我們所處的時代,技術變革日新月異,影響著我們生活和社會的方方面面。這一點在信息技術(IT)領域尤為明顯,國防領域正努力跟上商業領域不斷取得的顯著發展。這與 30 年前的冷戰時期大相徑庭,當時軍方主導技術發展,對這種變革采取深思熟慮的方法,并小心翼翼地管理各種干擾。
與國防有關的商業領域最新出現的顛覆性技術包括先進計算、"大數據 "分析、人工智能(AI)、自動駕駛和機器人技術。在這方面,2018 年《美國國防戰略》反映了當代的許多戰略思維,它宣稱:開發[這些]新技術的動力是無停歇的,以較低的準入門檻擴展到更多行為體,并以不斷加快的速度....。語氣中充滿憂慮,因為這些'技術'是'能夠打贏未來戰爭'所必需的。
上一段中提到的五項 "技術 "并不具有嚴格的可比性。有些是技術,但有些是其他技術可能賦予未來作戰人員的能力。事實上,某些能力,如自主能力,已經投入使用,而且已經使用了幾十年。這種將技術與軍事能力混為一談的做法往往會阻礙當前的國防辯論,而不是使其更加尖銳。相反,"算法戰爭 "這一新術語可能更有助于描述和討論由技術推動的最新作戰概念。
算法是機器用來解決問題的一系列指令和規則。它們將輸入轉化為輸出,因此是現代信息技術和新型智能機器的重要概念和技術基石。算法也可能成為未來作戰的概念和技術基石。
該術語目前的使用源于美國國防部的 "Project Maven "項目。該項目旨在利用先進計算技術訓練的人工智能系統自主分析大數據。顯而易見的是,這項工作需要整合多種不同的技術和功能。Maven 的成功取決于所使用算法的性能。
無論使用何種術語,智能機器對既有的部隊結構和作戰的實際影響都是不確定的。算法戰是意味著可以把事情做得更好,還是相反,可以把事情做得更好?目前的作戰方式只是簡單的演變,還是會因為智能機器的加入而發生革命性的變化?智能機器是否會改變我們當前的部隊結構模式?本文將探討這些問題以及更多。
第 2 章深入探討了算法戰爭的技術基礎,重點關注具有學習和突發特性的機器;這些機器在本質上與我們目前的可編程機器有很大不同。第 3 章探討了影響算法戰爭實施的實際問題,以及人機界面對于贏得戰爭的明顯、或許是意想不到的重要性。第 4 章研究算法戰爭,討論算法戰爭如何增強我們當前的作戰概念,以及如何從根本上改變這些概念。算法戰可能會取代我們當前以網絡為中心的戰爭概念。第 5 章探討了大國的想法;都在利用算法戰爭的獨特應用進行社會管理。第 6 章探討了倫理和相關武裝沖突法問題。
重要的是,本文試圖切實關注新興和可能出現的智能機器技術在作戰中的應用。由于商業原因,虛構的書籍和電影仍然對機器人士兵與人類進行最后決戰的概念非常著迷。正如本文所言,這些論壇所涉及的技術仍然遙不可及。然而,雖然《終結者》中的半機械人和賽博迪恩公司的天網都是虛構的,但今天的智能手機和互聯網搜索引擎已經使用了智能機器技術,中國政府的天網智能監控系統已經投入使用,"Maven項目"向美國空軍提供人工智能分析系統。智能機器已經到來。算法戰爭現在已經非常現實,需要深入的專業考慮。
物聯網(IoT)和大數據描述了許多行業對數據收集、通信和分析的關注。利用射頻識別(RFID)等工具,可以最大限度地發揮物聯網和大數據的潛在效益,將設備相互連接起來,并為終端用戶提供與技術互動的有意義的方式。醫療保健行業已經徹底改變了其物聯網方法,希望能夠節約成本、提高效率和改善醫療質量。海軍醫學在大數據方面已有一定的歷史,在未來,技術與醫療保健之間可能會有更多的交叉。在采用新技術的過程中,可能會遇到技術變革的阻力。阻力的類型、強度及其調解在很大程度上取決于領導者如何處理最終用戶的阻力和接受程度。引入新的 RFID 技術有可能對手術工具消毒、病人和員工追蹤等流程產生積極影響。展望未來,醫療保健與技術的融合將繼續快速發展,物聯網、大數據和 RFID 技術將在醫療保健行業發揮重要作用。
