亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

近年來,機器學習取得了顯著進展,提供了一些新功能,比如創建復雜的、可計算的文本和圖像表示。這些功能催生了新產品,如基于圖像內容的圖像搜索、多種語言之間的自動翻譯,甚至是真實圖像和聲音的合成。同時,機器學習已經在企業中被廣泛采用,用于經典的用例(例如,預測客戶流失、貸款違約和制造設備故障)。

在機器學習取得成功的地方,它是非常成功的。

在許多情況下,這種成功可以歸因于對大量訓練數據的監督學習(結合大量計算)。總的來說,有監督的學習系統擅長于一項任務:預測。當目標是預測一個結果,并且我們有很多這個結果的例子,以及與它相關的特征時,我們可能會轉向監督學習。

隨著機器學習的普及,它在業務流程中的影響范圍已經從狹窄的預測擴展到決策制定。機器學習系統的結果經常被用來設定信用限額,預測制造設備故障,以及管理我們的各種新聞推送。當個人和企業試圖從這些復雜和非線性系統提供的信息中學習時,更多(和更好)的可解釋性方法已經被開發出來,這是非常重要的。

然而,僅僅基于預測的推理有一些基本的限制。例如,如果銀行提高客戶的信用額度會發生什么?這些問題不能用建立在先前觀察到的數據上的相關模型來回答,因為它們涉及到客戶選擇的可能變化,作為對信用限額變化的反應。在很多情況下,我們的決策過程的結果是一種干預——一種改變世界的行動。正如我們將在本報告中展示的,純粹相關的預測系統不具備在這種干預下進行推理的能力,因此容易產生偏差。對于干預下的數據決策,我們需要因果關系。

即使對于純粹的預測系統(這是監督學習的強項),應用一些因果思維也會帶來好處。根據因果關系的定義,它們是不變的,這意味著它們在不同的情況和環境中都是正確的。對于機器學習系統來說,這是一個非常理想的特性,在機器學習系統中,我們經常根據我們在訓練中沒有看到的數據進行預測;我們需要這些系統具有適應性和健壯性。

因果推理和機器學習的交集是一個迅速擴展的研究領域。它已經產生了可供主流采用的功能——這些功能可以幫助我們構建更健壯、可靠和公平的機器學習系統。

本書介紹了因果推理,因為它涉及很多數據科學和機器學習工作。我們引入因果圖,著重于消除理解的概念障礙。然后我們利用這個理解來探索關于不變預測的最新想法,它給高維問題帶來了因果圖的一些好處。通過附帶的原型,我們展示了即使是經典的機器學習問題,如圖像分類,也可以從因果推理工具中受益。

付費5元查看完整內容

相關內容

近年來,機器學習發展迅速,尤其是深度學習在圖像、聲音、自然語言處理等領域取得卓越成效.機器學習算法的表示能力大幅度提高,但是伴隨著模型復雜度的增加,機器學習算法的可解釋性越差,至今,機器學習的可解釋性依舊是個難題.通過算法訓練出的模型被看作成黑盒子,嚴重阻礙了機器學習在某些特定領域的使用,譬如醫學、金融等領域. 目前針對機器學習的可解釋性綜述性的工作極少,因此,將現有的可解釋方法進行歸類描述和分析比較,一方面對可解釋性的定義、度量進行闡述,另一方面針對可解釋對象的不同,從模型的解釋、預測結果的解釋和模仿者模型的解釋3個方面,總結和分析各種機器學習可解釋技術,并討論了機器學習可解釋方法面臨的挑戰和機遇以及未來的可能發展方向.

付費5元查看完整內容

機器學習在許多部署的決策系統中發揮著作用,其方式通常是人類利益相關者難以理解或不可能理解的。以一種人類可以理解的方式解釋機器學習模型的輸入和輸出之間的關系,對于開發可信的基于機器學習的系統是至關重要的。一個新興的研究機構試圖定義機器學習的目標和解釋方法。在本文中,我們試圖對反事實解釋的研究進行回顧和分類,這是一種特殊類型的解釋,它提供了在模型輸入以特定方式改變時可能發生的事情之間的聯系。機器學習中反事實可解釋性的現代方法與許多國家的既定法律原則相聯系,這使它們吸引了金融和醫療等高影響力領域的實地系統。因此,我們設計了一個具有反事實解釋算法理想性質的準則,并對目前提出的所有反事實解釋算法進行了綜合評價。我們的標題便于比較和理解不同方法的優缺點,并介紹了該領域的主要研究主題。我們也指出了在反事實解釋空間的差距和討論了有前途的研究方向。

