亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

位置采集和無線通信技術的進步使得時空(ST)數據的可用性更加廣泛。深度神經網絡(DNNs)已成功地應用于各種問題,如計算機視覺、語音識別、自然語言理解。與這些領域不同,ST數據具有獨特的空間屬性(即地理層次和距離)和時間屬性(即緊密程度、時期和趨勢)。同時獲得所有這些ST特性是非常具有挑戰性的。

付費5元查看完整內容

相關內容

自監督學習是指從數據本身產生某種形式的標簽并訓練神經網絡,用來解決某些特定任務或者學習通用的圖像、視頻、語言的特征表達。在學術界,自監督學習被證明可以解決光流預測、深度估計、場景遮擋等問題,不需要額外的人工標簽。另外,基于自監督學習的無監督表征學習近年來也獲得了飛速發展,大有超越有監督表征學習的趨勢。

付費5元查看完整內容

大規模結構化數據的有效表示、處理、分析和可視化,特別是網絡和圖等復雜領域的數據,是現代機器學習的關鍵問題之一。圖信號處理(GSP)是信號處理模型和算法的一個活躍分支,旨在處理圖支持的數據,為解決這一挑戰開辟了新的研究路徑。在這篇文章中,我們回顧了GSP概念和工具的一些重要貢獻,如圖過濾器和變換,以發展新的機器學習算法。特別地,我們的討論集中在以下三個方面:利用數據結構和關系先驗,提高數據和計算效率,增強模型可解釋性。此外,我們為GSP技術的未來發展提供了新的視角,該技術可能充當應用數學和信號處理與機器學習和網絡科學之間的橋梁。 在處理結構化數據的許多基于圖的表示和算法的成功中,有意義的圖拓撲的構建起著至關重要的作用。然而,當無法很好地選擇圖時,從觀察到的數據推斷圖的拓撲結構往往是可取的。在這次演講中,我將首先從機器學習的觀點來調查圖學習問題的經典解決方案。然后,我將討論一系列來自快速發展的圖信號處理(GSP)領域的近期工作,并展示如何利用信號處理工具和概念來為這個重要問題提供新穎的解決方案。最后,我將以一些開放的問題和挑戰來結束,這些問題和挑戰對圖形學習的未來信號處理和機器學習算法的設計至關重要。

付費5元查看完整內容

自然語言數據的一個重要子集包括跨越數千個token的文檔。處理這樣長的序列的能力對于許多NLP任務是至關重要的,包括文檔分類、摘要、多跳和開放域問答,以及文檔級或多文檔關系提取和引用解析。然而,將最先進的模型擴展到較長的序列是一個挑戰,因為許多模型都是為較短的序列設計的。一個值得注意的例子是Transformer模型,它在序列長度上有二次計算代價,這使得它們對于長序列任務的代價非常昂貴。這反映在許多廣泛使用的模型中,如RoBERTa和BERT,其中序列長度被限制為只有512個tokens。在本教程中,我們將向感興趣的NLP研究人員介紹最新和正在進行的文檔級表示學習技術。此外,我們將討論新的研究機會,以解決該領域現有的挑戰。我們將首先概述已建立的長序列自然語言處理技術,包括層次、基于圖和基于檢索的方法。然后,我們將重點介紹最近的長序列轉換器方法,它們如何相互比較,以及它們如何應用于NLP任務(參見Tay等人(2020)最近的綜述)。我們還將討論處理長序列的關鍵的各種存儲器節省方法。在本教程中,我們將使用分類、問答和信息提取作為激勵任務。我們還將有一個專注于總結的實際編碼練習。

付費5元查看完整內容

在本教程中,我們旨在全面介紹專門為異常檢測(深度異常檢測)而設計的深度學習技術的進展。

深度學習在轉換許多數據挖掘和機器學習任務方面取得了巨大的成功,但由于異常具有一些獨特的特征,如罕見性、異質性、無限性以及收集大規模異常數據的高昂成本,目前流行的深度學習技術并不適用于異常檢測。

通過本教程,讀者將對該領域有一個系統的概述,了解目前最先進的12種不同類型的深度異常檢測方法的主要要點、目標函數、基本假設、優缺點,并認識到其在不同領域的廣泛適用性。我們還討論了當前的深度異常檢測方法可以從多個不同的角度解決和展望該領域的挑戰。

