在當前人工智能的發展浪潮中,基于大模型構建的人工智能體(AI Agent)已成為一項領先的技術,引起全球學術界和工業界的高度關注。與此同時,人工智能正從學術領域跨越到實際應用的新階段,大模型驅動的群體智能技術正成為推動革新的核心動力。 目前大模型已能夠構建出更具通用性和適應性的智能體,這些智能體不僅能獨立執行復雜任務,還能在群體中協同作業,展示出遠超單體智能體的集體智慧。 可以說,隨著新一代AI技術的發展,我們正步入一個由大模型驅動的“Internet of Agents (IoA)”智聯網時代,這個時代將由智能體的群體協作和互動定義,它們不僅服務于人類,更將與人類共創更加智慧和可持續的未來。 在汽車行業,群體智能的應用不僅能夠大幅提升生產效率,優化用戶體驗,更能孕育新的商業模式。這在近期發布的《大模型驅動的汽車行業群體智能技術白皮書》(以下簡稱白皮書)可窺詳貌。 4月12日,易慧智能聯合清華自然語言處理實驗室、面壁智能召開發布會,正式發布《大模型驅動的汽車行業群體智能技術白皮書》,這是國內首個關于大模型驅動的群體智能全面的研究報告和汽車行業應用探索。
此次白皮書發布會吸引了包括汽車行業專家、人工智能領域專家、咨詢行業專家、大數據/算力專家以及權威媒體在內的眾多嘉賓參與。 清華大學計算機科學與技術系助理研究員從鑫,面壁智能CEO李大海,易慧智能總裁李偉發表專業演講,論述大模型驅動的群體智能技術發展現狀及前景,探索AI賦能人類生產生活的最優解,為汽車行業的智能化發展提供關鍵的理論支撐與實踐引導。
白皮書:汽車行業將加速迎來一個更加智慧、高效、用戶至上的新時代****
白皮書分《戰略態勢:??智能時代的汽??業發展》、《科技突破:邁向通???智能的?模型群體智能技術體系》、《融創賦能:?模型群體智能在汽??業的融合創新與價值創造》、《?態矩陣:汽??業?模型群體智能?態矩陣建設》、《總結展望》五個章節系統性介紹了大模型驅動的智能體技術,特別是面向汽車行業提出了體系化的解決方案,對于未來通用人工智能賦能汽車行業提供了有益參考。 其中,白皮書全面回溯了AI技術的發展歷程和關鍵里程碑,對“大語言模型”“單體智能”“群體智能”等關鍵技術專題進行了深入、系統的總結和梳理,同時結合技術能力和汽車行業應用場景找到了技術在汽車行業中的場景應用價值:通過大模型驅動的群體智能協同工作臺和組織孿生技術路線,可以為行業客戶定義/開發/部署企業級的數字員工和數字團隊,在適合的場景下實現任務的智能化與自動化替代,為用戶提供及時、豐富、個性化的服務,為行業客戶帶來高性價比的智能化解決方案,提升整個行業的運營效率和效能。 白皮書還展望大模型驅動的群體智能技術將為汽車行業預見一個更加智慧、高效能、用戶至上的汽車新時代: 首先是智能化助力——汽車企業突破降本增效天花板。其認為在當前的經濟環境下,車企需要不斷檢索突破口來提高生產效率、降低運營成本。 通過使用群體智能和組織孿生技術,車企可以率先將明確標準作業程序(SOP)和專家知識的場景實現智能化與自動化落地應用,重塑效率之巔。這不僅有助于車企提升自身的競爭力,更能推動整個汽車行業的持續發展。 這也是汽車行業的群體智能和組織孿生技術的核心價值——為汽車行業帶來了前所未有的降本增效可能性。 其次是智能化賦能——開啟用戶運營新篇章。在以往用戶運營旅程中,與日俱增的紛繁觸媒環境下投入大量人力和財力成本也難以精準捕捉用戶多樣化需求。 群體智能不僅將極大地提高信息傳遞和決策的效率,更通過對海量用戶數據的深度挖掘和分析,令車企能夠為用戶提供更加貼心、個性化的產品和服務,從而構建起更加緊密的用戶關系,提升品牌影響力和市場競爭力。 最后是創新與合作——共建智慧汽車新生態。隨著技術的持續演化和應用場景的拓展,我們可以預見大模型驅動的群體智能和組織孿生技術,將在汽車行業得到更廣泛的應用與深度融合,釋放出巨大的數據價值,顯著增強車企在不確定環境下的競爭力和韌性。 作為白皮書發布方的清華大學自然語言處理實驗室、易慧智能和面壁智能共同認為,大模型和群體智能技術的應用將推動汽車行業從傳統生產方式向智能化生產方式的轉變,為汽車行業發展注入新活力。 專家重磅解讀:從技術前瞻、通用技術實踐到行業技術應用