機器學習作為一種在許多領域實現大規模自動化的有效工具,正日益被人們所接受。算法能夠從數據中學習,以發現模式并支持決策,而不是手工設計的規則。這些決定可以并確實直接或間接地影響人類;備受關注的案例包括信貸貸款[99]、人才資源[97]、假釋[102]和醫療[46]的申請。在機器學習社區中,新生的公平、責任、透明度和倫理(命運)已經成為一個多學科的研究人員和行業從業人員的團體,他們感興趣的是開發技術來檢測機器學習模型中的偏見,開發算法來抵消這種偏見,為機器決策生成人類可理解的解釋,讓組織為不公平的決策負責,等等。

對于機器決策,人類可以理解的解釋在幾個方面都有優勢。例如,關注一個申請貸款的申請人的用例,好處包括:

  • 對于生活受到該決定影響的申請人來說,解釋是有益的。例如,它幫助申請人理解他們的哪些因素是做出決定的關鍵因素。

  • 此外,如果申請人覺得受到了不公平待遇,例如,如果一個人的種族在決定結果時至關重要,它還可以幫助申請人對決定提出質疑。這對于組織檢查其算法中的偏見也很有用。

  • 在某些情況下,解釋為申請人提供了反饋,他們可以根據這些反饋采取行動,在未來的時間內獲得預期的結果。

  • 解釋可以幫助機器學習模型開發人員識別、檢測和修復錯誤和其他性能問題。

  • 解釋有助于遵守與機器生產決策相關的法律,如GDPR[10]。

機器學習中的可解釋性大體上是指使用固有的可解釋的透明模型或為不透明模型生成事后解釋。前者的例子包括線性/邏輯回歸、決策樹、規則集等。后者的例子包括隨機森林、支持向量機(SVMs)和神經網絡。

事后解釋方法既可以是模型特定的,也可以是模型不可知的。特征重要性解釋和模型簡化是兩種廣泛的特定于模型的方法。與模型無關的方法可以分為視覺解釋、局部解釋、特性重要性和模型簡化。

特征重要性(Feature importance)是指對模型的整體精度或某個特定決策最有影響的特征,例如SHAP[80]、QII[27]。模型簡化找到了一個可解釋的模型,該模型緊致地模仿了不透明模型。依存圖是一種常用的直觀解釋,如部分依存圖[51]、累積局部效應圖[14]、個體條件期望圖[53]。他們將模型預測的變化繪制成一個特征,或者多個特征被改變。局部解釋不同于其他解釋方法,因為它們只解釋一個預測。局部解釋可以進一步分為近似解釋和基于實例的解釋。近似方法在模型預測需要解釋的數據點附近抽取新的數據點(以下稱為explainee數據點),然后擬合線性模型(如LIME[92])或從中提取規則集(如錨[93])。基于實例的方法尋求在被解釋數據點附近找到數據點。它們要么以與被解釋數據點具有相同預測的數據點的形式提供解釋,要么以預測與被解釋數據點不同的數據點的形式提供解釋。請注意,后一種數據點仍然接近于被解釋的數據點,被稱為“反事實解釋”。

回想一下申請貸款的申請人的用例。對于貸款請求被拒絕的個人,反事實的解釋為他們提供反饋,幫助他們改變自己的特征,以過渡到決策邊界的理想一面,即獲得貸款。這樣的反饋被稱為可執行的。與其他幾種解釋技術不同,反事實解釋不能明確回答決策中的“為什么”部分;相反,他們提供建議以達到預期的結果。反事實解釋也適用于黑箱模型(只有模型的預測功能是可訪問的),因此不限制模型的復雜性,也不要求模型披露。它們也不一定能近似底層模型,從而產生準確的反饋。由于反事實解釋具有直覺性,因此也符合法律框架的規定(見附錄C)。

在這項工作中,我們收集、審查和分類了最近的39篇論文,提出了算法,以產生機器學習模型的反事實解釋。這些方法大多集中在表格或基于圖像的數據集上。我們在附錄b中描述了我們為這項調查收集論文的方法。我們描述了這個領域最近的研究主題,并將收集的論文按照有效的反事實解釋的固定需求進行分類(見表1)。

