簡介:
利用先進的架構開發和優化深度學習模型。這本書教你復雜的細節和微妙的算法是卷積神經網絡的核心。在高級應用深度學習中,你將學習CNN的高級主題和使用Keras和TensorFlow的對象檢測。
在此過程中,將了解CNN中的基本操作,如卷積和池,然后了解更高級的體系結構,如先啟網絡、resnets等。在本書討論理論主題的同時,您將通過許多技巧和技巧發現如何有效地使用Keras,包括如何使用自定義回調類自定義登錄Keras、什么是即時執行以及如何在模型中使用它。最后,您將研究對象檢測如何工作,并在Keras和TensorFlow中構建YOLO算法的完整實現。在這本書的最后,你將在Keras中實現各種各樣的模型,并學習到許多將你的技能帶到下一個層次的高級技巧。
這本書將會讓我們學到:
作者:
Umberto Michelucci,TOELT llc的創始人,該公司專注于人工智能科學研究。同樣是數值模擬、統計學、數據科學和機器學習方面的專家。多年來,他不斷拓展研究生課程和研究項目的專業知識。除了在喬治華盛頓大學(美國)和奧格斯堡大學(DE)有幾年的研究經驗,他還有15年的數據庫、數據科學和機器學習的實踐經驗。他目前在Helsana Versicherung AG公司負責深度學習、新技術和研究。
使用高級架構開發和優化深度學習模型。這本書教你錯綜復雜的細節和微妙的算法,是卷積神經網絡的核心。在高級應用深度學習中,您將學習CNN的高級主題和使用Keras和TensorFlow的對象檢測。
在此過程中,您將了解CNN中的基本操作,如卷積和池化,然后了解更高級的架構,如inception networks、resnets等等。當這本書討論理論主題時,你會發現如何有效地與Keras工作,其中有許多技巧和提示,包括如何用自定義回調類自定義Keras登錄,什么是迫切執行,以及如何在你的模型中使用它。最后,您將學習對象檢測是如何工作的,并在Keras和TensorFlow中構建YOLO(只查看一次)算法的完整實現。在書的最后,你將實現各種各樣的模型在Keras和學習許多高級技巧,將把你的技能到下一個水平。
你將學到什么
這本書是給誰的
數據科學和人工智能是令人著迷的計算領域。微軟在這些新技術上下了很大的賭注,但我們也知道,數據科學家都是訓練有素的專業人士,并不是每個軟件開發人員都能創建和維護復雜的數據模型,執行線性代數或購買昂貴的GPU設備來運行這些模型。這正是我們創造認知服務的原因。這套服務提供了預訓練模型,您可以使用開箱即用的模型來執行視覺、語音、知識、搜索和語言方面的操作。在本次會議上,微軟的云開發者倡導者Laurent Bugnion將向您展示如何使用認知服務增強應用程序的高級功能,如何使用自己的數據細化訓練過的模型,以及如何將認知服務與其他Azure服務集成以實現任務自動化。
主題: Exploring Deep Learning for Search
摘要: 本書作者Tommaso Teofili著重介紹了他的著作《深度學習搜索》三章。 書中介紹了神經搜索如何通過自動執行以前手動完成的工作來節省用戶時間并提高搜索效率以及如何通過循環神經網絡(RNN)向搜索引擎添加文本生成功能來擴展搜索網絡。 在最后一章中,深入研究了如何使用卷積神經網絡(CNN)為圖像編制索引,并使它們可按其內容進行搜索。 借助這份以激光為重點的指南,讀者將掌握通過深度學習改善搜索的基礎知識。
地址:
//www.apress.com/gp/book/9781484251232
利用MATLAB的強大功能來應對深度學習的挑戰。本書介紹了深度學習和使用MATLAB的深度學習工具箱。您將看到這些工具箱如何提供實現深度學習所有方面所需的完整功能集。
在此過程中,您將學習建模復雜的系統,包括股票市場、自然語言和僅確定角度的軌道。您將學習動力學和控制,并使用MATLAB集成深度學習算法和方法。您還將使用圖像將深度學習應用于飛機導航。