清華大學計算機科學與技術系助理研究員從鑫從技術前瞻的角度發表了主題為《大模型驅動的群體智能技術正成為推動革新的核心動力》的演講。 他介紹道,大模型是人工智能的前沿制高點,將成為智能時代的基礎設施。同時大模型也存在諸如專業技能欠缺、協作意識薄弱等局限,需進行專業教育實現智能體化,并通過AI Agent(人工智能體)賦能行業應用。 清華大學計算機科學與技術系助理研究員 從鑫
清華大學計算機科學與技術系副教授劉知遠表示,大模型驅動的AI Agent 具備包括智商、情商、成長性、價值觀、感知、人設等六大特性,隨著 AI Agent 數量的增加和智能體間的協作能力提升,能夠呈現出超越單個智能體能力的集體智慧——群體智能,實現對更加復雜任務處理和場景建模,其被認為是邁向通用人工智能的重要途徑。 從單一大模型到多智能體群體智能的重要轉變為 AI 的未來應用打開了新的可能性,預示著更加智能和自適應的技術解決方案的出現。 據劉知遠介紹,組織孿生是大模型驅動的群體智能在業務場景下的應用框架,目前其團隊提出了崗位孿生、架構孿生和業務孿生的概念和技術框架,旨在綜合運用大模型的通用能力和智能體技術的靈活適配特性,實現智能科技服務人類。
面壁智能CEO李大海從通用技術實踐的角度發表了主題為《智周萬物,讓AI智能體釋放大模型無限潛能》的演講。
他表示,面壁智能持續引領“高效大模型”路線。除了大模型的高效訓練,在大模型高效落地方面,AI Agent是大模型落地應用的最后一公里,面壁智能引領AI 智能體(Agent)技術潮流, 持續推動建設大模型的高效建設、快步應用。
隨著眾多國內外公司紛紛推出各種大規模模型,包括通用大模型、行業大模型、垂直大模型以及專屬大模型,這些超強模型服務的背后都是基于擁有千億或萬億參數的基礎模型。大模型的誕生標志著人工智能領域取得了重大進展,可以在各種任務中實現更高的準確性,降低了應用開發的門檻,并增強了模型的泛化能力。這些因素共同催生出新的場景和產業模式,并加速產業智能化應用落地的進程。
一、大模型技術應用不斷演進,迎來發展新機遇
隨著ChatGPT這一對話生成式預訓練變換模型的誕生,大模型進入一個快速發展的時代。這些超強模型服務背后是擁有千億或萬億參數的基礎模型,它們通過學習豐富的知識,成為與人類進行交互以及連接萬物的強大工具。
通用大模型的發展
自2016年Open AI發布Gym強化學習平臺以來,模型參數從GPT-1的1.17億開始,經過不斷迭代,增長到GPT-4的1.76萬億的參數規模,通用大模型的性能也得到顯著提升。
斯坦福大學的研究發現,GPT-3已經可以解決70%的心智理論任務,相當于7歲兒童;至于GPT3.5,更是解決了93%的任務,心智相當于9歲兒童!2022年11月,ChatGPT正式發布,是基于GPT-3.5架構并通過強化學習訓練后的大語言模型,目前仍以文字方式互動,支持包括自動文本生成、自動問答、自動摘要等多種任務。
自2017年6月以來,Google陸續發布了BERT、T5等預訓練模型,參數規模也在逐步提升。近期,Google發布的通才模型PaLM-E包含5620億參數,可用于控制機器人,為通用人工智能(AGI)的實現提供了可能。
Google PaLM-E 大模型控制機器人
二、MaaS 支持大模型應用落地全流程能力構建
MaaS(模型即服務)提供一套完整的大模型服務工具鏈和開放平臺,允許行業用戶基于行業基礎大模型,利用整體模型套件經過微調再訓練,生成滿足特定場景需求的專屬大模型。與提供基礎設施的IaaS(基礎設施即服務)、提供工具的PaaS(平臺即服務)和提供軟件的SaaS(軟件即服務)不同,MaaS以模型作為交付產品。