付費5元查看完整內容

通過人工神經網絡等獲得的預測具有很高的準確性,但人類經常將這些模型視為黑盒子。對于人類來說,關于決策制定的洞察大多是不透明的。在醫療保健或金融等高度敏感領域,對決策的理解至關重要。黑盒子背后的決策要求它對人類來說更加透明、可問責和可理解。這篇綜述論文提供了基本的定義,概述了可解釋監督機器學習(SML)的不同原理和方法。我們進行了最先進的綜述,回顧過去和最近可解釋的SML方法,并根據介紹的定義對它們進行分類。最后,我們通過一個解釋性的案例研究來說明原則,并討論未來的重要方向。

//www.zhuanzhi.ai/paper/d34a1111c1ab9ea312570ae8e011903c

目前人工智能(AI)模型的準確性是顯著的,但準確性并不是最重要的唯一方面。對于高風險的領域,對模型和輸出的詳細理解也很重要。底層的機器學習和深度學習算法構建的復雜模型對人類來說是不透明的。Holzinger等人(2019b)指出,醫學領域是人工智能面臨的最大挑戰之一。對于像醫療這樣的領域,深刻理解人工智能的應用是至關重要的,對可解釋人工智能(XAI)的需求是顯而易見的。

可解釋性在許多領域很重要,但不是在所有領域。我們已經提到了可解釋性很重要的領域,例如衛生保健。在其他領域,比如飛機碰撞避免,算法多年來一直在沒有人工交互的情況下運行,也沒有給出解釋。當存在某種程度的不完整時,需要可解釋性。可以肯定的是,不完整性不能與不確定性混淆。不確定性指的是可以通過數學模型形式化和處理的東西。另一方面,不完全性意味著關于問題的某些東西不能充分編碼到模型中(Doshi-Velez和Kim(2017))。例如,刑事風險評估工具應該是公正的,它也應該符合人類的公平和道德觀念。但倫理學是一個很寬泛的領域,它是主觀的,很難正式化。相比之下,飛機避免碰撞是一個很容易理解的問題,也可以被精確地描述。如果一個系統能夠很好地避免碰撞,就不用再擔心它了。不需要解釋。

本文詳細介紹了可解釋SML的定義,并為該領域中各種方法的分類奠定了基礎。我們區分了各種問題定義,將可解釋監督學習領域分為可解釋模型、代理模型擬合和解釋生成。可解釋模型的定義關注于自然實現的或通過使用設計原則強制實現的整個模型理解。代理模型擬合方法近似基于黑盒的局部或全局可解釋模型。解釋生成過程直接產生一種解釋,區分局部解釋和全局解釋。

綜上所述,本文的貢獻如下:

  • 對五種不同的解釋方法進行形式化,并對整個解釋鏈的相應文獻(分類和回歸)進行回顧。
  • 可解釋性的原因,審查重要領域和可解釋性的評估
  • 這一章僅僅強調了圍繞數據和可解釋性主題的各個方面,比如數據質量和本體
  • 支持理解不同解釋方法的連續用例
  • 回顧重要的未來方向和討論

付費5元查看完整內容

人工智能(AI)為改善私人和公共生活提供了很多機會,以自動化的方式在大型數據中發現模式和結構是數據科學的核心組件,目前驅動著計算生物學、法律和金融等不同領域的應用發展。然而,這種高度積極的影響也伴隨著重大的挑戰:我們如何理解這些系統所建議的決策,以便我們能夠信任它們?在這個報告中,我們特別關注數據驅動的方法——特別是機器學習(ML)和模式識別模型——以便調查和提取結果和文獻觀察。通過注意到ML模型越來越多地部署在廣泛的業務中,可以特別理解本報告的目的。然而,隨著方法的日益普及和復雜性,業務涉眾對模型的缺陷、特定數據的偏差等越來越關注。類似地,數據科學從業者通常不知道來自學術文獻的方法,或者可能很難理解不同方法之間的差異,所以最終使用行業標準,比如SHAP。在這里,我們進行了一項調查,以幫助行業從業者(以及更廣泛的數據科學家)更好地理解可解釋機器學習領域,并應用正確的工具。我們后面的章節將圍繞一位公認的數據科學家展開敘述,并討論她如何通過提出正確的問題來解釋模型。