機器學習將極大地改變未來戰爭的方式。為了充分利用機器學習帶來的固有能力,海軍陸戰隊必須做出重大改變。
機器學習是人工智能的一個分支,是軍事領域的一場革命(RMA)。它將從根本上改變戰爭的方式。從圖像分類到語音識別、機器人和自動駕駛汽車,其可能性是無窮的。然而,這一進步仍面臨著實際障礙。數據采集和格式化是成功的關鍵,而這兩項工作在政府部門本身就很困難。此外,機器學習也不是萬能的。有些問題機器學習能解決,有些問題機器學習不能解決,因此必須明確兩者之間的區別。因此,要利用這些新趨勢,海軍陸戰隊必須了解技術,并能夠和愿意在必要時適應技術。
海軍陸戰隊尚未做好適應當前 RMA 的準備,需要立即做出實質性改變,以扭轉趨勢。海軍陸戰隊應采用當前的 Project Maven 流程,并在信息副指揮官 (DCI) 下設立一個單元。該單元必須開始整理海軍陸戰隊的不同數據,并利用這些數據與行業領導者建立有意義的關系,以此激勵私營公司參與其中。
60 多年來,美國國防部(DoD)一直在投資人工智能(AI),并將數據和人工智能系統投入實戰。如今,數據、分析和人工智能技術越來越多地應用于美國防部各部門,并為軍隊提供價值。
伴隨著行業的進步,美國防部多年來一直在穩步、迅速地改進其數據基礎和分析能力:通過研發嘗試人工智能,將這些技術整合到業務和作戰功能中,并為其大規模使用奠定基礎。隨著投資、實驗和創新的繼續和加速,現在的任務是推動這些技術在整個事業的推廣。
雖然戰略競爭對手對人工智能有著宏大目標,但美國及其軍隊在人才、作戰經驗、技術可用性和系統集成方面擁有強大的結構性優勢。為作戰人員配備更快做出更好決策的工具和資源,將提高作戰效率,使作戰能力和指揮人員更加有效,并為采用新的作戰概念創造機會。
負責任地迅速實現數據、分析和人工智能的全部承諾并不只是某個組織或項目的工作,而是所有人的責任。例如,將美國防部數據作為企業資源提供,需要更多的共享和協作。尋求一種靈活的戰略方法,以指導整個美國防部的分布式行動,激發學習運動,并利用所有的人員、流程和使能技術。
在整合分析和人工智能應用的過程中,看到了它們的優勢,也吸取了它們局限性的重要教訓。從會議室到戰場,還有更多工作要做,例如提高數據質量和改善網絡基礎設施。本戰略將指導如何加強美國防部部署數據、分析和人工智能能力的組織環境,以獲得持久的決策優勢。
在未來戰場上,人工合成的決策將出現在人類決策的內部和周圍。事實上,人工智能(AI)將改變人類生活的方方面面。戰爭以及人們對戰爭的看法也不例外。特別是,美國陸軍構想戰爭方式的框架和方法必須進行調整,以便將非情感智力的優勢與人類情感思維的洞察力結合起來。人工智能與人類行動者的組合有可能為軍事決策提供決定性的優勢,并代表了成功軍事行動的新型認知框架和方法。人工智能在軍事領域的應用已經開始擴散,隨之而來的作戰環境復雜性的增加已不可避免。
正如核武器結束了第二次世界大戰,并在二十世紀阻止了大國沖突的再次發生一樣,競爭者預計人工智能將在二十一世紀成為國家力量最重要的方面。這項工作的重點是美國陸軍的文化,但當然也適用于其他企業文化。如果要在未來有效地利用人工智能,而且必須這樣做才能應對競爭對手使用人工智能所帶來的幾乎必然的挑戰,那么成功地融入人工智能工具就需要對現有文化進行分析,并對未來的文化和技術發展進行可視化。美國將致力于在人工智能的軍事應用方面取得并保持主導地位。否則將承擔巨大風險,并將主動權拱手讓給積極尋求相對優勢地位的敵人。