任何對深度學習、異常/離群值/新奇檢測、分布外檢測、帶有有限標記數據的表示學習以及自我監督表示學習感興趣的讀者,都會發現參加本教程非常有幫助。

金融、網絡安全、醫療保健領域的研究人員和從業者也會發現該教程在實踐中有幫助。

異常檢測,幾十年來一直是各個研究領域中一個持續而活躍的研究領域。但仍然有一些獨特的問題、復雜性和挑戰需要先進的方法。近年來,將深度學習應用于異常檢測(即深度異常檢測)已經成為關鍵方向。本文回顧了深度異常檢測方法的研究進展,并對檢測方法進行了分類,包括3個高級類別和11個細粒度類別。本文回顧了檢測方法的主要intuitions、目標函數、基本假設、優勢和劣勢,并討論了他們如何應對上述挑戰。并且進一步討論了一系列未來可能的機遇和應對挑戰的新觀點。

異常檢測,又稱離群值檢測或新穎性檢測,是指檢測與大多數數據實例顯著偏離的數據實例的過程。幾十年來,異常探測一直是一個活躍的研究領域,早期的探測可以追溯到20世紀60年代的[52]。由于在風險管理、合規、安全、金融監控、健康和醫療風險、人工智能安全等廣泛領域的需求和應用日益增長,異常檢測在數據挖掘、機器學習、計算機視覺和統計等各個領域發揮著越來越重要的作用。近年來,深度學習在學習高維數據、時間數據、空間數據和圖形數據等復雜數據的表達表示方面顯示出了巨大的能力,推動了不同學習任務的邊界。深度學習異常檢測,簡稱深度異常檢測,目的是通過神經網絡學習特征表示或異常分數來進行異常檢測。大量的深度異常檢測方法已經被引入,在解決各種現實世界應用中具有挑戰性的檢測問題上,表現出比傳統異常檢測顯著更好的性能。這項工作旨在對這一領域進行全面調研。我們首先討論了異常檢測的問題本質和主要的未解決的挑戰,然后系統地回顧了當前的深度方法及其解決這些挑戰的能力,最后提出了一些未來的機會。

付費5元查看完整內容

不確定性的概念在機器學習中是非常重要的,并且構成了現代機器學習方法論的一個關鍵元素。近年來,由于機器學習與實際應用的相關性越來越大,它的重要性也越來越大,其中許多應用都伴隨著安全要求。在這方面,機器學習學者們發現了新的問題和挑戰,需要新的方法發展。事實上,長期以來,不確定性幾乎被視為標準概率和概率預測的同義詞,而最近的研究已經超越了傳統的方法,也利用了更一般的形式主義和不確定性計算。例如,不確定性的不同來源和類型之間的區別,例如任意不確定性和認知不確定性,在許多機器學習應用中被證明是有用的。講習班將特別注意這方面的最新發展。

綜述論文:

不確定性的概念在機器學習中是非常重要的,并且構成了機器學習方法的一個關鍵元素。按照統計傳統,不確定性長期以來幾乎被視為標準概率和概率預測的同義詞。然而,由于機器學習與實際應用和安全要求等相關問題的相關性穩步上升,機器學習學者最近發現了新的問題和挑戰,而這些問題可能需要新的方法發展。特別地,這包括區分(至少)兩種不同類型的不確定性的重要性,通常被稱為任意的和認知的。在這篇論文中,我們提供了機器學習中的不確定性主題的介紹,以及到目前為止在處理一般不確定性方面的嘗試的概述,并特別將這種區別形式化。

//www.zhuanzhi.ai/paper/8329095368761f81a7849fe5457949ed

付費5元查看完整內容

人類的視覺系統證明,用極少的樣本就可以學習新的類別;人類不需要一百萬個樣本就能學會區分野外的有毒蘑菇和可食用蘑菇。可以說,這種能力來自于看到了數百萬個其他類別,并將學習到的表現形式轉化為新的類別。本報告將正式介紹機器學習與熱力學之間的聯系,以描述遷移學習中學習表征的質量。我們將討論諸如速率、畸變和分類損失等信息理論泛函如何位于一個凸的,所謂的平衡曲面上。我們規定了在約束條件下穿越該表面的動態過程,例如,一個調制速率和失真以保持分類損失不變的等分類過程。我們將演示這些過程如何完全控制從源數據集到目標數據集的傳輸,并保證最終模型的性能。

付費5元查看完整內容
北京阿比特科技有限公司