基于MaaS構建的一站式行業大模型構建和應用解決方案,圍繞模型的生命周期提供各種的產品和技術輔助,行業用戶實現從數據預處理、模型構建、模型訓練、模型評估到模型服務全流程能力構建。MaaS解決了企業構建行業大模型成本高、時間長、難度大的問題,降低數字化轉型的成本和風險,支撐客戶快速實現大模型應用的產品化和商業化,更快地實現數字化轉型和升級。
MaaS 解決方案
三、場景化需求快速推動大模型價值釋放
隨著技術能力的提升和多樣化場景需求的推動,大模型已成為人工智能領域最重要的動力源泉。不僅推動人工智能從技術積累、行業應用和產業變革,更是賦能千行百業的基礎設施。
大模型在場景中的應用
四、行業大模型應用落地亟需建設路線指引
通用大模型在滿足行業用戶直接需求方面存在一定難度,主要是由于模型參數量巨大,訓練和部署對算力消耗巨大,導致成本高昂;其次,模型的可解釋性仍然較弱,通常需要增加內容管控手段來保證結果的安全性;最后,模型對訓練數據的依賴性較強,對于超出訓練數據的任務效果不盡如人意。更重要的是,在某些特定行業,通用基礎大模型的表現并不理想,因此行業大模型應運而生。
行業大模型通常基于該行業領域的數據進行訓練和優化,更好地理解和處理該行業的專業術語、規范和語義。行業大模型更加專注于某個特定的行業,滿足對應行業的需求。目前的產業解決方案中,行業大模型結合自身在算力方面的優勢,為行業模型訓練提供強大的支持和動力,助力構建專屬大模型及智能應用。然而,行業大模型最終要在真實場景中落地并達到理想的服務效果,需要充分解決行業用戶的痛點。目前行業用戶面臨的問題主要包括計算資源不足、數據質量差、投入成本較高以及缺乏專業人才等突出問題。
報告來源:新華社品牌工程&凱度&牛津大學
報告部分內容展示:****************
****************
人工智能是數字經濟的核心驅動力,AI 大模型是人工智能的新引擎。AI 大模型指通過在海量數據上進行預訓練,能夠適應多種下游任務的模型,具有強大的泛化能力、自監督學習功能和精度突破性能。其已經在自然語言處理、計算機視覺、氣象預報等多個領域取得了令人矚目的成果。大模型的發展是大勢所趨,未來將會助推數字經濟,為智能化升級帶來新范式。
近年來,隨著 ChatGPT 等生成式人工智能(AIGC)的突飛猛進,全球范圍內的經濟價值預計將達到數萬億美元。尤其在中國市場,生成式 AI 的應用規模有望在 2025 年突破 2000億元。這一巨大的潛力不僅吸引著業內領軍企業競相推出萬億、10 萬億參數量級別的大模型,而且對底層 GPU 支撐規模提出了更高的要求,達到了萬卡級別。然而,如何滿足如此龐大規模的訓練任務,對網絡的規模、性能、可靠性和穩定性等方面提出了前所未有的挑戰。
以 GPT3.5 為例,其訓練過程依賴于微軟專門建設的 AI 超算系統,由 1 萬個 V100 GPU 組成的高性能網絡集群,總計算力消耗約為 3640 PF-days。在這種情況下,尋求提供極致高性能網絡已成為人工智能領域的重要研究方向之一。
日前,針對AI大模型帶來的挑戰,中國移動聯合華為、中興、銳捷、思博倫、云脈芯聯、星云智聯、中科馭數、博通公司、是德科技、大禹智芯等十余家合作伙伴發布《面向AI大模型的智算中心網絡演進白皮書》。
本白皮書將從 AI 業務發展的歷程出發,深入研究大模型對網絡能力的需求,分析當前網絡與業務需求的差距,并探索網絡技術發展趨勢以彌補這一差距。我們希望,通過本白皮書的研究和分析,為未來面向 AI 大模型的智能計算中心網絡發展提供有益的參考和啟示。