最后,您將使用慣性測量單元對ballet pirouettes進行分類,并使用MATLAB的硬件功能進行實驗。
你會學到什么
這本書是給誰看的:
工程師、數據科學家和學生想要一本關于使用MATLAB進行深度學習的例子豐富的書。
簡介:
自從2012年以來,最近的技術史上最重大的事件也許就是神經網絡爆炸了。標記數據集的增長,計算能力的提高以及算法的創新齊頭并進。從那時起,深度神經網絡使以前無法實現的任務得以實現,并提高了任務的準確性,使它們超出了學術研究范圍,并進入了語音識別,圖像標記,生成模型和推薦系統等領域的實際應用。在這種背景下,Google Brain的團隊開始開發TensorFlow.js。該項目開始時,許多人認為“ JavaScript深度學習”是一種新穎事物,對于某些用例來說并不能當真。盡管Python已經有了一些完善的,功能強大的深度學習框架,但JavaScript機器學習的前景仍然是零散的和不完整的。在當時可用的少數JavaScript庫中,大多數僅支持以其他語言(通常是Python)進行預訓練的部署模型。
這本書不僅是作為如何在TensorFlow.js中編寫代碼的秘訣,而且還是以JavaScript和Web開發人員的母語為基礎的機器學習基礎入門課程。深度學習領域是一個快速發展的領域。我們相信,無需正式的數學處理就可以對機器學習有深入的了解,而這種了解將使您能夠在技術的未來發展中保持最新。有了這本書,您就成為成為成長中的JavaScript機器學習從業人員社區的第一步,他們已經在JavaScript和深度學習之間的交匯處帶來了許多有影響力的應用程序。我們衷心希望本書能激發您在這一領域的創造力和獨創性。
目錄:
內容簡介:
本書分為四個部分。第一部分僅由第一章組成,向您介紹了人工智能,機器學習和深度學習的概況,以及在JavaScript中實踐深度學習為何有意義。第二部分是對深度學習中最基礎和最常遇到的概念的簡要介紹。本書的第三部分系統地為希望建立對更前沿技術的理解的用戶,提供了深度學習的高級主題,重點是ML系統的特定挑戰領域以及與之配合使用的TensorFlow.js工具。
簡介:
使用Python、OpenCV庫構建計算機視覺的實際應用程序。這本書討論了不同方面的計算機視覺,如圖像和對象檢測,跟蹤和運動分析及其應用實例。作者首先介紹了計算機視覺,然后使用Python從頭開始創建OpenCV。下一節討論專門的圖像處理和分割,以及計算機如何存儲和處理圖像。這涉及到使用OpenCV庫進行模式識別和圖像標記。接下來,將使用OpenCV處理對象檢測、視頻存儲和解釋,以及人類檢測。跟蹤和運動也進行了詳細的討論。該書還討論了如何使用CNN和RNN創建復雜的深度學習模型。最后對計算機視覺的應用現狀和發展趨勢進行了總結。
閱讀本書之后,您將能夠理解并使用Python、OpenCV實現計算機視覺及其應用程序。您還將能夠使用CNN和RNN創建深度學習模型,并了解這些前沿的深度學習架構是如何工作的。
您將學習
作者:
Sunila Gollapudi是Broadridge Financial Solutions India (Pvt)有限公司的執行副總裁。擁有超過17年的架構、設計和開發以客戶為中心、企業級和數據驅動的解決方案的經驗。在過去的十年中,她主要專注于銀行和金融服務領域,是一名數據鑒賞家和架構師,擅長設計一個通過分析最大化數據價值的整體數據策略。她的專長包括通過綜合業務和領域驅動因素以及大數據工程和分析領域的新興技術趨勢來構建整體智能自動化戰略;領導針對CI/CD的云遷移和DevOps戰略;指導應用程序現代化、重用和技術標準化計劃。
簡介:
在這本書中,從機器學習基礎開始,然后繼續學習神經網絡,深度學習,然后是卷積神經網絡。在基礎和應用的混合,在MATLAB深度學習這本書中使用MATLAB作為基礎編程語言和工具進行案例研究。
