具有自主導航功能的海區拒止雷(MADMAN)項目通過將情報集成到水雷中,為維護海上優勢提供了一種手段。該項目為重振水雷戰創新,開發未來水雷 MADMAN 指明了道路。建模和模擬工具顯示,任務成功概率最高的方案是無人潛航器(UUV)。通過整合當前可用的系統,最終形成的系統之系統為開發一種能夠自主轉場、自我布防、執行任務并提高人員安全的水雷提供了一種具有成本效益的方法。本研究采用能力工程方法,確定了系統之系統的總體目標成功概率。這一總體成功概率分解了各個系統,并強調了它們對總體成功的影響程度。通過分析這些影響,可以對每個系統進行量身定制,在滿足項目要求的同時提高采礦效率并節約成本。UUV 設計人員和軍事工程師之間的合作可確保為現代世界提供現代化的武器庫。
本論文開發了一個基于海底特征導航的模擬框架。使用自動潛航器(AUV)在海底定位感興趣的物品是一種對海軍大有裨益的能力。自動潛航器為消除勞動力需求提供了一個途徑,但其購置和維護成本仍然很高。解決這一問題的辦法是使用兩艘 AUV,其中一艘的能力更強,負責用信標尋找和標記海底物品。配備成本效益型傳感器的消耗性 AUV 將對威脅進行定位、識別和消除。利用海底成像技術將海底圖像與先驗圖像馬賽克關聯起來,再加上超短基線(USBL)信標,AUV 可以在沒有傳統導航系統的情況下完成具有挑戰性的任務目標。增量平滑與測繪 2(iSAM2)是一種同步定位與測繪(SLAM)技術,可用于 AUV 的位置定位,是一種適合實時導航操作的技術,具有圖像和 USBL 傳感功能。模擬框架能夠評估 AUV 的性能,同時將實際操作的風險降至最低。該框架由一個軟件架構組成,可使用與實際操作相同的軟件進行測試。本論文展示了這一框架,并對其在基于圖像的 SLAM 中的可用性進行了分析。
該項目為與使用無人系統支持分布式海戰(DMO)有關的作戰概念和系統設計決策提供信息。研究通過系統地改變仿真模型中的系統設計特征和作戰活動,支持對無人系統(UVC)進行能力級分析。分析結果表明,UVC 可提高各種無人系統的作戰可用性(Ao)和使用時間(TOS),因為它可隨時進入維護、加油和重新武裝設施,而無需長時間前往岸基設施或分布式支援艦艇。在比較使用 UVC 的配置與在自適應兵力包 (AFP) 中分配無人系統支持的配置時,單個無人系統的 Ao 提高了 6% 到 31%。仿真模型分析確定了 UVC 架構,其中包括至少 8 個無人機發射回收站、至少 3 個船舷托架和至少 5 個甲板井托架,以最大限度地提高 Ao。
在支持分布式海上作戰(DMO)時,無人系統有可能發揮兵力倍增器的作用,在提高殺傷力的同時降低有人系統的風險。然而,無人系統到岸基維護、加油和重新武裝設施的轉運時間減少了可用于支持執行 DMO 的自適應兵力包(AFP)的總體駐扎時間(TOS)。本項目研究了無人水面艦艇 (USV)、無人水下航行器 (UUV) 和無人機 (UAV) 在美國海軍現有艦艇上的集成問題,該艦艇已被重新改裝為無人載具 (UVC)。在本報告中,"UxV "一詞用于描述無人系統這一類別。
如 Van Bossuyt 等人(2019 年)所述,項目團隊采用了系統定義、系統建模和系統分析的通用系統工程流程序列。在系統定義過程中,項目團隊重點開發了作戰概念(CONOPS),并定義了 UVC 的系統要求。系統建模活動的重點是構建 UVC 的離散事件仿真模型。在系統分析階段,團隊利用所開發的模型來評估 UVC 的各種設計參數對每種無人系統類型的運行可用性(Ao)的影響。
A. 系統定義
在系統定義階段,從自上而下和自下而上的角度開發和考慮了 UVC 要求。從自上而下的角度來看,團隊分析并確定了滿足總體任務有效性目標所需的能力,而與任何現有的候選平臺無關。從自下而上的角度來看,團隊評估了一艘登陸直升機船塢(LHD)艦,以確定該平臺可實現的最大 UVC 能力。通過查閱文獻和分析利益相關者的需求,項目團隊確定了 UVC 的以下關鍵能力:指揮與控制 (C2)、UxV 發射、UxV 維護和 UxV 回收。根據設想,UVC 將包括著陸甲板無人機發射和回收站、無人機維護/布防/燃料艙、用于大型 USV/UUV 操作的船舷艙或站,以及用于小型 USV/UUV 操作的井甲板艙。
