近年來,神經網絡已成為分析復雜和抽象數據模型的有力工具。然而,它們的引入本質上增加了我們的不確定性,即分析的哪些特征是與模型相關的,哪些是由神經網絡造成的。這意味著,神經網絡的預測存在偏差,無法與數據的創建和觀察的真實本質區分開來。為了嘗試解決這些問題,我們討論了貝葉斯神經網絡:可以描述由網絡引起的不確定性的神經網絡。特別地,我們提出了貝葉斯統計框架,它允許我們根據觀察某些數據的根深蒂固的隨機性和我們缺乏關于如何創建和觀察數據的知識的不確定性來對不確定性進行分類。在介紹這些技術時,我們展示了如何從原理上獲得神經網絡預測中的誤差,并提供了描述這些誤差的兩種常用方法。我們還將描述這兩種方法在實際應用時如何存在重大缺陷,并強調在使用神經網絡時需要其他統計技術來真正進行推理。
本課程從數據科學的角度介紹概率論與統計的基本概念。目的是熟悉在數據分析中廣泛使用的概率模型和統計方法。
摘要
一個綜合的人工智能系統不僅需要用不同的感官(如視覺和聽覺)感知環境,還需要推斷世界的條件(甚至因果)關系和相應的不確定性。在過去的十年里,我們看到了許多感知任務的重大進展,比如視覺對象識別和使用深度學習模型的語音識別。然而,對于更高層次的推理,具有貝葉斯特性的概率圖模型仍然更加強大和靈活。近年來,貝葉斯深度學習作為一種將深度學習與貝葉斯模型緊密結合的統一的概率框架出現了。在這個總體框架中,利用深度學習對文本或圖像的感知可以提高更高層次推理的性能,推理過程的反饋也可以增強文本或圖像的感知。本文對貝葉斯深度學習進行了全面的介紹,并對其在推薦系統、主題模型、控制等方面的最新應用進行了綜述。此外,我們還討論了貝葉斯深度學習與其他相關課題如神經網絡的貝葉斯處理之間的關系和區別。
介紹
在過去的十年中,深度學習在許多流行的感知任務中取得了顯著的成功,包括視覺對象識別、文本理解和語音識別。這些任務對應于人工智能(AI)系統的看、讀、聽能力,它們無疑是人工智能有效感知環境所必不可少的。然而,要建立一個實用的、全面的人工智能系統,僅僅有感知能力是遠遠不夠的。首先,它應該具備思維能力。
一個典型的例子是醫學診斷,它遠遠超出了簡單的感知:除了看到可見的癥狀(或CT上的醫學圖像)和聽到患者的描述,醫生還必須尋找所有癥狀之間的關系,最好推斷出它們的病因。只有在那之后,醫生才能給病人提供醫療建議。在這個例子中,雖然視覺和聽覺的能力讓醫生能夠從病人那里獲得信息,但醫生的思維能力才是關鍵。具體來說,這里的思維能力包括識別條件依賴、因果推理、邏輯演繹、處理不確定性等,顯然超出了傳統深度學習方法的能力。幸運的是,另一種機器學習范式,概率圖形模型(PGM),在概率或因果推理和處理不確定性方面表現出色。問題在于,PGM在感知任務上不如深度學習模型好,而感知任務通常涉及大規模和高維信號(如圖像和視頻)。為了解決這個問題,將深度學習和PGM統一到一個有原則的概率框架中是一個自然的選擇,在本文中我們稱之為貝葉斯深度學習(BDL)。 在上面的例子中,感知任務包括感知病人的癥狀(例如,通過看到醫學圖像),而推理任務包括處理條件依賴性、因果推理、邏輯推理和不確定性。通過貝葉斯深度學習中有原則的整合,將感知任務和推理任務視為一個整體,可以相互借鑒。具體來說,能夠看到醫學圖像有助于醫生的診斷和推斷。另一方面,診斷和推斷反過來有助于理解醫學圖像。假設醫生可能不確定醫學圖像中的黑點是什么,但如果她能夠推斷出癥狀和疾病的病因,就可以幫助她更好地判斷黑點是不是腫瘤。 再以推薦系統為例。一個高精度的推薦系統需要(1)深入了解條目內容(如文檔和電影中的內容),(2)仔細分析用戶檔案/偏好,(3)正確評價用戶之間的相似度。深度學習的能力有效地處理密集的高維數據,如電影內容擅長第一子任務,而PGM專攻建模條件用戶之間的依賴關系,項目和評分(參見圖7為例,u, v,和R是用戶潛在的向量,項目潛在的向量,和評級,分別)擅長其他兩個。因此,將兩者統一在一個統一的概率原則框架中,可以使我們在兩個世界中都得到最好的結果。這種集成還帶來了額外的好處,可以優雅地處理推薦過程中的不確定性。更重要的是,我們還可以推導出具體模型的貝葉斯處理方法,從而得到更具有魯棒性的預測。
