亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

主題: Exploring Deep Learning for Search

摘要: 本書作者Tommaso Teofili著重介紹了他的著作《深度學習搜索》三章。 書中介紹了神經搜索如何通過自動執行以前手動完成的工作來節省用戶時間并提高搜索效率以及如何通過循環神經網絡(RNN)向搜索引擎添加文本生成功能來擴展搜索網絡。 在最后一章中,深入研究了如何使用卷積神經網絡(CNN)為圖像編制索引,并使它們可按其內容進行搜索。 借助這份以激光為重點的指南,讀者將掌握通過深度學習改善搜索的基礎知識。

付費5元查看完整內容

相關內容

 機器學習的一個分支,它基于試圖使用包含復雜結構或由多重非線性變換構成的多個處理層對數據進行高層抽象的一系列算法。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

主題: Learning Colour Representations of Search Queries

摘要: 圖像搜索引擎依賴于適當設計的排名功能,這些功能可以捕獲內容語義的各個方面以及歷史上的流行。在這項工作中,我們考慮了色彩在相關性匹配過程中的作用。觀察到很大一部分用戶查詢具有與之相關的固有顏色,這促使我們開展工作。雖然某些查詢包含明確的顏色提及(例如“黑色汽車”和“黃色雛菊”),但其他查詢卻包含隱式的顏色概念(例如“天空”和“草”)。此外,顏色的基礎查詢不是到單一顏色的映射,而是顏色空間中的分布。例如,對“樹”的搜索往往會在綠色和棕色之間形成雙峰分布。我們利用歷史點擊數據為搜索查詢生成顏色表示,并提出一種遞歸神經網絡架構,將看不見的查詢編碼到顏色空間中。我們還展示了如何從印象日志中的交叉模式相關性排序器中學習該嵌入,在印象日志中單擊了結果圖像的子集。我們證明了查詢圖像顏色距離功能的使用可改善排名性能,該性能通過用戶對點擊圖像和跳過圖像的偏好來衡量。

付費5元查看完整內容

主題: Deep Learning with Python

摘要: 《 Python深度學習》第二版全面介紹了使用Python和強大的Keras庫進行的深度學習領域。 由Keras的創建者Google AI研究人員Fran?oisChollet撰寫,此修訂版已更新了新章節,新工具和最新研究中的尖端技術。 讀者將通過實際示例和直觀的說明來加深理解,這些示例使深度學習的復雜性易于理解。

付費5元查看完整內容

題目: Deep Learning for Image Search and Retrieval in Large Remote Sensing Archives

摘要:

本章介紹了基于內容的遙感圖像搜索與檢索(CBIR)系統的最新進展,該系統用于從海量數據檔案中快速、準確地發現信息。首先,我們分析了傳統的基于手工制作的遙感圖像描述符的CBIR系統在窮舉搜索和檢索問題上的局限性。然后,我們將重點放在深度學習(DL)模型處于前沿的RS CBIR系統的發展上。特別地,我們介紹了最新的基于DL的CBIR系統的理論特性,用于表征遙感圖像的復雜語義內容。在討論了它們的優點和局限性之后,我們提出了基于深度哈希的CBIR系統,該系統具有在巨大的數據檔案中進行高效時間搜索的能力。最后,討論了遙感CBIR最有前途的研究方向。

付費5元查看完整內容

掌握通過機器學習和深度學習識別和解決復雜問題的基本技能。使用真實世界的例子,利用流行的Python機器學習生態系統,這本書是你學習機器學習的藝術和科學成為一個成功的實踐者的完美伴侶。本書中使用的概念、技術、工具、框架和方法將教會您如何成功地思考、設計、構建和執行機器學習系統和項目。

使用Python進行的實際機器學習遵循結構化和全面的三層方法,其中包含了實踐示例和代碼。

第1部分側重于理解機器學習的概念和工具。這包括機器學習基礎,對算法、技術、概念和應用程序的廣泛概述,然后介紹整個Python機器學習生態系統。還包括有用的機器學習工具、庫和框架的簡要指南。

