論文題目:Acquiring Diverse Robot Skills via Maximum Entropy Deep Reinforcement Learning
作者:Tuomas Haarnoja
導師:Pieter Abbeel and Sergey Levine
網址:
//www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-176.html
論文摘要:
在本文中,我們研究了最大熵框架如何提供有效的深度強化學習(deep reinforcement learning, deep RL)算法,以連貫性地解決任務并有效地進行樣本抽取。這個框架有幾個有趣的特性。首先,最優策略是隨機的,改進了搜索,防止了收斂到局部最優,特別是當目標是多模態的時候。其次,熵項提供了正則化,與確定性方法相比,具有更強的一致性和魯棒性。第三,最大熵策略是可組合的,即可以組合兩個或兩個以上的策略,并且所得到的策略對于組成任務獎勵的總和是近似最優的。第四,最大熵RL作為概率推理的觀點為構建能夠解決復雜和稀疏獎勵任務的分層策略提供了基礎。在第一部分中,我們將在此基礎上設計新的算法框架,從soft Q學習的學習表現力好的能量策略、對于 sodt actor-critic提供簡單和方便的方法,到溫度自動調整策略, 幾乎不需要hyperparameter調優,這是最重要的一個實際應用的調優hyperparameters可以非常昂貴。在第二部分中,我們將討論由最大熵策略固有的隨機特性所支持的擴展,包括組合性和層次學習。我們將演示所提出的算法在模擬和現實機器人操作和移動任務中的有效性。
使用生成模型的無監督學習具有發現3D場景豐富表示的潛力。這種神經場景表示可能隨后支持各種下游任務,從機器人技術到計算機圖形再到醫學成像。然而,現有的方法忽略了場景最基本的屬性之一:三維結構。在這項工作中,我們使神經場景表征與一個感應偏差的三維結構的情況。我們證明了這種歸納偏差如何使無監督的發現幾何和外觀,只給定的二維圖像。通過學習一組這樣的三維結構感知神經表征的分布,我們可以執行聯合重建的三維形狀和外觀只給出一個單一的二維觀察。我們表明,在這個過程中學習到的特征使整個類對象的三維語義分割成為可能,只訓練了30個帶標記的例子,證明了三維形狀、外觀和語義分割之間的緊密聯系。最后,我們討論了場景表示學習在計算機視覺本身中的本質和潛在作用,并討論了未來工作的前景。
導航是移動機器人所需要的最基本的功能之一,允許它們從一個源穿越到一個目的地。傳統的辦法嚴重依賴于預先確定的地圖的存在,這種地圖的取得時間和勞力都很昂貴。另外,地圖在獲取時是準確的,而且由于環境的變化會隨著時間的推移而退化。我們認為,獲取高質量地圖的嚴格要求從根本上限制了機器人系統在動態世界中的可實現性。本論文以無地圖導航的范例為動力,以深度強化學習(DRL)的最新發展為靈感,探討如何開發實用的機器人導航。
DRL的主要問題之一是需要具有數百萬次重復試驗的不同實驗設置。這顯然是不可行的,從一個真實的機器人通過試驗和錯誤,所以我們反而從一個模擬的環境學習。這就引出了第一個基本問題,即彌合從模擬環境到真實環境的現實差距,該問題將在第3章討論。我們把重點放在單眼視覺避障的特殊挑戰上,把它作為一個低級的導航原語。我們開發了一種DRL方法,它在模擬世界中訓練,但可以很好地推廣到現實世界。
在現實世界中限制移動機器人采用DRL技術的另一個問題是訓練策略的高度差異。這導致了較差的收斂性和較低的整體回報,由于復雜和高維搜索空間。在第4章中,我們利用簡單的經典控制器為DRL的局部導航任務提供指導,避免了純隨機的初始探索。我們證明,這種新的加速方法大大減少了樣本方差,并顯著增加了可實現的平均回報。
我們考慮的最后一個挑戰是無上限導航的稀疏視覺制導。在第五章,我們提出了一種創新的方法來導航基于幾個路點圖像,而不是傳統的基于視頻的教學和重復。我們證明,在模擬中學習的策略可以直接轉移到現實世界,并有能力很好地概括到不可見的場景與環境的最小描述。
我們開發和測試新的方法,以解決障礙規避、局部引導和全球導航等關鍵問題,實現我們的愿景,實現實際的機器人導航。我們將展示如何將DRL作為一種強大的無模型方法來處理這些問題
【簡介】隨著深度表示學習的發展,強化學習(RL)已經成為了一個強大的學習框架,其可以在高維度空間中學習復雜的規則。這篇綜述總結了深度強化學習(DRL)算法,提供了采用強化學習的自動駕駛任務的分類方法,重點介紹了算法上的關鍵挑戰和在現實世界中將強化學習部署在自動駕駛方面的作用,以及最終評估,測試和加強強化學習和模仿學習健壯性的現有解決方案。
論文鏈接: //arxiv.org/abs/2002.00444
介紹:
自動駕駛(AD)系統由多個感知級任務組成,由于采用了深度學習架構,這些任務現在已經達到了很高的精度。除了感知任務之外,自主駕駛系統還包含多個其他任務,傳統的監督學習方法已經不再適用。首先,當對agent行為的預測發生變化時,從自動駕駛agent所處的環境中接收到的未來傳感器觀察到的結果,例如獲取市區最佳駕駛速度的任務。其次,監督信號(如碰撞時間(TTC),相對于agent最佳軌跡的側向誤差)表示agent的動態變化以及環境中的不確定性。這些問題都需要定義隨機損失函數來使其最大化。最后,agent需要學習當前環境新的配置參數,預測其所處的環境中每一時刻的最優決策。這表明在觀察agent和其所處環境的情況下,一個高維度的空間能夠給出大量唯一的配置參數。在這些場景中,我們的目標是解決一個連續決策的問題。在這篇綜述中,我們將介紹強化學習的概念,強化學習是一種很有前景的解決方案和任務分類方法,特別是在驅動策略、預測感知、路徑規劃以及低層控制器設計等領域。我們還重點回顧了強化學習在自動駕駛領域當中各種現實的應用。最后,我們通過闡述應用當前諸如模仿學習和Q學習等強化學習算法時所面臨的算力挑戰和風險來激勵使用者對強化學習作出改進。
章節目錄:
section2: 介紹一個典型的自動駕駛系統及其各個組件。
section3: 對深度強化學習進行介紹,并簡要討論關鍵概念。
section4: 探討在強化學習基本框架上對其進行更深層次,更加復雜的擴展。
section5: 對強化學習用于自動駕駛領域的所面臨的問題提供一個概述。
section6: 介紹將強化學習部署到真實世界自動駕駛系統中所面臨的挑戰。
section7: 總結
Deep Reinforcement Learning via Policy Optimization
MIT新書《強化學習與最優控制》,REINFORCEMENT LEARNING AND OPTIMAL CONTROL //web.mit.edu/dimitrib/www/Slides_Lecture13_RLOC.pdf
主題: Meta-Learning: from Few-Shot Learning to Rapid Reinforcement Learning
摘要: 近年來,在數據豐富的領域,諸如深度神經網絡等高容量模型已經使機器學習技術變得非常強大。然而,數據稀缺的領域已被證明具有挑戰性的這種方法,因為高容量函數逼近嚴重依賴于大數據集的泛化。這可能對從有監督的醫學圖像處理到強化學習等領域構成重大挑戰,在這些領域,真實世界的數據收集(如機器人)構成重大的后勤挑戰。元學習或少鏡頭學習為這個問題提供了一個潛在的解決方案:通過學習從許多以前的任務中跨數據學習,很少鏡頭元學習算法能夠發現任務之間的結構,從而實現新任務的快速學習。本教程的目的是為元學習提供一個統一的視角:向觀眾講授現代方法,描述圍繞這些技術的概念和理論原則,介紹這些方法以前的應用領域,并討論了該地區存在的基本問題和挑戰。我們希望本教程對那些在其他領域有專長的機器學習研究人員都有用,同時也為元學習研究人員提供了一個新的視角。總而言之,我們的目標是為受眾成員提供將元學習應用到他們自己的應用中的能力,并開發新的元學習算法和理論分析,這些驅動是由現有工作的挑戰和局限所驅動的。我們將提供一個統一的視角,說明各種元學習算法如何能夠從小數據集中學習,概述元學習能夠而且不容易應用的應用,并討論這一子領域的突出挑戰和前沿。
邀請嘉賓: Chelsea Finn是Google Brain的研究科學家,也是加州大學伯克利分校的博士后學者。2019年9月,她將以助理教授的身份加入斯坦福大學計算機科學系。芬恩的研究興趣在于通過學習和互動,使機器人和其他智能體發展出廣泛的智能行為。為此,芬恩開發了深度學習算法,用于同時學習機器人操作技能中的視覺感知和控制,用于可伸縮獲取非線性回報函數的逆強化方法,以及能夠快速實現的元學習算法,在視覺感知和深度強化學習中,很少有鏡頭適應。芬恩在麻省理工學院獲得了EECS學士學位,在加州大學伯克利分校獲得了CS博士學位。她的研究成果已通過NSF研究生獎學金、Facebook獎學金、C.V.Ramamoorthy杰出研究獎和麻省理工35歲以下技術評論獎獲得認可,她的研究成果已被包括《紐約時報》、《連線》和彭博社在內的多家媒體報道。
Sergey Levine 2009年獲得斯坦福大學計算機科學學士和碩士學位,2014年獲得斯坦福大學計算機科學博士學位。他于2016年秋季加入加州大學伯克利分校電氣工程與計算機科學系。他的工作重點是決策和控制的機器學習,重點是深度學習和強化學習算法。他的工作包括自主機器人和車輛,以及計算機視覺和圖形。他的研究工作包括開發將感知和控制相結合的深度神經網絡策略的端到端訓練算法、反向強化學習的可擴展算法、深度強化學習算法等。