作為第三個例子,考慮根據從攝像機接收到的實時視頻流來控制一個復雜的動態系統。該問題可以轉化為迭代執行兩項任務:對原始圖像的感知和基于動態模型的控制。處理原始圖像的感知任務可以通過深度學習來處理,而控制任務通常需要更復雜的模型,如隱馬爾科夫模型和卡爾曼濾波器。由控制模型選擇的動作可以依次影響接收的視頻流,從而完成反饋回路。為了在感知任務和控制任務之間實現有效的迭代過程,我們需要信息在它們之間來回流動。感知組件將是控制組件估計其狀態的基礎,而帶有動態模型的控制組件將能夠預測未來的軌跡(圖像)。因此,貝葉斯深度學習是解決這一問題的合適選擇。值得注意的是,與推薦系統的例子類似,來自原始圖像的噪聲和控制過程中的不確定性都可以在這樣的概率框架下自然地處理。 以上例子說明了BDL作為一種統一深度學習和PGM的原則方式的主要優勢:感知任務與推理任務之間的信息交換、對高維數據的條件依賴以及對不確定性的有效建模。關于不確定性,值得注意的是,當BDL應用于復雜任務時,需要考慮三種參數不確定性:
通過使用分布代替點估計來表示未知參數,BDL提供了一個很有前途的框架,以統一的方式處理這三種不確定性。值得注意的是,第三種不確定性只能在BDL這樣的統一框架下處理;分別訓練感知部分和任務特定部分相當于假設它們之間交換信息時沒有不確定性。注意,神經網絡通常是過參數化的,因此在有效處理如此大的參數空間中的不確定性時提出了額外的挑戰。另一方面,圖形模型往往更簡潔,參數空間更小,提供了更好的可解釋性。
除了上述優點之外,BDL內建的隱式正則化還帶來了另一個好處。通過在隱藏單元、定義神經網絡的參數或指定條件依賴性的模型參數上施加先驗,BDL可以在一定程度上避免過擬合,尤其是在數據不足的情況下。通常,BDL模型由兩個組件組成,一個是感知組件,它是某種類型神經網絡的貝葉斯公式,另一個是任務特定組件,使用PGM描述不同隱藏或觀察變量之間的關系。正則化對它們都很重要。神經網絡通常過度參數化,因此需要適當地正則化。正則化技術如權值衰減和丟失被證明是有效地改善神經網絡的性能,他們都有貝葉斯解釋。在任務特定組件方面,專家知識或先驗信息作為一種正規化,可以在數據缺乏時通過施加先驗來指導模型。 在將BDL應用于實際任務時,也存在一些挑戰。(1)首先,設計一個具有合理時間復雜度的高效的神經網絡貝葉斯公式并非易事。這一行是由[42,72,80]開創的,但是由于缺乏可伸縮性,它沒有被廣泛采用。幸運的是,這個方向的一些最新進展似乎為貝葉斯神經網絡的實際應用提供了一些啟示。(2)第二個挑戰是如何確保感知組件和任務特定組件之間有效的信息交換。理想情況下,一階和二階信息(例如,平均值和方差)應該能夠在兩個組件之間來回流動。一種自然的方法是將感知組件表示為PGM,并將其與特定任務的PGM無縫連接,如[24,118,121]中所做的那樣。 本綜述提供了對BDL的全面概述,以及各種應用程序的具體模型。綜述的其余部分組織如下:在第2節中,我們將回顧一些基本的深度學習模型。第3節介紹PGM的主要概念和技術。這兩部分作為BDL的基礎,下一節第4節將演示統一BDL框架的基本原理,并詳細說明實現其感知組件和特定于任務的組件的各種選擇。第5節回顧了應用于不同領域的BDL模型,如推薦系統、主題模型和控制,分別展示了BDL在監督學習、非監督學習和一般表示學習中的工作方式。第6部分討論了未來的研究問題,并對全文進行了總結。
結論和未來工作
