亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

書名: Deep Learning for Search

簡介:

深度學習搜索是一本實用的書,關于如何使用(深度)神經網絡來幫助建立有效的搜索引擎。這本書研究了一個搜索引擎的幾個組成部分,提供了關于它們如何工作的見解以及如何在每個環境中使用神經網絡的指導。重點介紹了基于實例的實用搜索和深度學習技術,其中大部分都有代碼。同時,在適當的地方提供相關研究論文的參考資料,以鼓勵閱讀更多的書籍,加深對特定主題的知識。

讀完這本書,將對搜索引擎的主要挑戰有所理解,它們是如何被普遍解決的以及深度學習可以做些什么來幫助。并且將對幾種不同的深度學習技術以及它們在搜索環境中的適用范圍有一個理解,將很好地了解Lucene和Deeplearning4j庫。

這本書主要分為3個部分:

  • 第1部分介紹了搜索、機器學習和深度學習的基本概念。第一章介紹了應用深度學習技術來搜索問題的原理,涉及了信息檢索中最常見的方法。第2章給出了如何使用神經網絡模型從數據中生成同義詞來提高搜索引擎效率的第一個例子。

  • 第2部分討論了可以通過深度神經網絡更好地解決的常見搜索引擎任務。第3章介紹了使用遞歸神經網絡來生成用戶輸入的查詢。第四章在深度神經網絡的幫助下,在用戶輸入查詢時提供更好的建議。第5章重點介紹了排序模型:尤其是如何使用詞嵌入提供更相關的搜索結果。第6章討論了文檔嵌入在排序函數和內容重新編碼上下文中的使用。

  • 第3部分將介紹更復雜的場景,如深度學習機器翻譯和圖像搜索。第7章通過基于神經網絡的方法為你的搜索引擎提供多語言能力來指導你。第8章討論了基于內容的圖像集合的搜索,并使用了深度學習模型。第9章討論了與生產相關的主題,如微調深度學習模型和處理不斷輸入的數據流。

作者簡介:

Tommaso Teofili是一名軟件工程師,他對開源機器學習充滿熱情。作為Apache軟件基金會的成員,他為許多開放源碼項目做出了貢獻,從信息檢索到自然語言處理和機器翻譯等主題。他目前在Adobe工作,開發搜索和索引基礎結構組件,并研究自然語言處理、信息檢索和深度學習等領域。他曾在各種會議上發表過搜索和機器學習方面的演講,包括BerlinBuzzwords、計算科學國際會議、ApacheCon、EclipseCon等。

付費5元查看完整內容

相關內容

搜索引擎指根據一定的策略、運用特定的計算機程序搜集互聯網上的信息,在對信息進行組織和處理后,為用戶提供檢索服務的系統。

題目: Deep Learning with PyTorch

摘要: 《PyTorch 深度學習》旨在指導人們開始自己的 AI/機器學習開發之路,全書總共只有 5 個章節, PyTorch的深度學習提供了一個詳細的、實踐性的介紹,介紹了使用PyTorch構建和訓練神經網絡,PyTorch是一個流行的開源機器學習框架。這本書包括:

  • 深度學習與PyTorch圖書館簡介

  • 預訓練網絡

  • 張量

  • 學習機制

  • 用神經網絡擬合數據

第一章是入門內容介紹,主要介紹了什么是 PyTorch和為什么我們要選擇 PyTorch,以及對本書內容層次的總體介紹,讓剛剛入門的讀者能夠開門見山,大量的插圖介紹了深度學習和Pytorch的概念。

第二章則從張量這一深度學習的基本概念開始,介紹了張量的相關數學機制,以及深度學習是怎樣處理數據,完成學習這一過程的。

第三章開始則通過張量和真實世界的數據進行聯系,說明了如何使用張量表示表格、時序、圖像和文本等數據。

第四章則進入機器學習機制的介紹,說明了深度學習的權重更新和反向傳播原理。

第五章主要集中在使用 PyTorch 構建神經網絡并擬合數據分布。有了前幾章的理論基礎,這一章會增加很多代碼方面實踐介紹。

作者簡介:

Eli Stevens過去15年在硅谷做軟件工程師,過去7年在一家制造醫療設備軟件的初創公司擔任首席技術官。

Luca Antiga是位于意大利貝加莫的一家人工智能工程公司的聯合創始人兼首席執行官,也是Pythorch的定期撰稿人。

付費5元查看完整內容

主題: Exploring Deep Learning for Search

摘要: 本書作者Tommaso Teofili著重介紹了他的著作《深度學習搜索》三章。 書中介紹了神經搜索如何通過自動執行以前手動完成的工作來節省用戶時間并提高搜索效率以及如何通過循環神經網絡(RNN)向搜索引擎添加文本生成功能來擴展搜索網絡。 在最后一章中,深入研究了如何使用卷積神經網絡(CNN)為圖像編制索引,并使它們可按其內容進行搜索。 借助這份以激光為重點的指南,讀者將掌握通過深度學習改善搜索的基礎知識。

