亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

摘要

遷移學習是指從源領域提取可遷移知識并將其重用到目標領域的行為,已成為人工智能領域的研究熱點。概率圖模型(PGMs)作為一種建模復雜系統的強大工具,具有處理不確定性的能力和良好的可解釋性。考慮到上述兩個研究領域的成功,將PGMs應用于遷移學習似乎是很自然的。然而,盡管在文獻中已經有一些優秀的遷移學習特異性PGMs,但PGMs在這一問題上的潛力仍然被嚴重低估。本文旨在通過以下幾個方面促進遷移學習的知識遷移模型的發展:1)考察遷移學習的知識遷移模型的試點研究,即分析和總結現有的專門設計的知識遷移機制;2)討論現有PGM成功應用于實際遷移問題的例子;3)利用PGM探討遷移學習的幾個潛在研究方向。

引言

遷移學習是從源領域中提取可遷移的知識,并在目標領域中重用該知識的行為,這是一種自然的人類現象,即使對于非常小的兒童(Brown & Kane, 1988)。形式定義如下(Pan & Yang, 2010):“給定源域DS = {XS, PS(X)}和目標域DT = {XT, PT (X)},遷移學習的目的是借助DS改進DT中的學習任務,其中X為特征空間,P(X)為數據分布。”當XS = XT時,為同質遷移學習;當XS= XT時,為異質遷移學習。需要注意的是,遷移學習可以被看作是前面提到的問題,也可以看作是解決這個問題的方法。一個經典的激勵例子是產品評論的跨領域(如電影和計算機領域) 情感預測: 1) 在電影領域有大量的標簽產品評論,因此可以訓練一個分類器,并應用于該領域的預測; 2)新計算機的評論標簽不足以訓練分類器進行進一步的情感預測; 3) 一個簡單的想法是直接來自電影領域的分類器應用到新電腦領域考慮兩個域之間的相似之處(例如,人們傾向于使用類似的詞語來表達他們的喜歡或不喜歡在不同的產品), 但它并不總是工作很可能導致負遷移(Weiss, Khoshgoftaar, & Wang, 2016). 因為它們在不同的上下文中存在差異(例如,在電影領域中,“觸摸我的心”是褒義詞,而在計算機領域中,“觸摸板”是中義詞)。如何結合源域和目標域提取可遷移知識是遷移學習的藝術。在文獻中,有幾個與遷移學習密切相關的概念誤導了讀者,如樣本選擇偏差、協變量轉移、類別不平衡、領域適應和多任務學習。(Pan & Yang, 2010)的研究試圖根據源域和目標域的設置來區分和組織它們,例如目標域中是否有標記數據。本文并沒有明確區分它們,但我們認為它們都是遷移學習。對這些概念及其區別的進一步討論可以在(Pan & Yang, 2010;Weiss et al., 2016)。識別、建模和利用兩個領域之間可遷移的知識的能力不僅提高了具體現實問題的性能,而且在促進機器人在沒有任何人類干預的情況下的自學習(像人類)方面邁出了重要的一步。想象一下這樣的場景:一個智能機器人面臨一個自己沒有知識的新問題,它向其他類似領域的機器人尋求幫助,并向他們學習,問題就解決了。因此,我們認為遷移學習不僅在統計機器學習領域,而且在機器人甚至一般人工智能領域都有很好的前景。