BDL致力于將PGM和NN的優點有機地整合在一個原則概率框架中。在這項綜述中,我們確定了這種趨勢,并回顧了最近的工作。BDL模型由感知組件和任務特定組件組成;因此,我們分別描述了過去幾年開發的兩個組件的不同實例,并詳細討論了不同的變體。為了學習BDL中的參數,人們提出了從塊坐標下降、貝葉斯條件密度濾波、隨機梯度恒溫器到隨機梯度變分貝葉斯等多種類型的算法。 BDL從PGM的成功和最近在深度學習方面有前景的進展中獲得了靈感和人氣。由于許多現實世界的任務既涉及高維信號(如圖像和視頻)的有效感知,又涉及隨機變量的概率推理,因此BDL成為利用神經網絡的感知能力和PGM的(條件和因果)推理能力的自然選擇。在過去的幾年中,BDL在推薦系統、主題模型、隨機最優控制、計算機視覺、自然語言處理、醫療保健等各個領域都有成功的應用。在未來,我們不僅可以對現有的應用進行更深入的研究,還可以對更復雜的任務進行探索。此外,最近在高效BNN (BDL的感知組件)方面的進展也為進一步提高BDL的可擴展性奠定了基礎。
機器學習方法以有限的資源快速地從大量的數據中提取價值。它們是在廣泛的工業應用中建立起來的工具,包括搜索引擎、DNA測序、股票市場分析和機器人移動,它們的使用正在迅速蔓延。了解這些方法的人可以選擇有回報的工作。這個動手實踐書冊為計算機科學學生打開這些機會。它是專為具有有限的線性代數和微積分背景的大四本科生和碩士生設計的。它在圖模型的框架內開發了從基本推理到高級技術的所有內容。學生們學到的不僅僅是一系列的技巧,他們還會發展分析和解決問題的技巧,這些技巧使他們能夠適應真實的世界。許多例子和練習,以計算機為基礎和理論,包括在每一章。為學生和教師的資源,包括一個MATLAB工具箱,可在網上獲得。
作為布爾邏輯的替代
雖然邏輯是理性推理的數學基礎和計算的基本原理,但它僅限于信息既完整又確定的問題。然而,許多現實世界的問題,從金融投資到電子郵件過濾,本質上是不完整或不確定的。概率論和貝葉斯計算共同提供了一個處理不完整和不確定數據的框架。
不完全和不確定數據的決策工具和方法
貝葉斯編程強調概率是布爾邏輯的替代選擇,它涵蓋了為真實世界的應用程序構建概率程序的新方法。本書由設計并實現了一個高效概率推理引擎來解釋貝葉斯程序的團隊編寫,書中提供了許多Python示例,這些示例也可以在一個補充網站上找到,該網站還提供了一個解釋器,允許讀者試驗這種新的編程方法。
原則和建模
只需要一個基本的數學基礎,本書的前兩部分提出了一種新的方法來建立主觀概率模型。作者介紹了貝葉斯編程的原理,并討論了概率建模的良好實踐。大量簡單的例子突出了貝葉斯建模在不同領域的應用。
形式主義和算法
第三部分綜合了已有的貝葉斯推理算法的工作,因為需要一個高效的貝葉斯推理引擎來自動化貝葉斯程序中的概率演算。對于想要了解貝葉斯編程的形式主義、主要的概率模型、貝葉斯推理的通用算法和學習問題的讀者,本文提供了許多參考書目。
常見問題
第四部分連同詞匯表包含了常見問題的答案。作者比較了貝葉斯規劃和可能性理論,討論了貝葉斯推理的計算復雜性,討論了不完全性的不可約性,討論了概率的主觀主義和客觀主義認識論。
貝葉斯計算機的第一步
創建一個完整的貝葉斯計算框架需要新的建模方法、新的推理算法、新的編程語言和新的硬件。本書著重于方法論和算法,描述了實現這一目標的第一步。它鼓勵讀者探索新興領域,例如仿生計算,并開發新的編程語言和硬件架構。
這本專著,我通過在線凸優化的現代視角介紹了在線學習的基本概念。這里,在線學習指的是在最壞情況假設下的后悔最小化框架。我提出了凸損失在線學習的一階和二階算法,在歐幾里德和非歐幾里德設置。所有的算法都清晰地呈現為在線鏡像下降或跟隨正則化及其變體的實例化。特別關注的是通過自適應和無參數在線學習算法來調整算法的參數和在無界域內學習的問題。非凸損失通過凸替代損失和隨機化處理。本文還簡要討論了強盜設置問題,討論了具有對抗性和隨機性的多武裝強盜問題。這些筆記不需要凸分析的先驗知識,所有必需的數學工具都得到了嚴格的解釋。此外,所有的證明都經過精心挑選,盡可能地簡單和簡短。