第2部分詳細介紹了標準的機器學習流程,重點介紹了數據處理分析、特征工程和建模。您將學習如何處理、總結和可視化各種形式的數據。特性工程和選擇方法將詳細介紹真實數據集,然后是模型構建、調優、解釋和部署。

第3部分探討了多個真實世界的案例研究,涵蓋了零售、交通、電影、音樂、營銷、計算機視覺和金融等不同領域和行業。對于每個案例研究,您將學習各種機器學習技術和方法的應用。動手的例子將幫助您熟悉最先進的機器學習工具和技術,并了解什么算法最適合任何問題。

實用的機器學習與Python將授權您開始解決您自己的問題與機器學習今天!

你將學習:

  • 執行端到端機器學習項目和系統
  • 使用行業標準、開放源碼、健壯的機器學習工具和框架實現實踐示例
  • 回顧描述機器學習和深度學習在不同領域和行業中的應用的案例研究
  • 廣泛應用機器學習模型,包括回歸、分類和聚類。
  • 理解和應用深度學習的最新模式和方法,包括CNNs、RNNs、LSTMs和transfer learning。

這本書是給誰看的 IT專業人士、分析師、開發人員、數據科學家、工程師、研究生

目錄:

Part I: Understanding Machine Learning

  • Chapter 1: Machine Learning Basics
  • Chapter 2: The Python Machine Learning Ecosystem Part II: The Machine Learning Pipeline
  • Chapter 3: Processing, Wrangling and Visualizing Data
  • Chapter 4: Feature Engineering and Selection
  • Chapter 5: Building, Tuning and Deploying Models Part III: Real-World Case Studies
  • Chapter 6: Analyzing Bike Sharing Trends
  • Chapter 7: Analyzing Movie Reviews Sentiment
  • Chapter 8: Customer Segmentation and Effective Cross Selling
  • Chapter 9: Analyzing Wine Types and Quality
  • Chapter 10: Analyzing Music Trends and Recommendations
  • Chapter 11: Forecasting Stock and Commodity Prices

Chapter 12: Deep Learning for Computer Vision

付費5元查看完整內容

書名: Deep Learning for Search

簡介:

深度學習搜索是一本實用的書,關于如何使用(深度)神經網絡來幫助建立有效的搜索引擎。這本書研究了一個搜索引擎的幾個組成部分,提供了關于它們如何工作的見解以及如何在每個環境中使用神經網絡的指導。重點介紹了基于實例的實用搜索和深度學習技術,其中大部分都有代碼。同時,在適當的地方提供相關研究論文的參考資料,以鼓勵閱讀更多的書籍,加深對特定主題的知識。

讀完這本書,將對搜索引擎的主要挑戰有所理解,它們是如何被普遍解決的以及深度學習可以做些什么來幫助。并且將對幾種不同的深度學習技術以及它們在搜索環境中的適用范圍有一個理解,將很好地了解Lucene和Deeplearning4j庫。

這本書主要分為3個部分:

  • 第1部分介紹了搜索、機器學習和深度學習的基本概念。第一章介紹了應用深度學習技術來搜索問題的原理,涉及了信息檢索中最常見的方法。第2章給出了如何使用神經網絡模型從數據中生成同義詞來提高搜索引擎效率的第一個例子。

  • 第2部分討論了可以通過深度神經網絡更好地解決的常見搜索引擎任務。第3章介紹了使用遞歸神經網絡來生成用戶輸入的查詢。第四章在深度神經網絡的幫助下,在用戶輸入查詢時提供更好的建議。第5章重點介紹了排序模型:尤其是如何使用詞嵌入提供更相關的搜索結果。第6章討論了文檔嵌入在排序函數和內容重新編碼上下文中的使用。

  • 第3部分將介紹更復雜的場景,如深度學習機器翻譯和圖像搜索。第7章通過基于神經網絡的方法為你的搜索引擎提供多語言能力來指導你。第8章討論了基于內容的圖像集合的搜索,并使用了深度學習模型。第9章討論了與生產相關的主題,如微調深度學習模型和處理不斷輸入的數據流。

作者簡介:

Tommaso Teofili是一名軟件工程師,他對開源機器學習充滿熱情。作為Apache軟件基金會的成員,他為許多開放源碼項目做出了貢獻,從信息檢索到自然語言處理和機器翻譯等主題。他目前在Adobe工作,開發搜索和索引基礎結構組件,并研究自然語言處理、信息檢索和深度學習等領域。他曾在各種會議上發表過搜索和機器學習方面的演講,包括BerlinBuzzwords、計算科學國際會議、ApacheCon、EclipseCon等。

付費5元查看完整內容

簡介:

利用先進的架構開發和優化深度學習模型。這本書教你復雜的細節和微妙的算法是卷積神經網絡的核心。在高級應用深度學習中,你將學習CNN的高級主題和使用Keras和TensorFlow的對象檢測。

在此過程中,將了解CNN中的基本操作,如卷積和池,然后了解更高級的體系結構,如先啟網絡、resnets等。在本書討論理論主題的同時,您將通過許多技巧和技巧發現如何有效地使用Keras,包括如何使用自定義回調類自定義登錄Keras、什么是即時執行以及如何在模型中使用它。最后,您將研究對象檢測如何工作,并在Keras和TensorFlow中構建YOLO算法的完整實現。在這本書的最后,你將在Keras中實現各種各樣的模型,并學習到許多將你的技能帶到下一個層次的高級技巧。

這本書將會讓我們學到:

  • 了解卷積神經網絡和對象檢測的工作原理
  • 將重量和模型保存在磁盤上
  • 暫停訓練,稍后再重新開始
  • 在代碼中使用硬件加速(gpu)
  • 使用數據集TensorFlow抽象并使用預訓練模型和傳輸學習
  • 刪除和添加層到預先訓練的網絡,以適應您的具體項目
  • 將預先訓練好的模型(如Alexnet和VGG16)應用于新數據集

作者:

Umberto Michelucci,TOELT llc的創始人,該公司專注于人工智能科學研究。同樣是數值模擬、統計學、數據科學和機器學習方面的專家。多年來,他不斷拓展研究生課程和研究項目的專業知識。除了在喬治華盛頓大學(美國)和奧格斯堡大學(DE)有幾年的研究經驗,他還有15年的數據庫、數據科學和機器學習的實踐經驗。他目前在Helsana Versicherung AG公司負責深度學習、新技術和研究。

付費5元查看完整內容

簡介:

基于現代TensorFlow方法而不是過時的工程概念來構建自己的pipline。本書中展示了如何為現實的TensorFlow項目構建深度學習pipline。

通過學習本書將了解pipline是什么以及如何工作,以便可以輕松快速地構建完整的應用程序。然后解決并克服Tensorflow的基本障礙,輕松創建功能應用程序并部署訓練有素的模型。本書分步并舉例可幫助讀者了解深度學習流程的每個步驟,同時將最直接,最有效的工具應用于演示性問題和數據集。

讀者還將通過準備數據,選擇適合該數據的模型并調試模型以使用Tensorflow技術使最適合數據的方式來開發深度學習項目。通過訪問一些最新的數據科學趨勢來增強您的技能。如果您曾經考慮過構建自己的圖像或文本標記解決方案或參加Kaggle競賽,那么Deep Learning Pipeline將會非常適合!

本書中包括:

  • 使用數據開發深度學習項目
  • 研究各種模型并將其應用于自己的數據
  • 對適合數據的適當模型進行調試和故障排除

目錄:

作者介紹: Hisham El-Amir是一位數據科學家,在機器學習,深度學習和統計方面擁有專業知識。 他目前在埃及開羅生活和工作。 在他的工作項目中,主要面臨著從自然語言處理(NLP),行為分析,機器學習到分布式處理的挑戰。

Mahmoud Hammy是一位在埃及工作和生活的機器學習工程師。 他的主要研究領域是知識,邏輯,語言和學習之間的重疊。 他致力于訓練機器學習和深度學習模型,以通過使用從深度學習到統計關系學習的方法,將大量的非結構化,半結構化和結構化數據分配到關于世界的新知識中。

付費5元查看完整內容
北京阿比特科技有限公司