這本專著,我通過在線凸優化的現代視角介紹了在線學習的基本概念。這里,在線學習指的是在最壞情況假設下的后悔最小化框架。我提出了凸損失在線學習的一階和二階算法,在歐幾里德和非歐幾里德設置。所有的算法都清晰地呈現為在線鏡像下降或跟隨正則化及其變體的實例化。特別關注的是通過自適應和無參數在線學習算法來調整算法的參數和在無界域內學習的問題。非凸損失通過凸替代損失和隨機化處理。本文還簡要討論了強盜設置問題,討論了具有對抗性和隨機性的多武裝強盜問題。這些筆記不需要凸分析的先驗知識,所有必需的數學工具都得到了嚴格的解釋。此外,所有的證明都經過精心挑選,盡可能地簡單和簡短。
【導讀】機器學習暑期學校(MLSS)系列開始于2002年,致力于傳播統計機器學習和推理的現代方法。今年因新冠疫情在線舉行,從6月28號到7月10號講述了眾多機器學習主題。本文推薦來自米蘭大學Nicoló Cesa-Bianchi教授講述《統計學習理論》,非常干貨,包括:
近年來,神經網絡已成為分析復雜和抽象數據模型的有力工具。然而,它們的引入本質上增加了我們的不確定性,即分析的哪些特征是與模型相關的,哪些是由神經網絡造成的。這意味著,神經網絡的預測存在偏差,無法與數據的創建和觀察的真實本質區分開來。為了嘗試解決這些問題,我們討論了貝葉斯神經網絡:可以描述由網絡引起的不確定性的神經網絡。特別地,我們提出了貝葉斯統計框架,它允許我們根據觀察某些數據的根深蒂固的隨機性和我們缺乏關于如何創建和觀察數據的知識的不確定性來對不確定性進行分類。在介紹這些技術時,我們展示了如何從原理上獲得神經網絡預測中的誤差,并提供了描述這些誤差的兩種常用方法。我們還將描述這兩種方法在實際應用時如何存在重大缺陷,并強調在使用神經網絡時需要其他統計技術來真正進行推理。
【導讀】紐約大學開設的離散數學課程,這是一門運用于計算機科學的離散數學課程。這只是一門一學期的課程,所以有很多話題是它沒有涉及到的,或者沒有深入討論。但我們希望這能給你一個技能的基礎,你可以在你需要的時候建立,特別是給你一點數學的成熟——對數學是什么和數學定義和證明如何工作的基本理解。
強化學習是現在人工智能領域里面最活躍的研究領域之一,它是一種用于學習的計算方法,其中會有一個代理在與復雜的不確定環境交互時試圖最大化其所收到的獎勵。現在,如果你是一個強化學習的初學者,由 Richard Sutton 和 Andrew Barto 合著的《Reinforcement Learning : An Introduction》可能就是你的最佳選擇。這本書提供了關于強化學習的簡單明了的關鍵思想和算法的解釋。他們討論了該領域的知識基礎的歷史延伸到了最新的發展的應用。
本書全文共分三部分,17章內容
第一部分:列表(Tabular)解決法,第一章描述了強化學習問題具體案例的解決方案,第二章描述了貫穿全書的一般問題制定——有限馬爾科夫決策過程,其主要思想包括貝爾曼方程(Bellman equation)和價值函數,第三、四、五章介紹了解決有限馬爾科夫決策問題的三類基本方法:動態編程,蒙特卡洛方法、時序差分學習。三者各有其優缺點,第六、七章介紹了上述三類方法如何結合在一起進而達到最佳效果。第六章中介紹了可使用適合度軌跡(eligibility traces)把蒙特卡洛方法和時序差分學習的優勢整合起來。第七章中表明時序差分學習可與模型學習和規劃方法(比如動態編程)結合起來,獲得一個解決列表強化學習問題的完整而統一的方案。