最新的技術進步提高了交通運輸的質量。新的數據驅動方法為所有基于控制的系統(如交通、機器人、物聯網和電力系統)帶來了新的研究方向。將數據驅動的應用與運輸系統相結合在最近的運輸應用程序中起著關鍵的作用。本文綜述了基于深度強化學習(RL)的交通控制的最新應用。其中,詳細討論了基于深度RL的交通信號控制(TSC)的應用,這在文獻中已經得到了廣泛的研究。綜合討論了TSC的不同問題求解方法、RL參數和仿真環境。在文獻中,也有一些基于深度RL模型的自主駕駛應用研究。我們的調查廣泛地總結了這一領域的現有工作,并根據應用程序類型、控制模型和研究的算法對它們進行了分類。最后,我們討論了基于深度可編程邏輯語言的交通應用所面臨的挑戰和有待解決的問題。
高斯過程(GPs)為核機器的學習提供了一種有原則的、實用的、概率的方法。在過去的十年中,GPs在機器學習社區中得到了越來越多的關注,這本書提供了GPs在機器學習中理論和實踐方面長期需要的系統和統一的處理。該書是全面和獨立的,針對研究人員和學生在機器學習和應用統計學。
這本書處理監督學習問題的回歸和分類,并包括詳細的算法。提出了各種協方差(核)函數,并討論了它們的性質。從貝葉斯和經典的角度討論了模型選擇。討論了許多與其他著名技術的聯系,包括支持向量機、神經網絡、正則化網絡、相關向量機等。討論了包括學習曲線和PAC-Bayesian框架在內的理論問題,并討論了幾種用于大數據集學習的近似方法。這本書包含說明性的例子和練習,和代碼和數據集在網上是可得到的。附錄提供了數學背景和高斯馬爾可夫過程的討論。
概率圖模型是機器學習中的一種技術,它使用圖論的概念來簡明地表示和最佳地預測數據問題中的值。
圖模型為我們提供了在數據中發現復雜模式的技術,廣泛應用于語音識別、信息提取、圖像分割和基因調控網絡建模等領域。
這本書從概率論和圖論的基礎開始,然后繼續討論各種模型和推理算法。所有不同類型的模型都將與代碼示例一起討論,以創建和修改它們,并在它們上運行不同的推理算法。有一整章是關于樸素貝葉斯模型和隱馬爾可夫模型的。這些模型已經通過實際例子進行了詳細的討論。
你會學到什么
圖模型中的示例算法 通過真實的例子來掌握樸素貝葉斯的細節 使用Python中的各種庫部署PGMs 獲得隱馬爾可夫模型的工作細節與現實世界的例子
詳細 概率圖模型是機器學習中的一種技術,它使用圖論的概念來簡潔地表示和最佳地預測數據問題中的值。在現實問題中,往往很難選擇合適的圖模型和合適的推理算法,這對計算時間和精度有很大的影響。因此,了解這些算法的工作細節是至關重要的。
這本書從概率論和圖論的基礎開始,然后繼續討論各種模型和推理算法。所有不同類型的模型都將與代碼示例一起討論,以創建和修改它們,并在它們上運行不同的推理算法。有一個完整的章節專門討論最廣泛使用的網絡樸素貝葉斯模型和隱馬爾可夫模型(HMMs)。這些模型已經通過實際例子進行了詳細的討論。
風格和方法 一個易于遵循的指南,幫助您理解概率圖模型使用簡單的例子和大量的代碼例子,重點放在更廣泛使用的模型。
【導讀】紐約大學的Andrew Gordon Wilson和Pavel Izmailov在論文中從概率角度的泛化性對貝葉斯深度學習進行了探討。貝葉斯方法的關鍵區別在于它是基于邊緣化,而不是基于最優化的,這為它帶來了許多優勢。
貝葉斯方法的關鍵區別是邊緣化,而不是使用單一的權重設置。貝葉斯邊緣化可以特別提高現代深度神經網絡的準確性和校準,這是典型的不由數據完全確定,可以代表許多令人信服的但不同的解決方案。我們證明了深度集成為近似貝葉斯邊緣化提供了一種有效的機制,并提出了一種相關的方法,通過在沒有顯著開銷的情況下,在吸引域邊緣化來進一步改進預測分布。我們還研究了神經網絡權值的模糊分布所隱含的先驗函數,從概率的角度解釋了這些模型的泛化性質。從這個角度出發,我們解釋了那些對于神經網絡泛化來說神秘而獨特的結果,比如用隨機標簽來擬合圖像的能力,并證明了這些結果可以用高斯過程來重現。最后,我們提供了校正預測分布的貝葉斯觀點。