論文鏈接://yuanfulu.github.io/publication/AAAI-L2PGNN.pdf
該方法的關鍵點是 L2P-GNN 試圖學習在預訓練過程中以可遷移先驗知識的形式進行微調。為了將局部信息和全局信息都編碼為先驗信息,研究者進一步為 L2P-GNN 設計了在節點和圖級別雙重適應(dual adaptation)的機制。最后研究者使用蛋白質圖公開集合和書目圖的新匯編進行預訓練,對各種 GNN 模型的預訓練進行了系統的實證研究。實驗結果表明,L2P-GNN 能夠學習有效且可遷移的先驗知識,從而為下游任務提供強大的表示。
總體來說,這篇論文的貢獻如下:
首次探索學習預訓練 GNN,緩解了預訓練與微調目標之間的差異,并且為預訓練 GNN 提供了新視角。
針對節點與圖級表示,該研究提出完全自監督的 GNN 預訓練策略。
針對預訓練 GNN,該研究建立了一個新型大規模書目圖數據,并且在兩個不同領域的數據集上進行了大量實驗。實驗表明,該研究提出的方法顯著優于 SOTA 方法。
本文旨在從表單文檔中提取零樣本的結構化信息。與傳統的文檔結構話信息提取的不同在于,對于指定的鍵,零樣本學習在訓練集中不需要存在其對應的訓練數據,而在預測過程中,根據鍵的文本描述直接在文檔中尋找該鍵對應的目標值。零樣本結構化信息提取使得模型可以預測數量龐大的鍵對應的值而不需要額外的標注數據。為了達到這個目的,本文提出鍵和觸發詞可感應的基于Transformer框架的兩階段模型(KATA)。第一階段根據鍵的描述在文檔中尋找對應的觸發詞;第二階段根據觸發詞在文檔中預測對應的目標值。為了提升模型的泛化能力,在大量的維基百科數據上進行預訓練。最終在兩個微調數據集上進行測試,英文數據集和中文數據集分別獲得0.73和0.71左右的F1值。實驗結果表明,本文提出的KATA模型能一定程度上能提取零樣本結構化信息。
圖神經網絡(GNN)已經成為圖表示學習的事實標準,它通過遞歸地聚集圖鄰域的信息來獲得有效的節點表示。盡管 GNN 可以從頭開始訓練,但近來一些研究表明:對 GNN 進行預訓練以學習可用于下游任務的可遷移知識能夠提升 SOTA 性能。但是,傳統的 GNN 預訓練方法遵循以下兩個步驟:
在大量未標注數據上進行預訓練; 在下游標注數據上進行模型微調。 由于這兩個步驟的優化目標不同,因此二者存在很大的差距。
在本文中,我們分析了預訓練和微調之間的差異,并為了緩解這種分歧,我們提出了一種用于GNNs的自監督預訓練策略L2P-GNN。方法的關鍵是L2P-GNN試圖以可轉移的先驗知識的形式學習如何在預訓練過程中進行微調。為了將局部信息和全局信息都編碼到先驗信息中,我們在節點級和圖級設計了一種雙重自適應機制。最后,我們對不同GNN模型的預訓練進行了系統的實證研究,使用了一個蛋白質數據集和一個文獻引用數據集進行了預訓練。實驗結果表明,L2P-GNN能夠學習有效且可轉移的先驗知識,為后續任務提供好的表示信息。我們在//github.com/rootlu/L2P-GNN公開了模型代碼,同時開源了一個大規模圖數據集,可用于GNN預訓練或圖分類等。
總體來說,本文的貢獻如下:
多元序列學習的本質是如何提取數據中的相關性。這些數據集,如重癥監護病房的每小時醫療記錄和多頻語音時間序列,通常不僅在個別成分中表現出強烈的序列依賴性(“邊緣”記憶),而且在橫剖面依賴性中也表現出不可忽略的記憶(“聯合”記憶)。由于聯合分布演化的多元復雜性是數據生成過程的基礎,我們采用數據驅動的方法,構建了一種新的循環網絡結構,稱為記憶門控循環網絡(mGRN),門顯式地調節兩種不同類型的記憶:邊緣記憶和聯合記憶。通過對一系列公共數據集的綜合模擬研究和經驗實驗的結合,我們表明我們提出的mGRN架構始終優于針對多元時間序列的最先進架構。
//www.zhuanzhi.ai/paper/4236df35ff33a6911c4913ac13bb78e0
由于不同道路間交通流時空分布格局具有復雜的空間相關性和動態趨勢,交通流時空數據預測是一項具有挑戰性的任務。現有框架通常利用給定的空間鄰接圖和復雜的機制為空間和時間相關性建模。然而,具有不完全鄰接連接的給定空間圖結構的有限表示可能會限制模型的有效時空依賴學習。此外,現有的方法在解決復雜的時空數據時也束手無策:它們通常利用獨立的模塊來實現時空關聯,或者只使用獨立的組件捕獲局部或全局的異構依賴關系。為了克服這些局限性,本文提出了一種新的時空融合圖神經網絡(STFGNN)用于交通流預測。首先,提出一種數據驅動的“時序圖”生成方法,以彌補空間圖可能無法反映的幾種現有相關性。SFTGNN通過一種新的時空圖融合操作,對不同的時間段進行并行處理,可以有效地學習隱藏的時空依賴關系。同時,該融合圖模塊與一種新的門控卷積模塊集成到一個統一的層中,SFTGNN可以通過層堆疊學習更多的時空依賴關系來處理長序列。在幾個公共交通數據集上的實驗結果表明,我們的方法達到了最先進的性能比其他基準一致。
論文鏈接://www.zhuanzhi.ai/paper/5e4dd4fd6b06fc88a7d86e4dc50687c6
