Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher Fran?ois Chollet, this book builds your understanding through intuitive explanations and practical examples.
Since DARPA Grand Challenges (rural) in 2004/05 and Urban Challenges in 2007, autonomous driving has been the most active field of AI applications. Almost at the same time, deep learning has made breakthrough by several pioneers, three of them (also called fathers of deep learning), Hinton, Bengio and LeCun, won ACM Turin Award in 2019. This is a survey of autonomous driving technologies with deep learning methods. We investigate the major fields of self-driving systems, such as perception, mapping and localization, prediction, planning and control, simulation, V2X and safety etc. Due to the limited space, we focus the analysis on several key areas, i.e. 2D and 3D object detection in perception, depth estimation from cameras, multiple sensor fusion on the data, feature and task level respectively, behavior modelling and prediction of vehicle driving and pedestrian trajectories.
主題: Deep Learning with Python
摘要: 《 Python深度學習》第二版全面介紹了使用Python和強大的Keras庫進行的深度學習領域。 由Keras的創建者Google AI研究人員Fran?oisChollet撰寫,此修訂版已更新了新章節,新工具和最新研究中的尖端技術。 讀者將通過實際示例和直觀的說明來加深理解,這些示例使深度學習的復雜性易于理解。
When and why can a neural network be successfully trained? This article provides an overview of optimization algorithms and theory for training neural networks. First, we discuss the issue of gradient explosion/vanishing and the more general issue of undesirable spectrum, and then discuss practical solutions including careful initialization and normalization methods. Second, we review generic optimization methods used in training neural networks, such as SGD, adaptive gradient methods and distributed methods, and theoretical results for these algorithms. Third, we review existing research on the global issues of neural network training, including results on bad local minima, mode connectivity, lottery ticket hypothesis and infinite-width analysis.
Deep reinforcement learning (RL) algorithms have shown an impressive ability to learn complex control policies in high-dimensional environments. However, despite the ever-increasing performance on popular benchmarks such as the Arcade Learning Environment (ALE), policies learned by deep RL algorithms often struggle to generalize when evaluated in remarkably similar environments. In this paper, we assess the generalization capabilities of DQN, one of the most traditional deep RL algorithms in the field. We provide evidence suggesting that DQN overspecializes to the training environment. We comprehensively evaluate the impact of traditional regularization methods, $\ell_2$-regularization and dropout, and of reusing the learned representations to improve the generalization capabilities of DQN. We perform this study using different game modes of Atari 2600 games, a recently introduced modification for the ALE which supports slight variations of the Atari 2600 games traditionally used for benchmarking. Despite regularization being largely underutilized in deep RL, we show that it can, in fact, help DQN learn more general features. These features can then be reused and fine-tuned on similar tasks, considerably improving the sample efficiency of DQN.
Most policy search algorithms require thousands of training episodes to find an effective policy, which is often infeasible with a physical robot. This survey article focuses on the extreme other end of the spectrum: how can a robot adapt with only a handful of trials (a dozen) and a few minutes? By analogy with the word "big-data", we refer to this challenge as "micro-data reinforcement learning". We show that a first strategy is to leverage prior knowledge on the policy structure (e.g., dynamic movement primitives), on the policy parameters (e.g., demonstrations), or on the dynamics (e.g., simulators). A second strategy is to create data-driven surrogate models of the expected reward (e.g., Bayesian optimization) or the dynamical model (e.g., model-based policy search), so that the policy optimizer queries the model instead of the real system. Overall, all successful micro-data algorithms combine these two strategies by varying the kind of model and prior knowledge. The current scientific challenges essentially revolve around scaling up to complex robots (e.g., humanoids), designing generic priors, and optimizing the computing time.
Motivation: Biomedical named entity recognition (BioNER) is the most fundamental task in biomedical text mining. State-of-the-art BioNER systems often require handcrafted features specifically designed for each type of biomedical entities. This feature generation process requires intensive labors from biomedical and linguistic experts, and makes it difficult to adapt these systems to new biomedical entity types. Although recent studies explored using neural network models for BioNER to free experts from manual feature generation, these models still require substantial human efforts to annotate massive training data. Results: We propose a multi-task learning framework for BioNER that is based on neural network models to save human efforts. We build a global model by collectively training multiple models that share parameters, each model capturing the characteristics of a different biomedical entity type. In experiments on five BioNER benchmark datasets covering four major biomedical entity types, our model outperforms state-of-the-art systems and other neural network models by a large margin, even when only limited training data are available. Further analysis shows that the large performance gains come from sharing character- and word-level information between different biomedical entities. The approach creates new opportunities for text-mining approaches to help biomedical scientists better exploit knowledge in biomedical literature.
Deep learning has emerged as a powerful machine learning technique that learns multiple layers of representations or features of the data and produces state-of-the-art prediction results. Along with the success of deep learning in many other application domains, deep learning is also popularly used in sentiment analysis in recent years. This paper first gives an overview of deep learning and then provides a comprehensive survey of its current applications in sentiment analysis.