//arxiv.org/abs/2009.11698

付費5元查看完整內容

摘要:這項工作考慮了這樣一個問題: 獲取大量數據的便利程度如何影響我們學習因果效應和關系的能力。在大數據時代,學習因果關系與傳統因果關系有哪些不同或相同之處?為了回答這個問題,這項綜述提供了一個在因果關系和機器學習之間聯系的全面和結構化的回顧。

//www.zhuanzhi.ai/paper/6ad7902913e98bd48540a5596b978edc

因果性是結果與引起結果的原因之間的一種一般性關系。它很難定義,而且我們通常只憑直覺知道原因和結果。因為下雨,街道是濕的。因為這個學生不學習,所以他考試考得很差。因為烤箱是熱的,奶酪在披薩上融化了。當用數據學習因果關系時,我們需要意識到統計關聯和因果之間的區別。例如,當天氣炎熱時,一家冰淇淋店的老板可能會注意到高昂的電費和較高的銷售額。因此,她會觀察到電費和銷售數字之間有很強的聯系,但電費并不是導致高銷售額的原因——讓商店的燈徹夜開著不會對銷售產生影響。在這種情況下,外部溫度是高電費和高銷售額的共同原因,我們說它是一個混亂的因果關系。

學習因果關系的能力被認為是人類水平智能的重要組成部分,可以作為AI的基礎(Pearl, 2018)。從歷史上看,學習因果關系已經在包括教育在內的許多高影響領域被研究過(LaLonde, 1986;Dehejia和Wahba, 1999年;Heckerman et al ., 2006;希爾,2011),醫學科學(馬尼和庫珀,2000;經濟學(Imbens, 2004)、流行病學(Hernan et al., 2000;Robins等人,2000年;、氣象學(Ebert-Uphoff和Deng, 2012)和環境衛生(Li et al., 2014)。受限于數據量,堅實的先驗因果知識是學習因果關系所必需的。研究人員對通過精心設計的實驗收集的數據進行研究,堅實的先驗因果知識至關重要(Heckerman et al., 2006)。以隨機對照試驗的原型為例(Cook et al., 2002),為了研究一種藥物的療效,患者將被隨機分配服用或不服用該藥物,這將保證平均而言,治療組和未治療組(對照組)在所有相關方面是等同的,排除任何其他因素的影響。然后,藥物對某些健康結果的影響——比如,偏頭痛的持續時間——可以通過比較兩組的平均結果來衡量。

這個綜述的目的是考慮在現在的大數據時代學習因果關系的新可能性和挑戰,這里指的是海量數據集的可用性。舉個例子,考慮到無法測量的混雜因素的可能性——可能會被減輕,因為可以測量更多的特征。因此,一方面,研究人員有可能在大數據的幫助下回答有趣的因果問題。例如,Yelp的正面評論是促使顧客去餐館,還是僅僅反映了受歡迎程度而沒有影響?這個因果問題可以通過Yelp維護的龐大數據庫中的數據來解決。另一方面,用大數據來回答因果問題,會帶來一些獨特的新問題。例如,盡管公共數據庫或通過web爬行收集的數據或應用程序編程接口(api)是空前巨大的,我們有很少的直覺對什么類型的偏差數據集可以遭受——數據更豐富,也更神秘,因此,負責任地更難模型。與此同時,大數據給其他學習任務(如預測)帶來的基本統計困難,使得因果調查更具挑戰性。也許這方面最顯著的例子是現代數據的高維性(Li et al., 2017a),比如文本數據(Imai et al., 2013)。

付費5元查看完整內容

在復雜的以人為中心的系統中,每天的決策都具有決策相關信息不完全的特點。現有決策理論的主要問題是,它們沒有能力處理概率和事件不精確的情況。在這本書中,我們描述了一個新的理論的決策與不完全的信息。其目的是將決策分析和經濟行為的基礎從領域二價邏輯轉向領域模糊邏輯和Z約束,從行為決策的外部建模轉向組合狀態的框架。