B. 系統建模
項目構想將 UVC 視為針對地面和岸上敵對兵力實施 DMO 的 AFP 的一部分。UVC 的作用是支持 UxV 對敵方岸基導彈基地進行偵察和打擊。在打擊階段之前、期間和之后,UxV 提供全天候的情報、監視和偵察(ISR)、目標定位和戰損評估服務。UVC 的總體目標是通過消除到岸基支持設施的較長運輸時間來增加 UxV 的全時服務時間。為實現這一總體目標,研究小組選擇 "航程 "和 "持續停留時間 "作為性能指標(MOP),并選擇 "UxV 任務時間"、"UxV 停機時間 "和 "維護灣利用率 "作為效果指標(MOE)。
設計并開發了一個離散事件仿真模型,用于分析 UVC 設計參數對 MOP 和 MOE 的影響。該模型是通過 ExtendSim10 建模程序開發的。該模型包括 UxV 發射和回收、UxV 維護活動以及 UxV 重新武裝和加油活動。UxV 的發射時間表和總模擬運行時間是根據擬議的 UVC CONOPS 制定的。目前,該模型并未考慮 UxV 的損失或故障;這是未來可能開展工作的一個領域。模型的主要輸出是每種 UxV 的 Ao。
C. 系統分析
為了廣泛探索實驗空間,同時減少試驗總數和模型運行時間,我們專門設計了一個填充空間的拉丁超立方設計。每次試驗重復模擬 30 次并收集結果。合并所得的 Ao 值,得出每個試驗的統計平均值。
分析結果表明,UVC 可隨時提供維護、加油和重新武裝設施,而無需在岸基設施或分布式支援艦艇之間進行長時間的轉運,從而改善了每種 UxV 的 Ao 值和 TOS 值。對于任何特定的 UxV,通過增加 UVC 發射、回收和維護站的數量,從而消除或減少這些服務的排隊時間,可獲得最大的 Ao。分析表明,UVC 在設計時應至少配備 8 個無人機發射/回收站、至少 3 個船舷托架和至少 5 個焊接甲板托架。這些參數沒有確定上限,這也是未來研究的一個潛在領域。
有趣的是,雖然 UVC 的存在改善了大型無人水面艦艇(LUSV)的航速,但 UVC 的實際設計似乎對 LUSV 的航速沒有影響。這可能是由于 LUSV 的假定任務持續時間長,假定維護間隔長,因此不可能出現任何排隊現象。單個船側停泊區似乎足以為多艘 LUSV 提供服務,但即使是單個船側停泊區,也可通過消除到岸基設施的轉運時間來改善 Ao。
本論文論證了將小巧、輕便、低成本的商用現貨(COTS)多光譜傳感器集成到小型戰術無人機系統(UAS)中的可行性,以增強對偽裝目標和戰場異常的探測能力。與目前設計中使用的普通電子光學和紅外傳感器(EO/IR)相比,這種能力增強了對此類目標的探測能力。
無人系統在現代軍事行動中應用廣泛,可為戰場指揮官和軍事規劃人員提供新的或增強的能力和作戰概念。它們的主要優勢在于能夠以更高效、規避風險和低成本的方式執行枯燥、骯臟和危險的任務。由于這些原因,無人系統,特別是無人機系統,如今正在執行大多數監視和偵察行動,在所有作戰層面提供必要的情報。
為了應對在現代戰場上擴大使用戰術和戰區級無人機系統進行偵察和監視的情況,地面兵力正在加大力度隱藏其資產,使用偽裝,或利用地形和植被。此外,正規軍和非正規軍廣泛使用地雷和簡易爆炸裝置,對地面部隊構成重大威脅。這些戰術給情報搜集行動帶來了新的挑戰,需要新一代無人機系統加以解決,特別是在戰術層面。
在過去的十年中,多光譜成像技術不斷發展,提供了結構緊湊、成本低廉的傳感器,可增強戰術無人機系統的能力,使其能夠擊敗偽裝,探測普通傳感器無法看到的戰場異常情況。與普通成像傳感器相比,多光譜設備可在可見光和紅外光譜的特定窄波段內成像。此外,多光譜設備還能利用不同材料在這些波段中的吸收和反射率差異,對這些波段進行算法融合。
這項研究旨在回答兩個研究問題,要求探索 COTS 多光譜傳感器探測偽裝人造目標或戰場異常的能力,并將其性能與 RGB 和全色傳感器進行比較。為了回答這些問題,我們使用集成在小型戰術級無人機系統中的多光譜傳感器對偽裝目標進行了幾次實驗性飛行。從這些飛行中收集的數據被用來評估傳感器的性能,并探索融合多光譜數據和生成成像產品的方法。