概率圖模型(PGM) (Wainwright, Jordan等,2008;Koller & Friedman, 2009)是統計機器學習的一個重要分支,它是一個豐富的框架,用于通過概率分布或隨機過程來建模(表達)來自領域的有限或無限個(可觀察或潛在)變量之間的復雜交互作用。它的名字來自于它的結構——一個以隨機變量為節點,以概率相關性為邊的圖,如圖1所示。根據節點/變量之間的邊緣類型(即有向或無向),概率圖模型分為有向和無向兩類。例如,隱馬爾可夫模型(Rabiner, 1989)是一種有向圖模型; 條件隨機場(Lafferty, McCallum, & Pereira, 2001)是無向圖模型的一個例子。將概率圖模型應用于目標任務包括以下兩個步驟: 1)模型設計和 2)模型推理。給定一個任務,第一步是分析問題的本質,然后設計一些變量及其關系來捕捉這種本質。換句話說,這一步是設計PGM的圖結構,該結構應共同考慮觀測數據和目標任務的附加知識。請注意,這個步驟沒有確切的過程,因為它嚴重依賴于處理同一問題的不同人員的視圖/理解。例如,在Latent Dirichlet Allocation模型(Blei, Ng, & Jordan, 2003)中,文檔由滿足Dirichlet或多項分布的隨機變量建模,變量之間通過Dirichlet-多項關系連接;在Gamma-Poisson模型(Ogura, Amano, & Kondo, 2013)中,文檔由滿足Gamma或Poisson分布的隨機變量建模,變量之間通過Gamma-Poisson關系連接。在不考慮具體任務的情況下,討論優點和缺點通常是困難和毫無意義的。PGM的輸出是給定觀測數據的圖模型定義的感興趣的邊際或關節后驗分布。另外,從第一步開始的PGM實際上是一組模型,因為所設計的概率分布通常帶有未知的參數,不同的參數設置會導致不同的模型。有了觀測數據(圖模型中的一些變量/節點的值是已知的),第二步是推斷潛在變量的后驗分布,并估計模型參數。對于一些稀疏圖,有一個精確的算法來學習PGM: 結點樹算法(Paskin & Lawrence, 2003; Wainwright et al., 2008)。但該算法不適用于任務復雜的復雜圖模型。因此,一些近似算法被發展來解決這個問題:期望最大化(Dempster, Laird, & Rubin, 1977),拉普拉斯近似,期望傳播(Minka, 2001),蒙特卡洛馬爾可夫鏈(Neal, 1993),變分推理(Blei, Kucukelbir, & McAuliffe, 2017)。此外,設計的變量之間的概率相關性也可能不是固定的,而是從數據中學習的(所謂結構學習)。一個例子是貝葉斯網絡,其中的網絡結構(即變量之間的依賴關系)可以從數據中學習。由于其強大的建模能力和堅實的理論基礎,概率圖模型受到了分子生物學(Friedman, 2004)、文本挖掘(Blei et al., 2003)、自然語言處理(Sultan, Boyd-Graber, & Sumner, 2016) 和 計算機視覺(Gupta, Phung, & Venkatesh, 2012) 等多個領域研究者的關注。

與機器學習中的其他模型(如支持向量機)相比,概率圖模型具有以下優點,這些優點可能有利于遷移學習: 1) 處理不確定性。不確定性幾乎出現在任何現實世界的問題中,當然也出現在他們的觀察(數據)中。例如,人們在編寫關于特定主題的文檔時可能會使用不同的詞匯,所以我們在構建模型以揭示隱藏的主題時需要考慮這種不確定性。PGMs能夠借助概率分布或隨機過程很好地處理(模型)這種不確定性; 2) 處理缺失數據。丟失數據的一個典型例子是來自推薦系統,用戶只對有限數量的項目進行評級,因此對其他項目的評級也會丟失。PGM可以通過潛在變量設計很好地處理這一問題(Mohan, Pearl, & Tian, 2013); 3) 可解釋性。PGM由定義的概率分布(或隨機過程)組成,因此人類專家可以評估其語義和屬性,甚至將他們的知識納入模型。通過PGM的結構,人們可以很容易地理解問題和領域; 4) 泛化能力。定向PGMs(也稱為生成模型)具有很好的泛化能力,可以比較鑒別模型,特別是在數據數量有限的情況下(Ng & Jordan, 2002)。盡管在文獻中已經發表了一些關于遷移學習的優秀研究,如: 綜合研究(Pan & Yang, 2010;Weiss et al., 2016),應用,如強化學習(Taylor & Stone, 2009),協同過濾(Li, 2011),視覺分類(Shao, Zhu, & Li, 2015),人臉和物體識別(Patel, Gopalan, Li, & Chellappa, 2015),語音和語言處理(Wang & Zheng, 2015),活動識別(Cook, Feuz, & Krishnan, 2013),和方法論,如計算智能(Lu, Behbood, Hao, Zuo, Xue, & Zhang, 2015),在使用PGMs進行遷移學習方面沒有一個具體的工作。本文綜述了該領域的主要研究成果,總結了已有的遷移研究的基本方法,為今后在該領域的進一步研究奠定了基礎。本文對遷移學習領域的研究人員進行了綜述,并對遷移學習方法的應用進行了推廣。本文還綜述了已有的遷移學習理論在遷移學習中的成功應用,并促進了遷移學習理論的發展。本文假設讀者已經具備遷移學習的基本知識。

