優化時間和類似的執行成本性能。
通過在每個傳感器感知行動周期(PAC)的 "執行處理器 "中模擬傳感器參數選擇,在分層全自適應雷達(HFAR)框架中實施靜態前饋神經網絡,以降低由于執行多個優化而對系統處理的影響。
通過對傳感器參數選擇的模擬,在FAR框架中實施了一個動態長短期記憶遞歸神經網絡(LSTM-RNN),將基于狀態的對不斷變化的環境的適應性和更強的記憶概念納入神經網絡激勵的FAR框架的優化部分,FAR-NN。
開發了一個LSTM-RNN,用于在動態頻譜擁擠的環境中生成低延遲、接近最佳的雷達頻率缺口波形。
將LSTM-RNN與現有的專門解算器 "減少誤差算法"(ERA)進行比較,其波形生成的仿真結果表明,網絡和算法的波形設計結果相似,LSTM-RNN生成波形的時間減少。
將現有的全適應雷達單目標跟蹤(FAR-STT)框架擴展到全適應雷達多目標跟蹤(FAR-MTT)的實現中,修改了目標函數和擴大了多目標環境的Fisher信息矩陣/Cramer Rao Bound度量。
收集了模擬和實驗結果,以證明將完全自適應雷達方法應用于多個目標跟蹤的好處,即能夠實現目標分離并保持單個目標的跟蹤,同時消耗較少的測量資源。
為一個需要執行多種任務[例如:目標跟蹤、分類和目標意圖辨別(朋友、可能的敵人和敵人)并自主分配雷達資源的雷達系統開發一個HFAR框架。
收集的模擬結果表明,通過使用自適應波形參數與固定參數集,將完全自適應的雷達方法應用于一個從事多種任務的系統的好處。
突出了使用完全自適應雷達概念的模擬和實驗演示,以證明認知雷達概念的可行實現。
本論文的其余部分組織如下。
第二章討論了基礎雷達、全自適應雷達、優化、神經網絡和統計學等與論文中提出的工作相關的背景。
第三章對認知雷達和神經網絡領域的類似工作進行了調查。
第四章討論了本工作中使用的全自適應雷達建模和模擬(FARMS)環境和算法,以及用于驗證模擬結果和實驗集合的實驗測試平臺的簡要概述。
第五章討論了神經網絡啟發的FAR框架的實現,以及與以前FAR和HFAR實現中使用的局部求解器的比較結果。
第六章回顧了一種用于快速生成缺口波形的神經網絡方法,并與現有的專門求解器進行了比較。
第七章討論了將FAR框架擴展到多目標環境中。模擬和實驗結果都被收集起來,以證明自適應雷達在多目標跟蹤環境中的優勢。
第八章討論了全適應性雷達的發展,即多功能雷達系統的問題,其中HFAR框架被應用于需要參與平衡多種任務的雷達系統:目標跟蹤、分類和目標意圖的辨別(朋友、可能的敵人或敵人)。
第九章總結了論文的結果,并給出了基于這項工作的未來研究領域。
附錄A介紹了FAR框架中使用的局部求解器與全局求解器程序的可靠性的進一步細節。
附錄B介紹了第七章介紹的FAR-MTT工作中使用的Fisher信息矩陣推導和預白化推導的進一步細節。
【摘 要】 高效的多機器人團隊需要能夠在復雜環境中實現目標,以應對搜索和救援等現實世界的應用。多機器人團隊應該能夠以完全分散的方式運作,單個機器人團隊成員能夠在沒有鄰居之間明確溝通的情況下采取行動。
美國陸軍研究實驗室Brian Reily等人提出了一種新穎的博弈論模型,該模型可以實現去中心化和無通信導航到目標位置。每個機器人都通過估計其本地隊友的行為來實施自己的分布式博弈,以識別使他們朝著目標方向移動的行為,同時避開障礙物并保持團隊凝聚力而不發生碰撞。從理論上證明了生成的動作接近納什均衡,這也對應于為每個機器人確定的最佳策略。實驗表明該方法可以通過多機器人系統實現分散式和無通信導航到目標位置,并且能夠避免障礙物和碰撞、保持連接性并對傳感器噪聲做出穩健響應。
該方法可以實現分布式和無通信導航。以藍色突出顯示的機器人在考慮其鄰居的預期策略及其策略對它們的影響后選擇其策略,而沒有實際交流。這樣,藍色機器人就可以避免碰撞,保持團隊凝聚力,避開障礙物,朝著目標位置前進,無需直接溝通。