合成有機團隊認知的兩大障礙是美陸軍領導的文化阻力和軍事決策的結構框架。首先,也是最重要的一點是,領導者必須持續觀察人工智能工具并與之互動,建立信心并接受其提高認知能力和改善決策的能力。在引入人工智能工具的同時,幾乎肯定會出現關于機器易犯錯誤或充滿敵意的說法,但必須通過展示人工智能的能力以及與人類團隊的比較,來消除和緩和對其潛在效力的懷疑。將人工智能工具視為靈丹妙藥的健康而合理的懷疑態度有可能會無益地壓倒創新和有效利用這些工具的意愿。克服這一問題需要高層領導的高度重視和下屬的最終認可。其次,這些工具的結構布局很可能會對它們如何快速體現自身價值產生重大影響。開始整合人工智能工具的一個看似自然的場所是在 CTC 環境中,以及在大型總部作戰演習的大型模擬中。最初的工具在營級以下可能用處不大,但如果納入迭代設計、軍事決策過程或聯合規劃過程,則幾乎肯定會增強營級及以上的軍事規劃。雖然在本作品中,對工具的描述主要集中在與指揮官的直接關系上,但在最初的介紹中,與參謀部的某些成員(包括執行軍官或參謀長、作戰軍官和情報軍官)建立直接關系可能會更有用。與所有軍事組織一樣,組織內個人的個性和能力必須推動系統和工具的調整,使其與需求保持平衡。
幾乎可以肯定的是,在將人工智能工具融入軍事組織的初期,一定會出現摩擦、不完善和懷疑。承認這種可能性和任務的挑戰性并不意味著沒有必要這樣做。人類歷史上幾乎所有的創新都面臨著同樣的障礙,尤其是在文化保守的大型官僚機構中進行創新時。面對國際敵對競爭對手的挑戰,美國陸軍目前正在文化和組織變革的許多戰線上奮力前行,在整合人工智能工具的斗爭中放棄陣地無異于在機械化戰爭之初加倍使用馬騎兵。在戰爭中,第二名沒有可取的獎賞,而人工智能在決策方面的潛在優勢,對那些沒有利用這一優勢的行為體來說,是一個重大優勢。現在是通過擁抱人工智能工具和改變戰爭節奏來更好地合作的時候了。
在一個跨國威脅不斷增加、全球相互依存度空前提高、大國競爭重新抬頭的時代,美國正處于一個拐點。這是在技術革命的背景下發生的,技術革命加劇了面臨的挑戰,同時也提供了潛在的解決方案,在氣候、醫藥、通信、運輸、智能和許多其他領域提供了突破。其中許多突破將通過利用人工智能(AI)及其相關技術--其中主要是機器學習(ML)。這些進步可能會塑造國家之間的經濟和軍事力量平衡,以及國家內部的工作、財富和不平等的未來。
ML的創新有可能從根本上改變美國軍隊的戰斗方式,以及美國防部的運作方式。機器學習的應用可以提高人類在戰場上的決策速度和質量,使人機合作的性能最大化,并將士兵的風險降到最低,并極大地提高依賴非常大的數據集的分析的準確性和速度。ML還可以加強美國以機器速度防御網絡攻擊的能力,并有能力將勞動密集型企業功能的關鍵部分自動化,如預測性維護和人員管理。
然而,人工智能和機器學習的進步并不只是美國的專利。事實上,面對中國在該領域的挑戰,美國在人工智能領域的全球領導地位仍然受到懷疑。美國防部和學術界的許多報告反映了需要在人工智能研究和開發方面進行更多投資,培訓和招聘一支熟練的勞動力,并促進支持美國人工智能創新的國際環境--同時促進安全、安保、隱私和道德的發展和使用。然而,人們對信任問題,特別是對這些系統的測試、評估、驗證和確認(TEVV)的關注太少。建立一個強大的測試和評估生態系統是負責任地、可靠地和緊急地利用這一技術的一個關鍵組成部分。如果不這樣做,就意味著落后。
本報告將首先強調為人工智能系統調整美國防部現有的TEVV生態系統的技術和組織障礙,特別強調ML及其相關的深度學習(DL)技術,我們預測這對未來的威懾和作戰至關重要,同時在可解釋性、可治理性、可追溯性和信任方面帶來獨特的挑戰。其次,本報告將向國防部領導層提供具體的、可操作的建議,與情報界、國務院、國會、工業界和學術界合作,通過改革流程、政策和組織結構,同時投資于研究、基礎設施和人員,推進ML/DL的TEV系統。這些建議是基于作者幾十年來在美國政府從事國家安全工作的經驗,以及對從事ML/DL和測試與評估的政府、工業和學術界專家的數十次訪談。