本文的其余部分結構如下。第2節討論了現有的最先進的方法使用的概率圖模型遷移學習。第3節介紹了現實世界中使用概率圖模型解決的遷移學習問題。最后,第四部分對本文進行了總結,并提出了進一步研究可能面臨的挑戰。

付費5元查看完整內容

相關內容

近年來,機器學習取得了顯著進展,提供了一些新功能,比如創建復雜的、可計算的文本和圖像表示。這些功能催生了新產品,如基于圖像內容的圖像搜索、多種語言之間的自動翻譯,甚至是真實圖像和聲音的合成。同時,機器學習已經在企業中被廣泛采用,用于經典的用例(例如,預測客戶流失、貸款違約和制造設備故障)。

在機器學習取得成功的地方,它是非常成功的。

在許多情況下,這種成功可以歸因于對大量訓練數據的監督學習(結合大量計算)。總的來說,有監督的學習系統擅長于一項任務:預測。當目標是預測一個結果,并且我們有很多這個結果的例子,以及與它相關的特征時,我們可能會轉向監督學習。

隨著機器學習的普及,它在業務流程中的影響范圍已經從狹窄的預測擴展到決策制定。機器學習系統的結果經常被用來設定信用限額,預測制造設備故障,以及管理我們的各種新聞推送。當個人和企業試圖從這些復雜和非線性系統提供的信息中學習時,更多(和更好)的可解釋性方法已經被開發出來,這是非常重要的。

然而,僅僅基于預測的推理有一些基本的限制。例如,如果銀行提高客戶的信用額度會發生什么?這些問題不能用建立在先前觀察到的數據上的相關模型來回答,因為它們涉及到客戶選擇的可能變化,作為對信用限額變化的反應。在很多情況下,我們的決策過程的結果是一種干預——一種改變世界的行動。正如我們將在本報告中展示的,純粹相關的預測系統不具備在這種干預下進行推理的能力,因此容易產生偏差。對于干預下的數據決策,我們需要因果關系。

即使對于純粹的預測系統(這是監督學習的強項),應用一些因果思維也會帶來好處。根據因果關系的定義,它們是不變的,這意味著它們在不同的情況和環境中都是正確的。對于機器學習系統來說,這是一個非常理想的特性,在機器學習系統中,我們經常根據我們在訓練中沒有看到的數據進行預測;我們需要這些系統具有適應性和健壯性。

因果推理和機器學習的交集是一個迅速擴展的研究領域。它已經產生了可供主流采用的功能——這些功能可以幫助我們構建更健壯、可靠和公平的機器學習系統。

本書介紹了因果推理,因為它涉及很多數據科學和機器學習工作。我們引入因果圖,著重于消除理解的概念障礙。然后我們利用這個理解來探索關于不變預測的最新想法,它給高維問題帶來了因果圖的一些好處。通過附帶的原型,我們展示了即使是經典的機器學習問題,如圖像分類,也可以從因果推理工具中受益。

付費5元查看完整內容

摘要:

域泛化(DG),即分布外泛化,近年來引起了越來越多的關注。領域泛化處理一個具有挑戰性的設置,其中給出了一個或幾個不同但相關的領域,目標是學習一個可以泛化到看不見的測試領域的模型。近年來,取得了很大的進展。本文首次綜述了領域泛化的最新進展。首先,我們給出了領域泛化的形式化定義,并討論了幾個相關的領域。接下來,我們對領域泛化的相關理論進行了全面的回顧,并對泛化背后的理論進行了仔細的分析。然后,我們將最近出現的算法分為三類,分別是數據操作、表示學習和學習策略,每一類都包含了一些流行的算法。第三,介紹了常用的數據集及其應用。最后,對已有文獻進行了總結,并提出了未來的研究方向。

//www.zhuanzhi.ai/paper/5b8b8958327cabc8b6694d7fc5c7ac75

引言

機器學習(ML)在計算機視覺、自然語言處理和醫療保健等各個領域都取得了顯著的成功。ML的目標是設計一個可以從訓練數據中學習通用和預測性知識的模型,然后將該模型應用于新的(測試)數據。

傳統的ML模型訓練基于i.i.d.假設,訓練數據和測試數據是相同的,獨立分布的。然而,這種假設在現實中并不總是成立的。當訓練數據和測試數據的概率分布不同時,由于域分布的差異,ML模型的性能往往會下降。收集所有可能領域的數據來訓練ML模型是昂貴的,甚至是不可能的。因此,提高ML模型的泛化能力具有重要的工業和學術意義。

與廣義相關的研究課題有很多,如領域適應、元學習、遷移學習、協變量轉移等。近年來,領域泛化(DG)受到了廣泛的關注。如圖1所示,領域泛化的目標是從一個或幾個不同但相關的領域(即不同的訓練數據集)學習模型,這些領域將在看不見的測試領域上很好地泛化。

圖片

近年來,領域泛化在計算機視覺、自然語言處理等領域取得了長足的進展。除此之外,目前還沒有一項關于該領域的調查能夠全面介紹和總結其主要思想、學習算法等相關問題,為未來的研究提供見解。

本文首先介紹了領域泛化的研究概況,重點介紹了領域泛化的公式、理論、算法、數據集、應用以及未來的研究方向。希望本研究能為相關研究者提供一個全面的回顧,并對相關領域的研究有所啟發。

本文的結構組織如下。我們將在第2節中闡述領域概括并討論其與現有研究領域的關系。第3節介紹了領域泛化的相關理論。在第4節中,我們詳細描述了有代表性的DG方法。第5節介紹了應用程序,第6節介紹了DG的基準數據集。我們在第7節中總結了現有工作的見解,并提出了一些可能的未來方向。最后,在第8節對本文進行總結。

方法體系

領域泛化方法是我們的核心。本文將已有的領域泛化方法按照數據操作、表示學習、學習策略分為三大方面,如下圖所示。

數據操作,指的是通過對數據的增強和變化使訓練數據得到增強。這一類包括數據增強和數據生成兩大部分。

表示學習,指的是學習領域不變特征(Domain-invariant representation learning)以使得模型對不同領域都能進行很好地適配。領域不變特征學習方面主要包括四大部分:核方法、顯式特征對齊、領域對抗訓練、以及不變風險最小化(Invariant Risk Minimiation, IRM)。特征解耦與領域不變特征學習的目標一致、但學習方法不一致,我們將其單獨作為一大類進行介紹。 學習策略,指的是將機器學習中成熟的學習模式引入多領域訓練中使得模型泛化性更強。這一部分主要包括基于集成學習和元學習的方法。同時,我們還會介紹其他方法,例如自監督方法在領域泛化中的應用。

付費5元查看完整內容
北京阿比特科技有限公司