有了這本書,你將能夠解決當今現實世界中的一些大數據、智能機器人和其它復雜的數據問題。您將看到,對于現代智能數據分析和使用來說,深度學習是機器學習中多么復雜和智能的一個方面。
你將學習
作者:
Phil Kim博士是一位經驗豐富的MATLAB程序員。他還研究來自人工智能的大型數據集的算法以及機器學習。他曾在韓國航空航天研究所擔任高級研究員。在那里,他的主要任務是開發無人駕駛飛行器的自主飛行算法和機載軟件。在攻讀博士期間,他開發了一個名為“Clickey”的屏幕鍵盤程序。
主題: Pytorch與Keras;Beginning Anomaly Detection Using Python-Based Deep Learning
摘要: 利用這本簡單易懂的初學者指南,了解如何將深度學習應用于異常檢測任務。本書使用Python中的Keras和PyTorch,重點介紹如何將各種深度學習模型應用于半監督和非監督異常檢測任務。這本書首先解釋了異常檢測是什么,它的用途和重要性。在介紹了使用Python中的Scikit Learn進行異常檢測的統計和傳統機器學習方法之后,本書隨后介紹了深度學習,詳細介紹了如何在Keras和Pythorch中建立和訓練深度學習模型,然后將重點轉移到以下深度學習模型的應用到異常檢測:各種類型的自動編碼器、受限的Boltzmann機器、RNN和LSTM,以及時間卷積網絡。這本書探索無監督和半監督異常檢測以及基于時間序列的異常檢測的基礎知識。在這本書的最后,你將有一個全面的了解異常檢測的基本任務,以及各種方法來接近異常檢測,從傳統的方法到深入學習。此外,還向您介紹了Scikit Learn,并能夠在Keras和PyTorch中創建深度學習模型。
作者簡介: Sridhar Alla是Bluewhale的聯合創始人和首席技術官,該公司幫助大大小小的組織構建人工智能驅動的大數據解決方案和分析。他是一位出版書籍的作家,并熱衷于在眾多階層、Hadoop世界、Spark Summit和其他會議上發表演講。他還向美國專利局申請了幾項大規模計算和分布式系統的專利。他在Spark、Flink、Hadoop、AWS、Azure、Tensorflow、Cassandra等多個技術領域擁有豐富的實踐經驗。
Suman KalyanAdari是佛羅里達大學計算機科學學士學位的本科生。他從大一開始就在網絡安全領域進行深入的學習研究,并于2019年6月在美國俄勒岡州波特蘭舉行的關于可靠和安全機器學習的IEEE可靠系統和網絡研討會上發表演講。
地址:
//www.apress.com/gp/book/9781484228449
從MATLAB開始進行深度學習,掌握人工智能。在這本書中,你從機器學習基礎開始,然后繼續學習神經網絡,深度學習,然后是卷積神經網絡。在基礎和應用的混合,MATLAB深度學習使用MATLAB作為基礎編程語言和工具的例子和案例研究,在這本書。
有了這本書,你將能夠解決當今現實世界中的一些大數據、智能機器人和其他復雜的數據問題。您將看到,對于現代智能數據分析和使用來說,深度學習是機器學習中多么復雜和智能的一個方面。
你將學習:
這本書是給誰看的
想用MATLAB學習深度學習的同學。一些MATLAB的經驗可能會有用。
Phil Kim博士是一位經驗豐富的MATLAB程序員和用戶。他還研究從人工智能和機器學習中提取的大型數據集的算法。他曾在韓國航空航天研究院擔任高級研究員。在那里,他的主要任務是為無人機開發自主飛行算法和機載軟件。一個名為“Clickey”的屏幕鍵盤程序是他在攻讀博士學位期間開發的,它充當了一個橋梁,將作者帶到了他目前的工作崗位——韓國國立康復研究所(National Rehabilitation Research Institute of Korea)高級研究員。
目錄: