主題: Deep Learning with Python
摘要: 《 Python深度學習》第二版全面介紹了使用Python和強大的Keras庫進行的深度學習領域。 由Keras的創建者Google AI研究人員Fran?oisChollet撰寫,此修訂版已更新了新章節,新工具和最新研究中的尖端技術。 讀者將通過實際示例和直觀的說明來加深理解,這些示例使深度學習的復雜性易于理解。
?
改進您的編程技術和方法,成為一個更有生產力和創造性的Python程序員。本書探索了一些概念和特性,這些概念和特性不僅將改進您的代碼,而且還將幫助您理解Python社區,并對Python哲學有深入的了解和詳細的介紹。
專業的Python 3,第三版給你的工具寫干凈,創新的代碼。它首先回顧了一些核心的Python原則,這些原則將在本書后面的各種概念和示例中進行說明。本書的前半部分探討了函數、類、協議和字符串的各個方面,描述了一些技術,這些技術可能不是常見的知識,但它們共同構成了堅實的基礎。后面的章節涉及文檔、測試和應用程序分發。在此過程中,您將開發一個復雜的Python框架,該框架將整合在本書中所學到的思想。
這個版本的更新包括Python 3中迭代器的角色、用Scrapy和BeautifulSoup進行web抓取、使用請求調用沒有字符串的web頁面、用于分發和安裝的新工具等等。在本書的最后,您將準備好部署不常見的特性,這些特性可以將您的Python技能提升到下一個級別。
你將學習
這本書是給誰看的 熟悉Python的中級程序員,希望提升到高級水平。您應該至少編寫了一個簡單的Python應用程序,并且熟悉基本的面向對象方法、使用交互式解釋器和編寫控制結構。
本書通過提供真實的案例研究和示例,為使用Python庫進行機器學習提供了堅實的基礎。它涵蓋了諸如機器學習基礎、Python入門、描述性分析和預測分析等主題。包括高級機器學習概念,如決策樹學習、隨機森林、增強、推薦系統和文本分析。這本書在理論理解和實際應用之間采取了一種平衡的方法。所有的主題都包括真實世界的例子,并提供如何探索、構建、評估和優化機器學習模型的逐步方法。
掌握通過機器學習和深度學習識別和解決復雜問題的基本技能。使用真實世界的例子,利用流行的Python機器學習生態系統,這本書是你學習機器學習的藝術和科學成為一個成功的實踐者的完美伴侶。本書中使用的概念、技術、工具、框架和方法將教會您如何成功地思考、設計、構建和執行機器學習系統和項目。
使用Python進行的實際機器學習遵循結構化和全面的三層方法,其中包含了實踐示例和代碼。
第1部分側重于理解機器學習的概念和工具。這包括機器學習基礎,對算法、技術、概念和應用程序的廣泛概述,然后介紹整個Python機器學習生態系統。還包括有用的機器學習工具、庫和框架的簡要指南。
第2部分詳細介紹了標準的機器學習流程,重點介紹了數據處理分析、特征工程和建模。您將學習如何處理、總結和可視化各種形式的數據。特性工程和選擇方法將詳細介紹真實數據集,然后是模型構建、調優、解釋和部署。
第3部分探討了多個真實世界的案例研究,涵蓋了零售、交通、電影、音樂、營銷、計算機視覺和金融等不同領域和行業。對于每個案例研究,您將學習各種機器學習技術和方法的應用。動手的例子將幫助您熟悉最先進的機器學習工具和技術,并了解什么算法最適合任何問題。
實用的機器學習與Python將授權您開始解決您自己的問題與機器學習今天!