這本書將有助于在模糊邏輯,決策科學,人工智能,數學經濟學,和計算經濟學的專業人員,學者,經理和研究生。

讀者:專業人士,學者,管理者和研究生在模糊邏輯,決策科學,人工智能,數學經濟學,和計算經濟學。

付費5元查看完整內容

近年來,神經網絡已成為分析復雜和抽象數據模型的有力工具。然而,它們的引入本質上增加了我們的不確定性,即分析的哪些特征是與模型相關的,哪些是由神經網絡造成的。這意味著,神經網絡的預測存在偏差,無法與數據的創建和觀察的真實本質區分開來。為了嘗試解決這些問題,我們討論了貝葉斯神經網絡:可以描述由網絡引起的不確定性的神經網絡。特別地,我們提出了貝葉斯統計框架,它允許我們根據觀察某些數據的根深蒂固的隨機性和我們缺乏關于如何創建和觀察數據的知識的不確定性來對不確定性進行分類。在介紹這些技術時,我們展示了如何從原理上獲得神經網絡預測中的誤差,并提供了描述這些誤差的兩種常用方法。我們還將描述這兩種方法在實際應用時如何存在重大缺陷,并強調在使用神經網絡時需要其他統計技術來真正進行推理。

付費5元查看完整內容

本備忘單是機器學習手冊的濃縮版,包含了許多關于機器學習的經典方程和圖表,旨在幫助您快速回憶起機器學習中的知識和思想。

這個備忘單有兩個顯著的優點:

  1. 清晰的符號。數學公式使用了許多令人困惑的符號。例如,X可以是一個集合,一個隨機變量,或者一個矩陣。這是非常混亂的,使讀者很難理解數學公式的意義。本備忘單試圖規范符號的使用,所有符號都有明確的預先定義,請參見小節。

  2. 更少的思維跳躍。在許多機器學習的書籍中,作者省略了數學證明過程中的一些中間步驟,這可能會節省一些空間,但是會給讀者理解這個公式帶來困難,讀者會在中間迷失。

付費5元查看完整內容

【導讀】分布式機器學習Distributed Machine Learning是學術界和工業界關注的焦點。最近來自荷蘭的幾位研究人員撰寫了關于分布式機器學習的綜述,共33頁pdf和172篇文獻,概述了分布式機器學習相對于傳統(集中式)機器學習的挑戰和機遇,討論了用于分布式機器學習的技術,并對可用的系統進行了概述,從而全面概述了該領域的最新進展

?論文地址: //www.zhuanzhi.ai/paper/161029da3ed8b6027a1199c026df7d07 ?

摘要 在過去的十年里,對人工智能的需求顯著增長,而機器學習技術的進步和利用硬件加速的能力推動了這種增長。然而,為了提高預測的質量并使機器學習解決方案在更復雜的應用中可行,需要大量的訓練數據。雖然小的機器學習模型可以用少量的數據進行訓練,但訓練大模型(如神經網絡)的輸入隨著參數的數量呈指數增長。由于處理訓練數據的需求已經超過了計算機器計算能力的增長,因此需要將機器學習的工作負載分布到多臺機器上,并將集中式的學習任務轉換為分布式系統。這些分布式系統提出了新的挑戰,首先是訓練過程的有效并行化和一致模型的創建。本文概述了分布式機器學習相對于傳統(集中式)機器學習的挑戰和機遇,討論了用于分布式機器學習的技術,并對可用的系統進行了概述,從而全面概述了該領域的最新進展。

1. 引言

近年來,新技術的快速發展導致了數據采集的空前增長。機器學習(ML)算法正越來越多地用于分析數據集和構建決策系統,因為問題的復雜性,算法解決方案是不可行的。例如控制自動駕駛汽車[23],識別語音[8],或者預測消費者行為[82]。

在某些情況下,訓練模型的長時間運行會引導解決方案設計者使用分布式系統來增加并行性和I/O帶寬總量,因為復雜應用程序所需的訓練數據很容易達到tb級的[29]。在其他情況下,當數據本身就是分布式的,或者數據太大而不能存儲在一臺機器上時,集中式解決方案甚至都不是一個選項。例如,大型企業對存儲在不同位置的[19]的數據進行事務處理,或者對大到無法移動和集中的天文數據進行事務處理[125]。

為了使這些類型的數據集可作為機器學習問題的訓練數據,必須選擇和實現能夠并行計算、數據分布和故障恢復能力的算法。在這一領域進行了豐富多樣的研究生態系統,我們將在本文中對其進行分類和討論。與之前關于分布式機器學習([120][124])或相關領域的調查([153][87][122][171][144])相比,我們對該問題應用了一個整體的觀點,并從分布式系統的角度討論了最先進的機器學習的實踐方面。

第2節深入討論了機器學習的系統挑戰,以及如何采用高性能計算(HPC)的思想來加速和提高可擴展性。第3節描述了分布式機器學習的參考體系結構,涵蓋了從算法到網絡通信模式的整個堆棧,這些模式可用于在各個節點之間交換狀態。第4節介紹了最廣泛使用的系統和庫的生態系統及其底層設計。最后,第5節討論了分布式機器學習的主要挑戰

2. 機器學習——高性能計算的挑戰?