利用 MATLAB 編程環境開發了一種算法,以實現多光譜數據的融合。該算法可對各個多光譜波段數據進行對齊,并實施三種融合方法。使用歸一化差異植被指數(NDVI)、彩色紅外(CIR)和歸一化差異紅邊藍邊指數(NDREB)對多光譜數據進行融合。歸一化差異植被指數廣泛用于商業農業應用,以區分植被和環境。CIR 還能在多色成像中突出植被。最后,NDREB 是為本論文開發的,它利用了人造目標與環境在紅邊和藍帶反射率上的差異。
對實驗飛行所收集數據的解讀證明,COTS 多光譜傳感器能夠探測偽裝目標和戰場異常,其性能優于普通的 EO/IR 傳感器。此外,還在多個目標場景中評估了所使用的三種融合方法的性能。最后,確定了當前算法在實時操作方面的局限性。成功評估了低成本、緊湊型多光譜傳感器在探測偽裝目標方面的性能,為其在戰術無人機系統中的應用提供了概念證明,并為該領域的未來研究奠定了基礎。
旨在爭奪聯合部隊作戰準入的武器系統的出現,為許多國家提供了防止入侵其周邊領域的低成本選擇。由于認識到這些武器對美軍構成的威脅,參謀長聯席會議制定了 "聯合作戰準入概念"。該概念的第一個子概念是 "空海一體戰",即使用空軍和海軍資產擊敗復雜的A2/AD系統的聯合概念。按照JOAC的初衷,本文考慮了使用美國陸軍和美國海軍陸戰隊炮兵和防空炮兵資產的跨域能力來對抗反介入威脅,同時為聯合部隊的利益再現相同的能力。它解釋了炮兵資產作為一種可快速部署、靈活的威懾選擇為聯合部隊指揮官帶來的戰略利益,以及在爭奪制海權的戰斗中為海上部隊指揮官帶來的作戰利益。最后,它向聯合部隊提出了整合功能和發展未來能力的建議,以便有效地使用這些資產來支持海上部分。
在作出魚雷裝載決定時,規劃者必須考慮不同反潛戰(ASW)單位的能力和實力、有限的預算和不同的對手潛艇艦隊。目前,Mk-54輕型魚雷的裝填決定是人工做出的,而且沒有一個系統的方法來處理威脅的不確定性。這項研究試圖通過使用隨機優化來確定美國水面艦艇、固定翼飛機和直升機上裝載魚雷的類型和數量,從而為這些決策提供參考,以面對不確定的潛艇威脅,達到預期的殺傷概率。開發了兩種魚雷分配隨機優化模型(TASOM)的配方: TASOM-1,最小化錯過的潛艇數量;TASOM-2,最小化殺傷概率閾值以下的偏差。為了顯示隨機編程方法比典型的確定性規劃的價值,提出了一個概念性案例,旨在代表一個行動,即反潛部隊在一個區域內巡邏對手的潛艇。隨機生成100個威脅場景,其中部署在該地區的潛艇的數量和級別各不相同。TASOM-2的裝載量明顯優于確定性的平均裝載量。所提出的模型與可訪問的用戶界面相結合,為規劃者提供了一個決策輔助工具,以進行敏感性分析,指導不確定情況下的魚雷分配和預算決策。
反潛戰(ASW)被定義為 "為了不讓敵人有效使用潛艇而進行的行動"(參謀長聯席會議2021年,第IV-10頁)。這些行動包括定位、跟蹤和消滅敵人的潛艇。這項研究的重點是最后一項任務。隨著對手繼續現代化和增長他們的潛艇艦隊,尋求以最佳方式為美國海軍的反潛平臺配備能夠有效瞄準這些潛艇的武器。
ASW主要由海上巡邏機、水面作戰艦艇及其搭載的直升機和潛艇執行。通信限制和水域管理要求通常使潛艇無法與其他類型的平臺協同作戰。假設友好的潛艇將在不與水面和空中資產重疊的區域進行反潛作戰。本報告將不進一步討論潛艇行動。
巡洋艦和驅逐艦都可以從其水面艦艇魚雷發射管(SVTT)和垂直發射反潛火箭(ASROC)系統中發射輕型魚雷。
P-8 "海神 "是一種多任務海上巡邏機。在進行反潛作戰時,它可以配備輕型魚雷,用來對付對手的潛艇。與水面平臺相比,P-8在搜索潛艇時可以覆蓋更大的區域,并且可以在沒有敵人魚雷的威脅下進行交戰。一個P-8中隊由六或七架飛機組成,一個分隊由四或五架飛機組成。中隊和分隊可以在世界各地的美國、盟國和合作伙伴的空軍基地進行部署和行動。
MH-60R海鷹直升機與P-8一樣具有水面平臺的優勢,但可以攜帶較少的魚雷,作戰范圍也短得多。MH-60R分隊可以搭載在Flight IIA阿利-伯克導彈驅逐艦、提康德羅加導彈巡洋艦、獨立和自由級瀕海戰斗艦以及航空母艦上。驅逐艦、巡洋艦和瀕海戰斗艦最多可以搭載兩架MH-60R。
美國海軍必須準備好面對一個非常多樣化的威脅。根據Janes(Janes 2021a)的說法,俄羅斯海軍有27種。