第二部分:近似求解法,從某種程度上講只需要將強化學習方法和已有的泛化方法結合起來。泛化方法通常稱為函數逼近,從理論上看,在這些領域中研究過的任何方法都可以用作強化學習算法中的函數逼近器,雖然實際上有些方法比起其它更加適用于強化學習。在強化學習中使用函數逼近涉及一些在傳統的監督學習中不常出現的新問題,比如非穩定性(nonstationarity)、引導(bootstrapping)和目標延遲(delayed targets)。這部分的五章中先后介紹這些以及其它問題。首先集中討論在線(on-policy)訓練,而在第九章中的預測案例其策略是給定的,只有其價值函數是近似的,在第十章中的控制案例中最優策略的一個近似已經找到。第十一章討論函數逼近的離線(off-policy)學習的困難。第十二章將介紹和分析適合度軌跡(eligibility traces)的算法機制,它能在多個案例中顯著優化多步強化學習方法的計算特性。這一部分的最后一章將探索一種不同的控制、策略梯度的方法,它能直接逼近最優策略且完全不需要設定近似值函數(雖然如果使用了一個逼近價值函數,效率會高得多)。
第三部分:深層次研究,這部分把眼光放到第一、二部分中介紹標準的強化學習思想之外,簡單地概述它們和心理學以及神經科學的關系,討論一個強化學習應用的采樣過程,和一些未來的強化學習研究的活躍前沿。
決策理論是現代人工智能和經濟學的基礎。本課程主要從統計學的角度,也從哲學的角度,為決策理論打下堅實的基礎。本課程有兩個目的:
課程可分為兩部分。
第一部分,我們介紹了主觀概率和效用的概念,以及如何用它們來表示和解決決策問題。然后討論未知參數的估計和假設檢驗。最后,我們討論了順序抽樣、順序實驗,以及更一般的順序決策。
第二部分是不確定性下的決策研究,特別是強化學習和專家咨詢學習。首先,我們研究幾個有代表性的統計模型。然后,我們給出了使用這些模型做出最優決策的算法的概述。最后,我們來看看學習如何根據專家的建議來行動的問題,這個領域最近在在線廣告、游戲樹搜索和優化方面有很多應用。
摘要:
本文將優化描述為一個過程。在許多實際應用中,環境是如此復雜,以致于無法制定一個全面的理論模型,并使用經典算法理論和數學優化。采取一種穩健的方法是必要的,也是有益的,方法是應用一種不斷學習的優化方法,在觀察到問題的更多方面時從經驗中學習。這種將優化視為一個過程的觀點在各個領域都很突出,并在建模和系統方面取得了一些驚人的成功,現在它們已經成為我們日常生活的一部分。
作者介紹:
Elad Hazan是普林斯頓大學計算機科學教授。他于2015年從Technion畢業,當時他是該校運籌學副教授。他的研究重點是機器學習和優化的基本問題的算法設計和分析。他的貢獻包括合作開發用于訓練學習機器的AdaGrad算法,以及第一個用于凸優化的次線性時間算法。他曾(兩次)獲得2012年IBM Goldberg最佳論文獎,以表彰他對機器學習的次線性時間算法的貢獻。2008年,他還獲得了歐洲研究理事會(European Research Council)的一筆撥款、瑪麗?居里(Marie Curie)獎學金和谷歌研究獎(兩次)。他是計算學習協會的指導委員會成員,并擔任COLT 2015的項目主席。
本文為大家帶來了一份斯坦福大學的最新課程CS234——強化學習,主講人是斯坦福大學Emma Brunskill,她是斯坦福大學計算機科學助理教授,任職斯坦福大學人類影響力實驗室、斯坦福人工智能實驗室以及統計機器學習小組,主要研究強化學習。要實現人工智能的夢想和影響,需要能夠學會做出正確決策的自主系統。強化學習是這樣做的一個強有力的范例,它與大量的任務相關,包括機器人、游戲、消費者建模和醫療保健。本課程通過講課、書面作業和編碼作業的結合,學生將精通強化學習的關鍵思想和技術。
1.課程介紹(Description)
要實現人工智能的夢想和影響,需要能夠學會做出正確決策的自主系統。強化學習是這樣做的一個強有力的范例,它與大量的任務相關,包括機器人、游戲、消費者建模和醫療保健。本課程將為強化學習領域提供扎實的介紹,學生將學習包括通用化和探索在內的核心挑戰和方法。通過講課、書面作業和編碼作業的結合,學生將精通強化學習的關鍵思想和技術。作業將包括強化學習和深度強化學習的基礎,這是一個極有前途的新領域,將深度學習技術與強化學習相結合。此外,學生將通過期末專題來增進對強化學習領域的理解。
