亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

題目: Deep Learning for Image Search and Retrieval in Large Remote Sensing Archives

摘要:

本章介紹了基于內容的遙感圖像搜索與檢索(CBIR)系統的最新進展,該系統用于從海量數據檔案中快速、準確地發現信息。首先,我們分析了傳統的基于手工制作的遙感圖像描述符的CBIR系統在窮舉搜索和檢索問題上的局限性。然后,我們將重點放在深度學習(DL)模型處于前沿的RS CBIR系統的發展上。特別地,我們介紹了最新的基于DL的CBIR系統的理論特性,用于表征遙感圖像的復雜語義內容。在討論了它們的優點和局限性之后,我們提出了基于深度哈希的CBIR系統,該系統具有在巨大的數據檔案中進行高效時間搜索的能力。最后,討論了遙感CBIR最有前途的研究方向。

付費5元查看完整內容

相關內容

Hashing has been widely used in approximate nearest search for large-scale database retrieval for its computation and storage efficiency. Deep hashing, which devises convolutional neural network architecture to exploit and extract the semantic information or feature of images, has received increasing attention recently. In this survey, several deep supervised hashing methods for image retrieval are evaluated and I conclude three main different directions for deep supervised hashing methods. Several comments are made at the end. Moreover, to break through the bottleneck of the existing hashing methods, I propose a Shadow Recurrent Hashing(SRH) method as a try. Specifically, I devise a CNN architecture to extract the semantic features of images and design a loss function to encourage similar images projected close. To this end, I propose a concept: shadow of the CNN output. During optimization process, the CNN output and its shadow are guiding each other so as to achieve the optimal solution as much as possible. Several experiments on dataset CIFAR-10 show the satisfying performance of SRH.

主題: Exploring Deep Learning for Search

摘要: 本書作者Tommaso Teofili著重介紹了他的著作《深度學習搜索》三章。 書中介紹了神經搜索如何通過自動執行以前手動完成的工作來節省用戶時間并提高搜索效率以及如何通過循環神經網絡(RNN)向搜索引擎添加文本生成功能來擴展搜索網絡。 在最后一章中,深入研究了如何使用卷積神經網絡(CNN)為圖像編制索引,并使它們可按其內容進行搜索。 借助這份以激光為重點的指南,讀者將掌握通過深度學習改善搜索的基礎知識。

付費5元查看完整內容

主題: A Review on Deep Learning Techniques for Video Prediction

摘要: 預測,預期和推理未來結果的能力是智能決策系統的關鍵組成部分。鑒于深度學習在計算機視覺中的成功,基于深度學習的視頻預測已成為有前途的研究方向。視頻預測被定義為一種自我監督的學習任務,它代表了一個表示學習的合適框架,因為它展示了提取自然視頻中潛在模式的有意義的表示的潛在能力。視頻序列預測的深度學習方法。我們首先定義視頻預測的基礎知識,以及強制性的背景概念和最常用的數據集。接下來,我們會仔細分析根據擬議的分類法組織的現有視頻預測模型,突出顯示它們的貢獻及其在該領域的意義。數據集和方法的摘要均附有實驗結果,有助于在定量基礎上評估現有技術。通過得出一些一般性結論,確定開放研究挑戰并指出未來的研究方向來對本文進行總結。

付費5元查看完整內容

題目: Anomalous Instance Detection in Deep Learning: A Survey

摘要:

深度學習(DL)容易受到分布不均勻和對抗性示例的影響,從而導致不正確的輸出。為了使DL更具有魯棒性,最近提出了幾種方法:異常檢測技術來檢測(并丟棄)這些異常樣本。本研究試圖為基于DL的應用程序異常檢測的研究提供一個結構化的、全面的概述。我們根據現有技術的基本假設和采用的方法為它們提供了一個分類。我們討論了每個類別中的各種技術,并提供了這些方法的相對優勢和劣勢。我們在這次調查中的目標是提供一個更容易并且更好理解的技術,這項技術是在這方面已經做過研究的,且屬于不同的類別的。最后,我們強調了在DL系統中應用異常檢測技術所面臨的未解決的研究挑戰,并提出了一些具有重要影響的未來研究方向。

付費5元查看完整內容

Image segmentation is a key topic in image processing and computer vision with applications such as scene understanding, medical image analysis, robotic perception, video surveillance, augmented reality, and image compression, among many others. Various algorithms for image segmentation have been developed in the literature. Recently, due to the success of deep learning models in a wide range of vision applications, there has been a substantial amount of works aimed at developing image segmentation approaches using deep learning models. In this survey, we provide a comprehensive review of the literature at the time of this writing, covering a broad spectrum of pioneering works for semantic and instance-level segmentation, including fully convolutional pixel-labeling networks, encoder-decoder architectures, multi-scale and pyramid based approaches, recurrent networks, visual attention models, and generative models in adversarial settings. We investigate the similarity, strengths and challenges of these deep learning models, examine the most widely used datasets, report performances, and discuss promising future research directions in this area.

北京阿比特科技有限公司