俄羅斯等潛艇艦隊組成的分歧給國防規劃帶來了復雜的挑戰。
Mk-54輕型魚雷可從水面艦艇上的SVTT和ASROC系統發射。在進行反潛作戰時,它也可以被裝載到MH-60R和P-8上。考慮分配由0型、1型和2型變體組成的魚雷庫存。
在這項研究中開發的模型是具有追索性的兩階段隨機模型。具體來說,在第一階段(武器分配)將魚雷分配給反艦導彈部隊,在第二階段(武器目標分配,WTA)將魚雷分配給潛艇。武器分配決定往往是在不完全了解威脅的情況下做出的,這就促使了隨機優化和模擬。
自從Manne(1958)提出WTA問題以來,在武器分配和WTA方面已經做了大量工作。佩奇(1991)開發了一個混合整數編程模型,以獲得火炮系統和彈藥的最佳組合。Jarek(1994)利用模擬得到空戰所需的艦載防空導彈的數量。Tutton(2003)開發了一個使用隨機優化的傳感器分配模型,在不確定的敵方作戰順序下將搜索包分配給目標。Avital(2004)開發了一個兩期的隨機供應鏈模型,以確定在不確定的目標需求下,應該采購多少反艦巡航導彈以及如何分配這些導彈。Uryasev和Pardalos(2004)表明,與隨機對應的決定性武器分配決策相比,缺乏穩健性。Buss和Ahner(2006)開發了一個戰斗模擬,稱為DFAS,用于評估軍隊的未來戰斗系統(Havens 2002)。DFAS是一個離散事件模擬,代表實體運動、探測和武器效果事件。它還包括定期優化,以修訂WTAs。Hattaway(2008)通過考慮雷達和電子傳感器以及海軍軍械,將DFAS調整為海戰應用。Laird(2016)考慮了混合武器,以分配對抗來自空中、地面和地下的蜂群威脅。Cai(2018)使用基于代理的時間階梯式模擬,為城市環境中的進攻行動找到精確和區域火炮彈藥的有效組合。Brown和Kline(2021年)考慮了任務覆蓋范圍而不是目標交戰,以確定VLS艦的最佳武器裝載。不同類型的導彈,每一種都用于不同的任務(打擊、防空或反潛戰),可以被容納在VLS單元中。Adamah等人(2021)建立了一個非線性優化模型,用于確定分配給進行反潛作戰的潛艇的Mk-48重量級魚雷的類型和數量。Templin(2021)考慮了以啟發式方法解決的WTA問題的衍生物,其簡化的假設是只有一個目標要參與。研究的重點是為發射政策提供信息,特別是對威脅使用的導彈的數量和類型。
在上述文獻中的武器分配模型中,與本研究有關的是,注意到Page(1991)和Avital(2004)都使用了指揮官指定的期望成功的閾值;然而,他們在模型中著重于最小化武器成本,并將目標視為總需求。Jarek(1994)和Cai(2018)的模擬為所需的總導彈或彈藥組成提供了一般建議,但沒有提供可作為可操作的裝載計劃的閉合式解決方案。Tutton(2003)的模型將傳感器分配給單位,這與魚雷分配不同,傳感器不在目標上消耗(使用后)。Brown和Kline(2021)考慮的是任務覆蓋范圍,而不是目標,這對問題來說不是一個合適的方法,因為魚雷的使用只是為了與對手的潛艇交戰(或反擊對手的潛艇魚雷)。只有Adamah等人(2021年)涉及魚雷作為武器類型;然而,他們的模型是非線性的,也沒有推薦一個考慮到多個目標的魚雷裝載計劃。
另外,除了DAFS,上面審查的WTA模型只考慮一個射手。雖然希望對不確定的威脅進行計劃,在一個場景中出現不同類型和數量的目標,但Uryasey和Paradalos(2004)對一個場景進行計劃,但對武器的殺傷概率不確定。和其他的模擬工作一樣,DAFS(Havens 2002;Buss和Ahner 2006;Hattaway 2008)并沒有提供一個關于武器應該如何分配給目標或分配給單位的閉合式解決方案。Laird(2016)和Templin(2021)都是為給定的威脅做計劃,并沒有考慮到威脅情況下的任何不確定性。
盡管在武器分配和指派模型方面有大量的文獻,但注意到大多數模型沒有使用隨機優化。此外,目前,魚雷的裝載決定是由人工做出的。這項研究的目標是利用正式的數學優化來幫助魚雷分配決策。具體來說,隨機優化將使決策者能夠對不確定的威脅進行規劃。對威脅構成的不確定性進行規劃是現實的,因為通常情況下,必須在發現敵方潛艇或甚至部署反潛部隊之前作出裝載決定。