課程地址:
//web.stanford.edu/class/cs234/schedule.html
2.預備知識(Prerequisites)
1)熟練Python
所有的課程都將使用Python(使用numpy和Tensorflow,也可以使用Keras)。這里有一個針對那些不太熟悉Python的人的教程。如果你有很多使用不同語言(如C/ c++ / Matlab/ Javascript)的編程經驗,可能會很好。
2)大學微積分,線性代數(如 MATH 51, CME 100)
你應該能夠熟練地進行(多變量)求導,理解矩陣/向量符號和運算。
3)基本概率及統計(例如CS 109 或同等課程)
你應該了解基本的概率,高斯分布,均值,標準差等。
4)機器學習基礎
我們將闡述成本函數,求導數,用梯度下降法進行優化。CS 221或CS 229均可涵蓋此背景。使用一些凸優化知識,一些優化技巧將更加直觀。
3.主講:Emma Brunskill
Emma Brunskill是斯坦福大學計算機科學助理教授,任職斯坦福大學人類影響力實驗室、斯坦福人工智能實驗室以及統計機器學習小組。
主要研究強化學習系統,以幫助人們更好地生活。并處理一些關鍵技術。最近的研究重點包括:1)有效強化學習的基礎。一個關鍵的挑戰是要了解代理商如何平衡勘探與開發之間的局限性。2)如果要進行順序決策,該怎么辦。利用巨大數量的數據來改善在醫療保健,教育,維護和許多其他應用程序中做出的決策,這是一個巨大的機會。這樣做需要假設/反事實推理,以便在做出不同決定時對潛在結果進行推理。3)人在回路系統。人工智能具有極大地擴大人類智能和效率的潛力。我們正在開發一個系統,用其他眾包商(CHI 2016)生產的(機器)固化材料對眾包商進行訓練,并確定何時擴展系統規格以包括新內容(AAAI 2017)或傳感器。我們也有興趣研究確保機器學習系統在人類用戶的意圖方面表現良好(Arxiv 2017),也被稱為安全和公平的機器學習。
個人主頁:
4.課程安排
01: 強化學習導論(Introduction to Reinforcement Learning)
02: 表格MDP規劃(Tabular MDP planning)
03: 表格RL政策評估(Tabular RL policy evaluation)
04: Q-learning
05: 帶函數逼近的強化學習(RL with function approximation)
06: 帶函數逼近的強化學習(RL with function approximation)
07: 帶函數逼近的強化學習(RL with function approximation)
08: 從馬爾可夫決策過程到強化學習(Policy search)
09: 從馬爾可夫決策過程到強化學習(Policy search)
10: 課堂中期(In-class Midterm)
11: 模仿學習/探索(Imitation learning/Exploration)
12: 探索/開發(Exploration/Exploitation)
13: 探索/開發(Exploration/Exploitation)
14: 批處理強化學習(Batch Reinforcement Learning)
15: 嘉賓講座:Craig Boutilier(Guest Lecture: Craig Boutilier)
16: 課堂測驗(In-class Quiz)
17: 蒙特卡洛樹搜索算法(Monte Carlo Tree Search)
18: 墻報展示(Poster presentations)