簡介:數據增強已被廣泛用于提高機器學習模型的通用性。但是,相對較少的工作研究圖形的數據擴充。這在很大程度上是由于圖的復雜非歐幾里得結構限制了可能的操縱操作。視覺和語言中常用的增強操作沒有圖形類似物。在改進半監督節點分類的背景下,我們的工作研究了圖神經網絡(GNN)的圖數據擴充。我們討論了圖數據擴充的實踐和理論動機,考慮因素和策略。我們的工作表明,神經邊緣預測器可以有效地編碼類同質結構,以在給定的圖結構中促進類內邊緣和降級類間邊緣,并且我們的主要貢獻是引入了GAug圖數據擴充框架,該框架利用這些見解來提高性能通過邊緣預測的基于GNN的節點分類在多個基準上進行的廣泛實驗表明,通過GAug進行的增強可提高GNN架構和數據集的性能。
圖神經網絡(gnn)的優勢在于對結構化數據的拓撲信息進行顯式建模。然而,現有的gnn在獲取層次圖表示方面的能力有限,而層次圖表示在圖形分類中起著重要的作用。本文創新性地提出了層次圖膠囊網絡(HGCN),該網絡可以聯合學習節點嵌入和提取圖的層次結構。具體地說,解糾纏圖膠囊是通過識別每個節點下的異構因素建立的,這樣它們的實例化參數代表同一實體的不同屬性。為了學習層次表示,HGCN通過顯式地考慮部件之間的結構信息,刻畫了低層膠囊(部分)和高層膠囊(整體)之間的部分-整體關系。實驗研究證明了HGCN算法的有效性和各組成部分的貢獻。
//www.zhuanzhi.ai/paper/c9930a15b45547cafbee90db8c5612aa
在場景圖分類的一個主要挑戰是,物體的外觀和關系可以明顯不同于另一幅圖像。以前的工作通過對圖像中所有物體的關系推理,或將先驗知識納入分類來解決這個問題。與之前的工作不同,我們不考慮感知和先驗知識的分離模型。相反,我們采用多任務學習方法,其中分類被實現為一個注意力層。這允許先驗知識在感知模型中出現和傳播。通過使模型也代表先驗,我們實現了歸納偏差。我們表明,我們的模型可以準確地生成常識性知識,并且將這些知識迭代注入到場景表示中可以顯著提高分類性能。此外,我們的模型可以根據作為三元組的外部知識進行微調。當與自監督學習相結合時,這將獲得僅對1%的帶注釋的圖像進行準確的預測。
UniLMv2:統一預訓練偽掩碼語言模型
UniLMv2: Pseudo-Masked Language Models for Unified Language Model Pre-Training
論文鏈接://www.zhuanzhi.ai/paper/a6628400809ab320e597b1d4d1fca177
基于大規模語料的預訓練語言模型在各種自然語言處理任務帶來了巨大的提升。受UniLMv1 ([NeurIPS-19]Unified Language Model Pre-training for Natural Language Understanding and Generation)的啟發,本篇論文提出“偽掩碼語言模型”(PMLM),可以同時對兩種不同的語言建模目標進行高效訓練,從而使其更好地適用于語言理解(如文本分類、自動問答)和語言生成(如文本摘要、問題生成)任務。
我們將語言模型預訓練目標分為三類。第一類依賴于自編碼語言建模(Autoencoding, AE)。例如在 BERT 中使用的掩碼語言建模(MLM)隨機的在文本序列中遮蓋一部分單詞,在 Transformer 的雙向編碼結果之上,對每個被遮蓋的單詞進行分別還原。第二類方法基于自回歸建模(Autoregressive, AR)。不同于 AE,目標單詞被依次預測,且依賴于先前的結果。第三類是我們提出的半自回歸語言建模(Partially Autoregressive, PAR),對短語級別進行依賴建模,從而避免了 AR可能帶來的過度局部依賴問題。
偽掩碼語言模型(PMLM)
在新提出的偽掩碼語言模型(PMLM)中,我們對 AE 以及 PAR 這兩個語言建模目標進行了融合。在共享模型參數的基礎上,盡可能對上下文的編碼結果進行了復用,以達到高效訓練的目的。通過構造合理的自注意力模型掩碼與位置編碼,PMLM 可以在一次計算中同時對兩種語言建模任務進行訓練,且無需進行上下文編碼的冗余計算。
在自動問答、復述判別、情感分類、文本摘要、問題生成等一系列任務上的測評,說明了這一方法的有效性。
機器學習的許多應用都需要一個模型來對測試樣本做出準確的預測,這些測試樣本在分布上與訓練示例不同,而在訓練期間,特定于任務的標簽很少。應對這一挑戰的有效方法是,在數據豐富的相關任務上對模型進行預訓練,然后在下游任務上對其進行微調。盡管預訓練在許多語言和視覺領域都是有效的,但是如何在圖數據集上有效地使用預訓練仍是一個有待解決的問題。本文提出了一種新的圖神經網絡訓練策略和自監督方法。我們的策略成功的關鍵是在單個節點以及整個圖的層次上預訓練一個具有強表示能力的GNN,以便GNN能夠同時學習有用的局部和全局表示。我們系統地研究了多類圖分類數據集的預處理問題。我們發現,在整個圖或單個節點級別上對GNN進行預訓練的樸素策略改進有限,甚至可能導致許多下游任務的負遷移。相比之下,我們的策略避免了負遷移,顯著提高了下游任務的泛化能力,使得ROC-AUC相對于未經訓練的模型提高了9.4%,實現了分子特性預測和蛋白質功能預測的最好性能。