你將學習:
這本書是給誰看的 IT專業人士、分析師、開發人員、數據科學家、工程師、研究生
目錄:
Part I: Understanding Machine Learning
Chapter 12: Deep Learning for Computer Vision
簡介:
自從2012年以來,最近的技術史上最重大的事件也許就是神經網絡爆炸了。標記數據集的增長,計算能力的提高以及算法的創新齊頭并進。從那時起,深度神經網絡使以前無法實現的任務得以實現,并提高了任務的準確性,使它們超出了學術研究范圍,并進入了語音識別,圖像標記,生成模型和推薦系統等領域的實際應用。在這種背景下,Google Brain的團隊開始開發TensorFlow.js。該項目開始時,許多人認為“ JavaScript深度學習”是一種新穎事物,對于某些用例來說并不能當真。盡管Python已經有了一些完善的,功能強大的深度學習框架,但JavaScript機器學習的前景仍然是零散的和不完整的。在當時可用的少數JavaScript庫中,大多數僅支持以其他語言(通常是Python)進行預訓練的部署模型。
這本書不僅是作為如何在TensorFlow.js中編寫代碼的秘訣,而且還是以JavaScript和Web開發人員的母語為基礎的機器學習基礎入門課程。深度學習領域是一個快速發展的領域。我們相信,無需正式的數學處理就可以對機器學習有深入的了解,而這種了解將使您能夠在技術的未來發展中保持最新。有了這本書,您就成為成為成長中的JavaScript機器學習從業人員社區的第一步,他們已經在JavaScript和深度學習之間的交匯處帶來了許多有影響力的應用程序。我們衷心希望本書能激發您在這一領域的創造力和獨創性。
目錄:
內容簡介:
本書分為四個部分。第一部分僅由第一章組成,向您介紹了人工智能,機器學習和深度學習的概況,以及在JavaScript中實踐深度學習為何有意義。第二部分是對深度學習中最基礎和最常遇到的概念的簡要介紹。本書的第三部分系統地為希望建立對更前沿技術的理解的用戶,提供了深度學習的高級主題,重點是ML系統的特定挑戰領域以及與之配合使用的TensorFlow.js工具。
主題: Mastering Machine Learning with Python in Six Steps
簡介: 分六個步驟探索高級Python 3主題的基本原理,所有這些步驟都是為了讓您成為一個有價值的實踐者而設計的。這個更新版本的方法是基于“六度分離”理論,它指出每個人和所有事物都是最大的六步,并將每一個主題呈現為兩個部分:理論概念和使用適當的Python 3包的實際實現。您將從Python3編程語言的基礎知識、機器學習歷史、演化和系統開發框架開始。本文還介紹了探索性分析、特征降維、回歸、時間序列預測等關鍵數據挖掘/分析概念及其在Scikit學習中的有效實現。您還將學習常用的模型診斷和調優技術。其中包括類創建的最佳概率截止點、方差、偏差、bagging、boosting、集成投票、網格搜索、隨機搜索、貝葉斯優化以及物聯網數據的降噪技術。最后,您將回顧高級文本挖掘技術、推薦系統、神經網絡、深度學習、強化學習技術及其實現。本書中提供的所有代碼都將以iPython筆記本的形式提供,使您能夠嘗試這些示例并將它們擴展到您的優勢。
作者簡介: Swamynathan Manohar 是一名數據科學從業者和一名狂熱的程序員,在數據倉庫、商業智能(BI)、分析工具開發、即席分析、預測建模、數據科學產品開發、咨詢等各種數據科學相關領域擁有超過14年的經驗,制定策略并執行分析計劃。
《Deep Learning》作為深度學習界的圣經,又名“花書”。英文版由全球知名的三位專家Ian Goodfellow、Yoshua Bengio 和Aaron Courville撰寫,是深度學習領域奠基性的經典教材,中文版由北京大學教授張志華審校出版。
全書的內容包括3個部分:第1部分介紹基本的數學工具和機器學習的概念,它們是深度學習的預備知識;第2部分系統深入地講解現今已成熟的深度學習方法和技術;第3部分討論某些具有前瞻性的方向和想法,它們被公認為是深度學習未來的研究重點。 《深度學習》適合各類讀者閱讀,包括相關專業的大學生或研究生,以及不具有機器學習或統計背景、但是想要快速補充深度學習知識,以便在實際產品或平臺中應用的軟件工程師。
中文版鏈接://github.com/yanshengjia/ml-road/blob/master/resources/深度學習.pdf
英文版鏈接:
Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher Fran?ois Chollet, this book builds your understanding through intuitive explanations and practical examples.