美國負責采購和維持的國防部副部長辦公室(OUSD A&S)的任務是快速和低成本地向作戰人員和國際合作伙伴提供和維持安全和有彈性的能力。現在迫切需要開發適應性采購框架(AAF),以加快軟件開發和采購流程,加強作戰概念(CONOPS),如分布式海上作戰(DMO)。國防部(DoD)必須利用與國防戰略和全球威脅的性質相聯系的數據驅動的分析來塑造AAF,并擴展新的能力來應對新的威脅。威脅和能力共同演化矩陣(TCCM)解決了這一要求。威脅是一種能力試圖處理的問題。一種能力是代表威脅的問題的解決方案。共同進化算法探索了一些領域,其中一個能力或能力組合的質量由其成功擊敗一個威脅或威脅組合的能力決定。TCCM有可能在新的和有爭議的環境中系統地優化、推薦和共同演化能力和威脅。我們展示了一個關于幫助項目執行辦公室(PEO)使用從公開來源匯編的非機密數據對特定領域DMO的能力和威脅進行戰役的用例。
不僅美國防部負責采購和維持的副部長辦公室(OUSD A&S)有必要制定采購戰略,而且整個國防部也有必要應用數據驅動的分析以及與國防戰略和全球威脅的性質相聯系的創新和適應性作戰概念(CONOPS),并為作戰人員擴展新的能力。
例如,為了提高部隊的總體戰備能力,并在廣泛的行動和沖突頻譜中隨時投射戰斗力,海軍需要靈活的指揮和控制(C2)組織結構來滿足CONOPS。例如,DMO是海軍的一個CONOPS,而遠征先進基地作戰(EABO)是美國海軍陸戰隊(USMC)的一個CONOPS。DMO和EABO都是海戰現代化的新興作戰概念。PMW 150是PEO C4I的C2系統項目辦公室,也是C2解決方案的主要提供者,它的工作重點是將作戰需求轉化為海軍、海軍陸戰隊、聯合部隊和聯軍作戰人員的有效和可負擔的作戰和戰術C2能力。PMW150的任務是 "以創新的方式滿足相關能力的操作要求,使作戰人員能夠保持C2的優勢"(Colpo,2016)。
另一方面,美國艦艇的海上行動,特別是在沿海地區,將繼續存在爭議和危險;因此,當務之急是發展DMO和EABO,以實現統一的行動愿景。DMO的目的是在有爭議的環境中支持國家和戰略目標。DMO的概念不僅將進攻性打擊視為在戰斗中獲勝的主要戰術,而且還將欺騙和迷惑敵人的能力確定為在有爭議的環境中獲得成功的關鍵任務。目前的工作重點是將現有的平臺、系統和能力與DMO的具體戰術相結合,以實現海上戰略和作戰目標。DMO被定義為 "通過使用可能分布在遙遠的距離、多個領域和廣泛的平臺上的戰斗力來獲得和保持海上控制所必需的作戰能力"(海軍作戰發展司令部[NWDC],2017)。
DMO作為海軍和海軍陸戰隊資產運作的一個概念,其發展源于分布式殺傷力(DL)模型(Popa等人,2018)。DMO的概念采用了DL的擴展觀點,由三個支柱組成:通過網絡射擊能力提高單個軍艦的攻擊力,將攻擊能力分布在廣泛的地理區域,并為水面平臺分配足夠的資源,以實現增強的作戰能力(Rowden, 2017)。DMO還強調在所有領域,包括空中、地下和網絡戰,都需要更有彈性和可持續性的水面平臺。DMO的未來觀點是成為以艦隊為中心的戰斗力,通過整合、分配和機動性,允許在多個領域(有爭議的空中、陸地、海上、太空和網絡空間;國防部,2018)同時和同步執行多種能力和戰術,以便在復雜的有爭議的環境中戰斗和獲勝(Canfield,2017)。因此,DMO不僅包括傳感器、平臺、網絡和武器的傳統戰爭能力,而且還延伸到隨著新技術發展的其他戰術。DMO概念使用涉及ISR、機器學習(ML)和人工智能(AI)的先進探測和欺騙,特別是使用無人系統來增強進攻性戰術行動的能力;因此,通過潛在地利用平臺、傳感器、武器、網絡和戰術的不同組合,可以在所有海上領域放大一支多樣化但統一的部隊的戰斗力。
DMO的概念包括詳細的能力,如反措施、反目標和反介入的戰術。反措施是旨在轉移威脅的防御性能力。反目標可能是進攻性能力、欺騙性戰術和轉移威脅的作戰演習。欺騙性戰術包括無人資產群、機械和物理反措施、電子干擾和限制電磁輻射,或排放控制(EMCON)。反介入是為了消除威脅。
傳統上,基線部隊結構由一組固定的友軍艦艇和飛機組成,排列成行動組,包括航母打擊組(CSG)、遠征打擊組(ESG)、水面行動組(SAG),以及各種獨立的可部署單位,如EABO的遠征海軍部隊。