付費5元查看完整內容

掌握通過機器學習和深度學習識別和解決復雜問題的基本技能。使用真實世界的例子,利用流行的Python機器學習生態系統,這本書是你學習機器學習的藝術和科學成為一個成功的實踐者的完美伴侶。本書中使用的概念、技術、工具、框架和方法將教會您如何成功地思考、設計、構建和執行機器學習系統和項目。

使用Python進行的實際機器學習遵循結構化和全面的三層方法,其中包含了實踐示例和代碼。

第1部分側重于理解機器學習的概念和工具。這包括機器學習基礎,對算法、技術、概念和應用程序的廣泛概述,然后介紹整個Python機器學習生態系統。還包括有用的機器學習工具、庫和框架的簡要指南。

第2部分詳細介紹了標準的機器學習流程,重點介紹了數據處理分析、特征工程和建模。您將學習如何處理、總結和可視化各種形式的數據。特性工程和選擇方法將詳細介紹真實數據集,然后是模型構建、調優、解釋和部署。

第3部分探討了多個真實世界的案例研究,涵蓋了零售、交通、電影、音樂、營銷、計算機視覺和金融等不同領域和行業。對于每個案例研究,您將學習各種機器學習技術和方法的應用。動手的例子將幫助您熟悉最先進的機器學習工具和技術,并了解什么算法最適合任何問題。

實用的機器學習與Python將授權您開始解決您自己的問題與機器學習今天!

你將學習:

  • 執行端到端機器學習項目和系統
  • 使用行業標準、開放源碼、健壯的機器學習工具和框架實現實踐示例
  • 回顧描述機器學習和深度學習在不同領域和行業中的應用的案例研究
  • 廣泛應用機器學習模型,包括回歸、分類和聚類。
  • 理解和應用深度學習的最新模式和方法,包括CNNs、RNNs、LSTMs和transfer learning。

這本書是給誰看的 IT專業人士、分析師、開發人員、數據科學家、工程師、研究生

目錄:

Part I: Understanding Machine Learning

  • Chapter 1: Machine Learning Basics
  • Chapter 2: The Python Machine Learning Ecosystem Part II: The Machine Learning Pipeline
  • Chapter 3: Processing, Wrangling and Visualizing Data
  • Chapter 4: Feature Engineering and Selection
  • Chapter 5: Building, Tuning and Deploying Models Part III: Real-World Case Studies
  • Chapter 6: Analyzing Bike Sharing Trends
  • Chapter 7: Analyzing Movie Reviews Sentiment
  • Chapter 8: Customer Segmentation and Effective Cross Selling
  • Chapter 9: Analyzing Wine Types and Quality
  • Chapter 10: Analyzing Music Trends and Recommendations
  • Chapter 11: Forecasting Stock and Commodity Prices

Chapter 12: Deep Learning for Computer Vision

付費5元查看完整內容

地址:

//www.apress.com/gp/book/9781484251232

利用MATLAB的強大功能來應對深度學習的挑戰。本書介紹了深度學習和使用MATLAB的深度學習工具箱。您將看到這些工具箱如何提供實現深度學習所有方面所需的完整功能集。

在此過程中,您將學習建模復雜的系統,包括股票市場、自然語言和僅確定角度的軌道。您將學習動力學和控制,并使用MATLAB集成深度學習算法和方法。您還將使用圖像將深度學習應用于飛機導航。

最后,您將使用慣性測量單元對ballet pirouettes進行分類,并使用MATLAB的硬件功能進行實驗。

你會學到什么

  • 使用MATLAB探索深度學習,并將其與算法進行比較
  • 在MATLAB中編寫一個深度學習函數,并用實例進行訓練
  • 使用與深度學習相關的MATLAB工具箱
  • 實現托卡馬克中斷預測

這本書是給誰看的:

工程師、數據科學家和學生想要一本關于使用MATLAB進行深度學習的例子豐富的書。

付費5元查看完整內容

簡介:

自從2012年以來,最近的技術史上最重大的事件也許就是神經網絡爆炸了。標記數據集的增長,計算能力的提高以及算法的創新齊頭并進。從那時起,深度神經網絡使以前無法實現的任務得以實現,并提高了任務的準確性,使它們超出了學術研究范圍,并進入了語音識別,圖像標記,生成模型和推薦系統等領域的實際應用。在這種背景下,Google Brain的團隊開始開發TensorFlow.js。該項目開始時,許多人認為“ JavaScript深度學習”是一種新穎事物,對于某些用例來說并不能當真。盡管Python已經有了一些完善的,功能強大的深度學習框架,但JavaScript機器學習的前景仍然是零散的和不完整的。在當時可用的少數JavaScript庫中,大多數僅支持以其他語言(通常是Python)進行預訓練的部署模型。