近年來,機器學習技術在越來越復雜的應用中得到了廣泛應用。雖然出現了各種相互競爭的方法和算法,但所使用的數據表示在結構上驚人地相似。機器學習工作負載中的大多數計算都是關于向量、矩陣或張量的基本轉換——這是線性代數中眾所周知的問題。優化這些操作的需求是高性能計算社區數十年來一個非常活躍的研究領域。因此,一些來自HPC社區的技術和庫(如BLAS[89]或MPI[62])已經被機器學習社區成功地采用并集成到系統中。與此同時,HPC社區已經發現機器學習是一種新興的高價值工作負載,并開始將HPC方法應用于它們。Coates等人,[38]能夠在短短三天內,在他們的商用現貨高性能計算(COTS HPC)系統上訓練出一個10億個參數網絡。You等人[166]在Intel的Knights Landing(一種為高性能計算應用而設計的芯片)上優化了神經網絡的訓練。Kurth等人[84]證明了像提取天氣模式這樣的深度學習問題如何在大型并行高性能計算系統上進行優化和快速擴展。Yan等人[163]利用借鑒于HPC的輕量級概要分析等技術對工作負載需求進行建模,解決了在云計算基礎設施上調度深度神經網絡應用程序的挑戰。Li等人[91]研究了深度神經網絡在加速器上運行時對硬件錯誤的彈性特性,加速器通常部署在主要的高性能計算系統中。

與其他大規模計算挑戰一樣,加速工作負載有兩種基本的、互補的方法:向單個機器添加更多資源(垂直擴展或向上擴展)和向系統添加更多節點(水平擴展或向外擴展)。

3. 一個分布式機器學習的參考架構

avatar

圖1 機器學習的概述。在訓練階段,利用訓練數據和調整超參數對ML模型進行優化。然后利用訓練后的模型對輸入系統的新數據進行預測。

avatar

圖2 分布式機器學習中的并行性。數據并行性在di上訓練同一個模型的多個實例!模型并行性將單個模型的并行路徑分布到多個節點。

機器學習算法

機器學習算法學習根據數據做出決策或預測。我們根據以下三個特征對當前的ML算法進行了分類:

反饋、在學習過程中給算法的反饋類型

目的、期望的算法最終結果

方法、給出反饋時模型演化的本質

反饋 訓練算法需要反饋,這樣才能逐步提高模型的質量。反饋有幾種不同類型[165]:

包括 監督學習、無監督學習、半監督學習與強化學習

目的 機器學習算法可用于各種各樣的目的,如對圖像進行分類或預測事件的概率。它們通常用于以下任務[85]: 異常檢測、分類、聚類、降維、表示學習、回歸

每一個有效的ML算法都需要一種方法來迫使算法根據新的輸入數據進行改進,從而提高其準確性。通過算法的學習方式,我們識別出了不同的ML方法組: 演化算法、隨機梯度下降、支持向量機、感知器、神經網絡、規則機器學習、主題模型、矩陣分解。

avatar

圖3所示:基于分布程度的分布式機器學習拓撲

4. 分布式機器學習生態系統

avatar

圖4所示。分布式機器學習生態系統。通用分布式框架和單機ML系統和庫都在向分布式機器學習靠攏。云是ML的一種新的交付模型。

5 結論和當前的挑戰

分布式機器學習是一個蓬勃發展的生態系統,它在體系結構、算法、性能和效率方面都有各種各樣的解決方案。為了使分布式機器學習在第一時間成為可行的,必須克服一些基本的挑戰,例如,建立一種機制,使數據處理并行化,同時將結果組合成一個單一的一致模型。現在有工業級系統,針對日益增長的欲望與機器學習解決更復雜的問題,分布式機器學習越來越普遍和單機解決方案例外,類似于數據處理一般發展在過去的十年。然而,對于分布式機器學習的長期成功來說,仍然存在許多挑戰:性能、容錯、隱私、可移植性等。

付費5元查看完整內容
北京阿比特科技有限公司