DMO的行動要求包括能力、人力、維護和供應等資源,需要仔細分析、計劃和執行,這需要正確的數據戰略、分布式基礎設施和深度分析。威脅與能力協同進化矩陣(TCCM)的技術概念解決了DMO和EABO行動的要求。威脅是一種能力試圖處理的問題,包括其復雜性和緊迫性。一種能力是代表威脅的問題的解決方案。來自ML/AI社區的協同進化算法探索了一些領域,其中能力或能力組合的質量由其成功擊敗威脅或威脅組合的能力決定。戰爭游戲模擬中使用的協同進化算法類似于國防應用中廣泛使用的蒙特卡洛模擬,只是它們參與了預測和預報、優化和博弈(minmax)算法等ML/AI。DMO和EABO概念要求處理不斷變化和發展的威脅的能力和資源網絡的靈活性和進化。
圖 1. 每個節點都使用 CLA 注意:每個節點的內容和數據可能包括能力;首先需要對能力進行索引、編目和數據挖掘。
圖 2. TCCM 和兵棋仿真的概念
目前,人工智能(AI)為改造許多軍事行動領域提供了巨大的機會,包括作戰、指揮與控制(C2)、后勤、安全和維護,以提高其整體作戰效率。空中和導彈防御(AMD)是一個特別復雜的任務領域,人工智能的應用至關重要。空中導彈防御任務指的是保衛國土、保護區、地面基地、地面部隊或艦艇免受敵對的空中或導彈威脅。AMD的威脅包括敵對的飛機、無人駕駛飛行器(UAV)或機載導彈。AMD行動的復雜性源于威脅的嚴重性、威脅的意外性、對形勢認識的不確定性以及事件的快速發展,因為作戰人員必須迅速評估形勢,制定適當的行動方案,并最好地利用他們的戰爭資產來應對。美國國防部(U.S. DOD)正在研究使用AI系統(或AI-enabled AMD[AI-AMD]系統)作為AMD作戰人員的自動決策輔助工具,以大大減少他們的認知負荷(Jones等人,2020),使AMD決策更快、更好。
人工智能的一個關鍵方面已經聚集了大量的研究興趣,那就是信任。信任是有效團隊的一個基本原則。它同時適用于人類和人機團隊。信任使團隊成員能夠很好地合作,是有效團隊表現的基礎(Lee and See 2004)。與人工智能系統的成功合作將需要人類對人工智能系統有一個校準的信任和依賴程度(泰勒等人,2016)。
隨著更先進和更快的空中和導彈威脅彈藥的發展和投入使用,操作人員更需要在AMD行動中迅速作出監測。不及時的決策和反應將導致災難性的后果。因此,人工智能是一個可能的解決方案,通過自動決策輔助工具加快和加強決策過程。這些AMD自動戰斗管理輔助工具可以幫助戰術操作人員應對更快的決策周期、大量的數據以及需要觀察的幾個系統或屏幕(Galdorisi 2019)。然而,為了有效地利用人工智能能力的潛力,需要操作員的高度信任。操作員對系統的信任程度低,可能會導致人工智能-AMD系統利用不足,受到不適當的監控,或者根本不使用(Floyd, Drinkwater, and Aha 2016)。這些問題中的任何一個都可能導致操作者的工作量不必要的增加,或者任務失敗的可能性。
論文對信任的定義、人機交互(HMI)的概念、信任因素以及包括AMD殺傷鏈模型、威脅場景、架構、模型和功能在內的概念模型進行了廣泛的回顧。有了這樣的認識,論文提出了人工智能-AMD系統的信任框架,對人機交互和人工智能-AMD系統信任因素的描述。論文最后提出了在人類操作者和AI-AMD系統之間實現校準信任的策略。
信任框架始于對系統背景的分析。圖1顯示了AI-AMD指揮與控制(C2)系統(包括AI-AMD操作員和決策輔助工具)及其他與之互動的子系統的背景圖,這些子系統有助于操作員和AI-AMD決策輔助工具之間信任的發展。背景圖使我們能夠研究各系統之間的相互作用,以及它們對AI-AMD操作員和決策輔助工具之間信任動態的影響。
圖1. AI-AMD系統框架圖。
這篇論文將信任定義為操作者的態度,即AI-AMD決策輔助工具將有助于實現操作者的目標,即在一個以不確定性和脆弱性為特征的作戰環境中迅速摧毀來襲威脅的任務。這種信任的定義表明,它是對操作者相信或感知AI-AMD決策輔助工具的一種情感評估。為了積極地影響信任,操作者必須親自看到并感受到AI-AMD決策輔助行動的優勢。AI-AMD行動涉及很多不確定因素,以及天氣、電磁干擾和地形等環境因素以及不斷變化的威脅的性質所帶來的脆弱性。操作員將預期AI-AMD決策輔助系統按照 "合同 "執行,以處理這些不確定性和脆弱性。這些合同將是人工智能-AMD決策輔助工具應該執行的感知功能或任務,以及執行這些功能或任務的理想表現。