美國已經進入了一個大國競爭的新時期。俄羅斯和中國的崛起在全球權力結構中形成了復雜的三足鼎立局面。最近人工智能方面的技術進步使這種多變的國際動態進一步復雜化。學者、政治家和高級軍官已經意識到,人工智能的融入是軍事事務中一場新革命的起源,有能力改變權力的戰略平衡。美國在中東被二十年的反叛亂所困擾,并受到僅延伸至2025年的長期人工智能戰略的阻礙,沒有準備好進入這個 "第六代 "軍事能力,以確保其戰略利益。這種人工智能化的部隊將由半自主和自主系統定義,包括致命的自主武器系統。第一個開發和使用這些武器的國家行為者將在這個新時代獲得對其競爭對手的戰略優勢。雖然美國目前在人工智能方面擁有優勢,但由于缺乏前瞻性思維和重點投資政策,這種優勢正在迅速消失。這是一份旨在解決這一差距的政策文件。20世紀90年代中期的中國軍事現代化模式為美國未來的政策提供了一條潛在的途徑。雖然兩國政府結構存在差異,但其中的幾個基本原則可以在美國的制度框架內適用。因此,美國可以通過制定健全的投資政策、集中的技術發展計劃和新的行動概念來確保人工智能的首要地位,以便在新能力出現時將其最大化。
大國競爭必須相對于其他大國的能力進行評估。因此,沒有一種能力可以被評估為產生可持續的絕對優勢。然而,在潛在的對手獲得同樣的能力之前,開發人工智能技術和應用為21世紀沖突設計的CONOPS的能力將在整個政治/軍事領域產生一個暫時的戰略優勢。美國目前的公共政策和戰略并沒有延伸到25年后。隨著中國準備在2030年成為占主導地位的人工智能大國,美國為了確保長期戰略利益,不能接受人工智能競賽的現狀。由于人工智能領域的技術發展速度很快,人工智能RMA的狀態和抓住初始優勢的能力正在接近一個拐點。建議美國采取側重于美國在人工智能競賽中的首要地位的政策,特別是在致命性自主武器系統的研究和開發方面。美國在這一領域保持優勢的能力對于國家安全和參與21世紀人工智能輔助和/或人工智能環境的準備工作是至關重要的。
由于致命性自主武器系統是一項仍在開發中的未來技術,因此不可能確定致命性自主武器系統對戰略環境的完整影響。本研究承認,對于評估一個未來武器系統的影響沒有預測性的措施,該系統在實現其全部潛力之前還將經過幾代技術的演變。然而,評估投資政策、技術和CONOPS演變的影響以及它如何影響軍事準備、政治資本和戰略環境的能力是有據可查的。
本文的建議將以1990年至今的中國軍事投資戰略為藍本。在此期間,中國國防開支的增加創造了一個前所未有的能力和軍事力量的增長,為美國未來的人工智能政策提供了一個框架。由于全球力量是以相對而非絕對的方式衡量的,美國至少必須在多極環境中與不斷增長的大國保持平等。雖然從美國的角度來看,中國戰略的某些方面,特別是盜竊知識產權的因素是不切實際的,但那些關于教育和貨幣投資的內容可以被納入美國未來的人工智能政策中。這項研究建議:
1.設立一個負責人工智能政策的助理國防部長的新職位,直接負責人工智能的發展和整合到美國防部。
2.指示ASDAI為美國軍隊制定一個關于第六代能力的預期最終狀態,每十年更新一次。
3.建立30年、15年和5年的人工智能目標,每五年更新一次,讓各個機構,如DARPA、JAIC、國防創新部門(DIU)和相關組織負責特定的發展水平。這將使美國政策制定者有能力根據ASDAI評估和更新的多變的戰略環境,為每個機構提供適當的資金。
4.成立一個委員會,負責發展和保留研究生水平的科學、技術、工程和數學(STEM)人才。
5.建立一個戰略規劃組織,負責研究和整合新的人工智能技術,因為它們出現在15年和5年的基準點上,以便在收購過程中納入其中。
對這些政策的評估必須對照美國對手在人工智能領域的成就和進步。建立在美國在人工智能領域的首要地位上的政策應該集中在教育和經濟投資,新的人工智能技術的初步發展,以及新的CONOPS的發展,以便在新的人工智能能力可用時充分和有效地進行。本研究報告的其余部分重點關注中國國防現代化計劃對美國未來人工智能政策和建議的調整。
在過去的二十年里,人工智能(AI)獲得了大量的關注,并激發了許多科學領域的創新。美國軍事預測人員創造了許多以人工智能為核心特征的未來作戰環境的預測。本文報告了人工智能創新的歷史趨勢,導致了對真正的通用人工智能(AGI)出現的高預期時期。這些對持續創新的夸大期望超過了實際能力,導致幻想破滅。人工智能經歷了新的創新、過度期望和幻想破滅的周期,然后是適度的進步。人工智能創新的周期性遵循極端夸張的周期,在過去的周期中,這導致了資金的損失和未來創新的放緩。為了避免在夸張的周期中看到的未來的幻滅和進步的喪失,領導者需要對機器學習技術有一個現實的理解,以及它對未來的人工智能發展意味著什么。本文提出了一個理解人工智能與作戰環境互動的功能框架。
語義學、技術樂觀主義、誤解和議程掩蓋了目前關于人工智能(AI)和智能的本質的辯論。關于人工智能的預測,從歇斯底里的天網啟示錄到人工智能驅動的烏托邦都有。人工智能和 "機器學習 "可能會走上幻滅之路。技術領域的知名專家警告說,人工智能將對人類的未來產生災難性影響。特斯拉和Space X的首席執行官(CEO)埃隆-馬斯克(Elon Musk)稱人工智能是一種生存威脅,并懇請政府對人工智能進行監管,"以免為時已晚"。已故著名物理學家史蒂芬-霍金認為,人工智能將是人類的末日。新聞媒體的標題是:"美國有可能在人工智能軍備競賽中輸給中國和俄羅斯"。還有人援引世界末日的觀點和對人工智能技術的情感反應。例如,《紐約時報》最近發表了一個標題:"五角大樓的'終結者難題'。可以自己殺人的機器人"。不幸的是,煽動恐懼的言論引起了公眾的共鳴,并建立在人工智能將是人類終結者的流行文化敘事上。
在歷史背景下觀察,目前對人工智能的看法遵循一個可衡量的趨勢,即Gartner公司的信息技術(IT)研究 "炒作周期 "的技術發展階段,見圖1。炒作周期以 "技術觸發點 "開始,一種只存在于原型的新概念化能力,吸引了媒體的注意。下一個狀態是 "期望值膨脹的高峰",早期采用者因其在實施該技術方面的成功而獲得宣傳。下一個階段是 "幻滅的低谷",技術固有的物理限制變得明顯,人工智能未能成熟,投資資金轉移到更有前途的企業。在幻滅的低谷之后,技術繼續成熟,盡管速度要慢得多。在這個緩慢的環境中,它被更好地理解,實施起來也有真正的成功。最后一個階段,即 "生產力的高原",是技術在被充分理解的條件下被廣泛實施的時候。然后,各行業創建標準和法規來管理技術的實施和互操作性。
圖 1. 技術發展的成熟度曲線。
人工智能發展的以往演變遵循夸張的周期,有幾個高峰和低谷,這里將概述一下。每次人工智能發展進入幻滅的低谷,美國政府和軍方支出停止資助;人工智能的發展都會停滯不前。美國政府和軍方一直是人工智能發展史上不可或缺的一部分,并將繼續在指導未來發展方面發揮重要作用。美國軍方不能有膨脹的期望,這將導致一段幻滅期,將主動權和技術優勢讓給美國的同行競爭者,俄羅斯和中國;他們正在追求武器化的AI。領導人和決策者需要對人工智能的發展有一個現實的技術理解,以指導他們將人工智能整合到軍隊企業中。過去的夸張周期提供了需要避免的陷阱的例子,但也提供了需要尋找有用的應用和未來創新的領域。
許多軍事人工智能的研究和開發資金是針對短期內可以實現的戰術級系統的改進。在這里,人工智能(AI)的潛在好處往往受到感官輸入質量和機器解釋能力的限制。然而,為了充分理解人工智能在戰爭中的影響,有必要設想它在未來戰場上的應用,傳感器和輸入被優化為機器解釋。我們還必須嘗試理解人工智能在質量上和數量上與我們的有什么不同。本文介紹了綜合作戰規劃過程中自動化和機器自主決策的潛力。它認為,人工智能最重要的潛力可能是在戰役和戰略層面,而不是戰術層面。然后探討了更多機器參與高級軍事決策的影響,強調了其潛力和一些風險。人工智能在這些情況下的應用發展應該被描述為一場我們輸不起的軍備競賽,但我們必須以最大的謹慎來進行。