簡介: 作者通過在線凸優化的現代觀點介紹在線學習的基本概念。這里,在線學習是指在最壞情況下的假設中將regret最小化的框架。作者介紹了在歐幾里得和非歐幾里得設置下具有凸損失的在線學習的一階和二階算法。清楚地表示了所有算法,以表示Online Mirror Descent或遵循正規領導及其變體。通過自適應和無參數的在線學習算法,特別關注調整算法參數和在無界域中學習的問題。非凸損失通過凸智能損失和隨機化處理。還簡要討論了非凸的情況,這些說明不需要先有凸分析的知識,并且對所有所需的數學工具進行了嚴格的解釋。而且,所有的防護措施都經過仔細選擇,以使其盡可能的簡單。
作者介紹: Francesco Orabona,目前是波士頓大學電氣與計算機工程系的助理教授, 之前,曾在石溪大學,紐約雅虎研究中心,芝加哥的豐田技術學院,米蘭大學,IDIAP研究所和熱那亞大學任教。研究興趣是無參數機器學習,尤其對在線學習,批處理/隨機優化和統計學習理論感興趣。個人主頁:
目錄:
書名: Interactive Linear Algebra
簡介
該書一改常態 ,獨辟蹊徑,不拘泥于線性代數概念的介紹,注重線性代數的實際求解,力求實戰,作者主張利用各種線性代數工具,將書中的知識加以可視化運行,使讀者真正學習到實際有用的知識。這篇文章在本質上大致是半計算半概念的。這個主要目標是提供一個線性代數工具庫,更重要的是,教授一個概念框架,以理解在給定的上下文中應該應用哪些工具。
《交互式線性代數》的作者是Dan Margalit 和 Joseph Rabinoff,均來自喬治亞理工學院的數學學院。該書是佐治亞理工Math 1553的配套教材,共有455頁,包含了140多個交互demo,可以讓讀者直觀地理解代數背后的幾何性質。
作者
Dan Margalit,來自喬治亞理工學院(美國大學)數學院,是喬治亞理工學院數學學院的教授,研究是低維拓撲與幾何群理論的交叉。主要研究曲面類群的映射,即曲面的對稱性。
Joseph Rabinoff,來自喬治亞理工學院(美國大學)數學院,是喬治亞理工學院數學學院的教授。
論文題目:Acquiring Diverse Robot Skills via Maximum Entropy Deep Reinforcement Learning
作者:Tuomas Haarnoja
導師:Pieter Abbeel and Sergey Levine
網址:
//www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-176.html
論文摘要:
在本文中,我們研究了最大熵框架如何提供有效的深度強化學習(deep reinforcement learning, deep RL)算法,以連貫性地解決任務并有效地進行樣本抽取。這個框架有幾個有趣的特性。首先,最優策略是隨機的,改進了搜索,防止了收斂到局部最優,特別是當目標是多模態的時候。其次,熵項提供了正則化,與確定性方法相比,具有更強的一致性和魯棒性。第三,最大熵策略是可組合的,即可以組合兩個或兩個以上的策略,并且所得到的策略對于組成任務獎勵的總和是近似最優的。第四,最大熵RL作為概率推理的觀點為構建能夠解決復雜和稀疏獎勵任務的分層策略提供了基礎。在第一部分中,我們將在此基礎上設計新的算法框架,從soft Q學習的學習表現力好的能量策略、對于 sodt actor-critic提供簡單和方便的方法,到溫度自動調整策略, 幾乎不需要hyperparameter調優,這是最重要的一個實際應用的調優hyperparameters可以非常昂貴。在第二部分中,我們將討論由最大熵策略固有的隨機特性所支持的擴展,包括組合性和層次學習。我們將演示所提出的算法在模擬和現實機器人操作和移動任務中的有效性。