這本書不僅是作為如何在TensorFlow.js中編寫代碼的秘訣,而且還是以JavaScript和Web開發人員的母語為基礎的機器學習基礎入門課程。深度學習領域是一個快速發展的領域。我們相信,無需正式的數學處理就可以對機器學習有深入的了解,而這種了解將使您能夠在技術的未來發展中保持最新。有了這本書,您就成為成為成長中的JavaScript機器學習從業人員社區的第一步,他們已經在JavaScript和深度學習之間的交匯處帶來了許多有影響力的應用程序。我們衷心希望本書能激發您在這一領域的創造力和獨創性。

目錄:

內容簡介:

本書分為四個部分。第一部分僅由第一章組成,向您介紹了人工智能,機器學習和深度學習的概況,以及在JavaScript中實踐深度學習為何有意義。第二部分是對深度學習中最基礎和最常遇到的概念的簡要介紹。本書的第三部分系統地為希望建立對更前沿技術的理解的用戶,提供了深度學習的高級主題,重點是ML系統的特定挑戰領域以及與之配合使用的TensorFlow.js工具。

付費5元查看完整內容

簡介: 深度學習無處不在。例如,當在線使用許多應用程序甚至在購物時,都會看到它。我們被深度學習所包圍,甚至根本沒有意識到這一點,這使學習深度學習變得至關重要,因為可以利用它做很多事情,這遠遠超出了您的想象。當您學習本書時,您可以在Mac,Linux或Windows系統上運行的許多示例代碼。您也可以使用Google Colab之類的工具在線運行代碼。 本書的第一部分為您提供了一些入門信息,除了安裝一些必備軟件,還會了解一些基本數學知識。

目錄:

  • 說明

  • Chapter 1:深度學習介紹

    • 深度學習的意義
    • 真實世界中的深度學習
    • 深度學習項目的環境
  • Chapter 2:機器學習介紹

    • 機器學習定義
    • 思考學習的不同方法
    • 機器學習的正確使用
  • Chapter 3:使用python

    • anaconda
    • 下載數據集與代碼
    • 創建應用
    • 云端使用
  • chapter 4:利用深度學習看框架

    • 框架介紹
    • 了解tensorflow
  • chapter 5:回顧數學與優化

    • 矩陣介紹
    • 理解向量,scalar等
    • 優化介紹
  • chapter 6:線性回歸基礎

    • 組合變量
    • 混合變量類型
    • 概率
    • 特征介紹
  • chapter 7:神經網絡

    • 感知機
    • 神經網絡復雜度
    • 過擬合
  • Chapter 8:構建基礎神經網絡

    • 理解神經網絡
    • 神經網絡的核心
  • Chapter 9:深度學習

    • 數據
    • 提升速度
    • 解釋深度學習的不同
  • Chapter 10:解釋卷積神經網絡

  • Chapter 11:循環神經網絡

  • Chapter 12:圖片分類

  • Chapter 13:循環神經網絡

  • Chapter 14:語言處理

  • Chapter 15:生成音樂和虛擬藝術

  • Chapter 16:生成對抗網絡

  • Chapter 17:深度強化學習

  • Chapter 18:深度學習的應用

  • Chapter 19:十個必備的深度學習工具

  • Chapter 20:十個使用深度學習的場景

付費5元查看完整內容

主題: Deep Natural Language Processing for Search Systems

簡介: 搜索引擎處理豐富的自然語言數據,如用戶查詢和記錄。提高搜索質量需要有效地處理和理解這類信息,通常使用自然語言處理技術。作為搜索系統中的代表性數據格式,查詢或記錄數據被表示為單詞序列。在傳統方法中,理解這樣的序列信息通常是一項非常重要的任務,面臨著來自數據稀疏性和數據泛化的挑戰。深度學習模型提供了一個有效提取有代表性的相關信息的機會,從而更好地理解復雜的語義和潛在的搜索意圖。近年來,深度學習在各種自然語言處理任務中取得了顯著的進步,顯示出其在促進搜索系統方面的巨大潛力。

然而,開發搜索系統中自然語言處理的深度學習模型不可避免地需要滿足復雜的搜索引擎生態系統的要求。例如,一些系統需要頻繁的模型更新,所以冗長的模型訓練時間是不容許的。此外,低服務延遲約束禁止使用復雜模型。如何以相對較低的復雜度保持模型質量是深度學習從業者面臨的持續挑戰。

在本教程中,作者總結了當前在搜索系統中自然語言處理的深度學習工作,首先概述了搜索系統和搜索中的自然語言處理,然后介紹了自然語言處理的深度學習的基本概念,并介紹了如何將深度自然語言處理應用于搜索系統的實踐。本教程全面概述了通過端到端搜索系統在上述組件中應用深度自然語言處理技術。除了傳統的搜索引擎,還包括一些高級搜索系統的用例,如對話搜索和面向任務的聊天機器人。我們還強調了幾個重要的未來趨勢,比如通過查詢生成與用戶交互,以及減少延遲以滿足行業標準。

付費5元查看完整內容
北京阿比特科技有限公司