目前,人工智能(AI)的民用發展大大超過了其在軍事方面的應用。盡管知道網絡將是一個重要的未來領域,但國防部門還沒有習慣于數字-物理混合世界,因此,國防部門與新的社會技術的顛覆性變化相對隔絕。在軍事上運用人工智能的努力往往集中在戰術應用上。然而,人工智能在這些領域的好處受到輸入傳感器的限制,它們被用來復制人類的行為,并在需要與物理環境互動的角色中使用。在作戰和戰略層面上,軍事總部的特點是信息的流入和流出。如今,這些產品無一例外都是完全數字化的。考慮到作戰計劃的過程,可以看出,即使在目前的技術水平下,其中有很大一部分可以可行地實現自動化。這種自動化的大部分并不構成可能被理解的最純粹意義上的人工智能,即 "擁有足夠的通用智能來全面替代人類的機器智力"。然而,軟件可以在特定任務中勝過人類的事實,再加上高級軍事決策過程被細分為此類特定任務的事實,使其成為比較人類和機器決策的優點、限制和能力的有用工具。這樣做,人類的能力似乎有可能被輕易取代。因此,追求軍事決策自動化的動機肯定是存在的。本文討論了部分自動化軍事決策的潛力和實用性,并想象了為這些目的無限制地發展人工智能可能帶來的一些風險和影響。
戰爭的特點正在發生根本性的變化,這些變化對空中力量的影響尤其深遠。多域整合為空中力量和越來越多的空間力量在未來幾年內的一系列轉變做好了準備,這些轉變不僅與技術有關,而且與空軍組織和進行規劃和行動的戰略和作戰概念有關。
迫在眉睫的、不可避免的多域作戰似乎是空中力量的一個明顯的邏輯演變,它可能會引發這樣的問題:為什么我們沒有更早地沿著這些思路思考和發展作戰概念?畢竟,對優化、作戰協同和武力經濟的尋求在空中力量中是持久的。可以說,多年來,空軍及其相關部門事實上已經嘗試以某種方式或形式在多域背景下運作。然而,在整個部隊甚至整個戰區范圍內,為多域作戰(MDO)提出的早期作戰概念(CONCOPS),在多域作戰空間產生作戰協同和效果的努力是前所未有的。
諸如聯合全域指揮與控制(JADC2)這樣的結構闡述了一個作戰云賦能的未來戰爭,其中任務指揮和戰斗空間管理被有效地隱含在整個戰斗部隊中,觀察-定向-決定-行動(OODA)環路被加速到邊緣計算的速度。傳感器和通信網絡決定了空軍承擔幾乎所有傳統任務的功能能力。數據和數據流將變得比空軍傳統上對機動自由的依賴更加重要,并且有效地成為其戰略推動者。空軍力量將越來越多地與網絡而非平臺、數據而非武器系統有關。
任務的成功和失敗一直是由指揮官和作戰人員可用的態勢感知水平決定的。在新興的作戰模式中,空軍以近乎實時的速度收集、處理和利用數據的能力有效地使數據成為最大的工具和最令人垂涎的武器。收集、處理、匯總、分析、融合和傳播大量的數據、信息和知識將需要像未來有爭議的戰場上的事件速度一樣快。目前正在進行的戰爭數字化將導致在未來幾年內將 "大數據"廣泛用于作戰過程。空間領域將在實現全球范圍內連續的、有保障的和安全的通信方面發揮顯著的作用,除了更傳統的遠程監視用途外,它還被用作這種通信的運輸層。
對信息主導地位的追求將以新的和不確定的方式在物理、電磁和虛擬世界中擴展競爭的連續性。隨著空軍對帶有嵌入式人工智能(AI)工具和應用的作戰云的使用,新的風險、脆弱性和故障點將被引入。本出版物收集了來自世界各地領先的思想家的文章和見解,對多域整合和空中力量的信息優勢框架和概念的一些最相關問題提供了深入的觀點。這里的觀點和討論反映了當前對各種戰略、指揮和作戰層面的思考,讀者會發現這些思考對他們更廣泛的理解很有幫助。
這里介紹的專家展望本身既不樂觀也不悲觀,正如我們所期望的那樣,所確認的是各種新技術促成的 "飛躍"機會正在地平線上形成,但其有效利用帶來了復雜和破壞性的新挑戰。在強調其中一些關鍵的挑戰和更好地理解這些挑戰的必要性的同時,正如通常的情況一樣,沒有快速的解決辦法或現成的解決方案。然而,有令人信服的理由認為,今天所預見的眾多挑戰似乎在理論上和技術上是可以克服的,有些甚至在未來幾年內就可以克服。在未來存在的許多不確定因素中,可以肯定的是,空中力量將被徹底重新定義。