圖2說明了操作員和AI-AMD決策輔助工具之間的信任框架。y軸代表人類對AI-AMD決策輔助系統的信任程度,x軸代表AI-AMD決策輔助系統的能力。綠色的45°虛線表示最佳的信任水平或校準的信任線,其中的信任與AI-AMD的能力相對應,導致正確的利用(Lee and See 2004)。過度信任由最佳信任水平線以上的區域表示,此時的信任超過了系統能力,導致誤用。低于理想信任水平線的區域表示不信任,這時的信任沒有達到系統能力,導致濫用。假設存在一些默認的信任水平(如黃框所示),目標是制定一個策略,以提高AI-AMD輔助決策能力的信任。在使用該系統時,可能會發生違反信任的情況,從而降低操作員的信任。因此,信任修復行動必須被納入,以保持信任在最佳水平。
圖2. 人類操作員和AI-AMD決策輔助工具之間的信任。
基于功能分配的操作員和AI-AMD決策輔助工具之間的人機交互研究表明,操作員和AI-AMD決策輔助工具應該被設計成在大多數殺戮鏈功能中作為一個 "團隊"運作。這引導論文研究了單獨和集體考慮人類和決策輔助的信任因素。對操作員和人工智能-AMD決策之間的人機交互的研究還顯示,操作員的角色已經從手動控制器變成了監督控制器。因此,一個值得信賴的決策輔助工具是很重要的,因為操作者會期望系統的表現符合預期,以幫助操作者更好地履行他的角色。另外,為了進一步幫助減輕操作者的認知工作量,信息的外部表示、決策輔助工具的建議必須易于閱讀和理解。
關于信任因素,本論文提出了一個 "由外而內 "的框架,如圖3所示。論文首先考慮了與操作環境相關的因素,這些因素描述了AMD操作系統的背景。第二,它研究了與組織環境相關的因素,操作人員和人工智能-AMD系統得到了培訓和發展。第三,論文研究了操作人員和人工智能-AMD決策輔助工具之間的交互,以提出與操作人員、人工智能-AMD、單獨和集體相關的因素。
圖3. 建議的信任因素
圖4顯示了擬議的戰略銜接圖,以實現操作者和AI-AMD輔助決策之間的校準信任。對信任定義、人機界面和信任因素的審查表明,該戰略應關注三個關鍵領域:(1)人類對自動化技術和AI-AMD決策輔助系統的集體和個人感知;(2)增強操作員和AI-AMD決策輔助系統的團隊活力;(3)AI-AMD決策輔助系統的可信度,重點是系統開發。該戰略利用DOTMLPF-P框架提出了三個關鍵原則和五個支持原則。首先,軍事作戰人員需要被告知自動化技術的真正能力和局限性,特別是AI-AMD輔助決策。第二,操作員的培訓要求必須增加,以應對新的工作范圍和不斷變化的威脅。第三,必須在人工智能-AMD決策輔助系統的開發中加入新的要求,以提高系統的可感知的可信度。這三個關鍵原則得到了DOTMLPF-P框架其他方面的支持,如組織、領導、人員、設施和政策。
圖4. 實現操作員和人工智能-AMD決策輔助工具之間校準信任的戰略銜接圖
現代綜合防空系統(IADS)所帶來的日益復雜的反介入區域拒止(A2AD)威脅,加上高端隱形平臺所提供的日益強大的優勢,促使美國空軍高級領導人投資于徹底改變2030年及以后的空中力量。這一新設想的一個突出因素是蜂群武器,其目的是通過用大量低成本、可損耗的航空資產來壓倒國際航空運輸系統,并通過自主能力來解決這一挑戰。這項研究提出了一個框架,按照三個獨立的維度對不同級別的自主能力進行分類,即單獨行動的能力、合作能力和適應能力。使用模擬、集成和建模高級框架(AFSIM)構建了一個虛擬作戰模型,模擬以有人駕駛的穿透式轟炸機和自主巡航導彈群為特征的友軍空襲包與以A2AD角色行動的敵軍IADS之間的交戰。通過使用自主性框架作為設計實驗的基礎,評估了不同水平的自主性對攻擊包性能的影響。對實驗結果的分析揭示了哪些方面和什么級別的自主性對促進這一模擬場景的生存能力和殺傷力最有影響。
戰爭的技術性質正在迅速發展,人們越來越重視對大量數據的收集、處理和決策。隨著指揮與控制(C2)決策空間的復雜性增加,指揮系統根據現有信息采取行動的速度越來越成為一個限制性因素。具有不同程度的人與系統互動的自主系統為緩解這一不足提供了機會。美國2018年國防戰略(NDS)[18]明確要求國防部(DoD)"廣泛投資于自主性的軍事應用",作為促進大國競爭優勢的一項關鍵能力。
參與大國競爭的一個自然后果是反介入區域拒止(A2AD)環境在聯合沖突的所有方面擴散。從美國空軍(USAF)的角度來看,現代綜合防空系統(IADS)構成了卓越的A2AD威脅,這嚴重抑制了通過常規手段建立空中優勢的前景[2, 20]。這一挑戰促使部隊結構的優先事項發生了變化,因為將能力集中在相對較少的高端系統中的感知風險越來越大。美國空軍科學和技術戰略[26]設想,數量龐大的低成本、易受攻擊的航空資產將很快發揮曾經由數量有限的高價值資產完成的作用。這種大規模的蜂群的任務規劃和空戰管理(ABM)工作的規模可能很快超過人類的認知能力,這使得它成為非常適合自主性研究和開發的應用領域。
本研究試圖評估幾種自主巡航導彈群的行為對A2AD環境中藍方(友方)空中性能的影響。具體來說,所研究的A2AD場景考慮了紅方(對手)的IADS被藍方聯網的自主巡航導彈群吸引,以促進穿透式轟炸機的后續打擊。在任務規劃時沒有考慮到的突然出現的威脅,可能會進入該場景以增加紅色IADS的力量。蜂群必須在沒有外部反彈道導彈的幫助下,檢測并應對這些突發威脅以及任何其他對抗性任務參數的變化。A2AD場景的建模是使用模擬、集成和建模高級框架(AFSIM)完成的。
為了解決問題陳述,本研究將對以下問題提供答案:
1.具有自主反彈道導彈能力的巡航導彈蜂群能在多大程度上提高藍方空襲包在A2AD環境下的生存能力(即避免被紅方IADS發現和摧毀的能力)?
2.具有自主反彈道導彈能力的巡航導彈群能在多大程度上提高A2AD環境下藍方空襲包的殺傷力(即探測和摧毀紅方IADS元素的能力)?
本論文的其余部分包含四章,組織如下:第二章對包括自主性、A2AD環境、基于代理的建模和仿真(ABMS)以及實驗設計(DOE)等主題的參考材料進行了回顧。第三章建立了A2AD場景、AFSIM模型實現和實驗設計的結構,作為本研究的框架。第四章介紹了實驗模擬運行的結果和附帶的分析。最后,第五章討論了從這項研究中得出的結論,以及對未來研究方向的建議。
為了支持未來的多域作戰分析,美國DEVCOM分析中心(DAC)正在探索如何在陸軍的作戰模擬中體現天基情報、監視和偵察(ISR)資產的貢獻。DAC正在使用基于能力的戰術分析庫和模擬框架(FRACTALS)作為方法開發的試驗基礎。用于預測衛星軌道路徑簡化一般擾動的4種算法已經被納入FRACTALS。本報告的重點是來自商業衛星群的圖像產品,其分辨率為1米或更低。報告介紹了預測分辨率與傳感器特性、傾斜范圍(包括地球曲率)和觀察角度的關系的方法。還討論了在不同分辨率下可以感知的例子。
在2021年建模與仿真(M&S)論壇期間,空間情報、監視和偵察(ISR)建模被確定為當前/近期的建模差距。美國陸軍作戰能力發展司令部(DEVCOM)分析中心(DAC)提交了一份陸軍M&S企業能力差距白皮書(Harclerode, 2021),描述了幫助填補這一差距的行動方案。陸軍建模和仿真辦公室已經資助DAC開發方法,以代表商業、國家和軍事空間和低地球軌道資產的性能及其對聯合作戰的影響,并在基于能力的戰術分析庫和模擬框架(FRACTALS)內進行測試實施。
FRACTALS是DAC開發的一個仿真框架,它提供了通用的結構 "構件",用于模擬、仿真和評估ISR系統在戰術級任務和工作中的性能。FRACTALS作為DAC開發的各種ISR性能方法的測試平臺,將文件或數據被納入部隊的模擬中。FRACTALS還作為DAC的一個分析工具,在戰術環境中對ISR系統進行性能分析比較。
這項工作需要在一定程度上體現衛星飛行器(高度、軌跡和運動學)、傳感器有效載荷(光電[EO]、紅外、合成孔徑雷達和信號情報)、網絡、控制系統、地面站(時間線、通信、處理、利用和傳播)、終端用戶以及連接它們的過程和行為。本報告描述了DAC為支持這一工作所做的一些基礎工作,重點是可見光波段相機圖像。