智能決策技術的進步提升了制造業的效率,開啟了工業4.0時代。工業4.0正在徹底改變公司生產、改進和銷售產品的方式。制造商正在將物聯網(IoT)、云計算和分析、人工智能和機器學習等新技術整合到生產設施中。在過去的幾年中,智能分析已經成為一種解決方案,它可以檢查歷史和實時數據,以發現性能洞察。由于需要分析的數據量每天都在增長,因此需要先進的技術來收集、整理和分析傳入的數據。這種方法使企業能夠發現有價值的聯系和趨勢,并做出提高整體性能的決策。在工業4.0中,智能分析在描述性、預測性和規范性子域方面具有更廣泛的范圍。為此,本書將回顧并強調工業4.0中智能分析面臨的挑戰,并介紹為應對這些挑戰所做的最新進展。//www.routledge.com/Intelligent-Analytics-for-Industry-40-Applications/Pandey-Verma-Rathor-Singh-Singh/p/book/9781032342412
從2018年谷歌提出BERT預訓練語言模型至今,超大規模智能模型已經走過了三年的發展歷 程。近年來,預訓練模型成為人工智能領域一大重點研究方向。
大模型技術不僅是學術界重點關注的領域,產業領域也在期待其能夠在各個場景加速落地。人們期待,大模型不僅能夠提升應用服務的智能水平,甚至還能夠催生新的場景和產業模式。
然而,當前全球大模型商業落地仍處于早期探索階段,目前已有很多模型落地的探索,但真正讓大模型成為推動智能產業發展的核心引擎,目前仍存在不小的差距。
今日,智源研究院推出了《超大規模智能模型產業發展報告》,旨在梳理當前大模型領 域產業的發展情況,為讀者提供交流和討論的機會。
本報告將主要分為以下五部分內容。首先,報告將介紹大模型領域的技術發展情況和趨勢。接著,報告將梳理目前已經出現的大模型產業落地模式,提出該模式誕生的條件、特點和優勢。
然后,報告將重點介紹目前大模型已經開展商業化的發展領域,包括國際和國內的落地領域和應用 場景。最后,報告將用兩章內容論述應用存在的問題和解決案例,并提出下一步工作建議。
“21世紀以來,隨著人工智能、大數據、云計算、物聯網等新一代信息技術的快速發展及應用,“智能制造”概念進一步深化。根據我國工信部2016年出臺的《智能制造發展規劃(2016-2020年)》中定義,“智能制造是基于新一代信息技術與先進制造技術深度融合,貫穿于設計、生產、管理、服務等制造活動各個環節,具有自感知、自決策、自執行、自適應、自學習等特征,旨在提高制造業質量、效益和核心競爭力的先進生產方式。””
根據上海市人工智能技術協會和商湯智能產業研究院聯合發布的《數字化轉型白皮書:數智技術驅動智能制造》,如今各國對“智能制造”的理解都不再局限于生產過程或單體智能,而是擴展到產業價值鏈的各個環節、包含企業活動的方方面面,也不再單方面強調數智技術本身的應用價值,而是更加重視數智技術與先進制造等跨領域技術的深度融合和實踐創新。
由數據驅動代替經驗驅動已成為產業數字化轉型的共識。如果將數據視為智能時代的“新石油”,那么數智技術即是鉆取和提煉“石油”價值的“煉油工廠”,使用數智技術廣泛獲取數據,進行深度學習,將海量原始數據加工為知識,并轉化為決策或行動來指導企業運行。
數智技術是推動產業數字化轉型不可或缺的關鍵技術,其應用價值主要體現在三個方面:
決策更及時:實時獲取場景/業務數據的自動反饋,結合智能化分析進行動態預測,代替人工經驗判斷,提升決策的準確性和及時性,例如基于設備狀態實時分析的故障預測和健康管理,或基于在線用戶數據的需求預測,加速產品創新和迭代周期等。
運營更精細:隨著產業數字化進程加速,所獲取的數據顆粒度越來越細、數據維度也更加豐富,由數據驅動的企業運營、管理會更加精細,例如基于用戶畫像的精準營銷,或對能源使用的實時監測和控制等。
應用更智能:智能化設備/應用輔助或取代人工崗位,并在應用過程中進行算法的自我迭代和優化,不斷提高決策水平,例如基于機器視覺的產品缺陷監測等。
盡管數智技術對產業數字化轉型的意義匪淺,但在實際落地過程中仍然存在一定挑戰:
數字化程度低,信息閉環難閉合:數據資產的積累是產業數字化轉型的重要前提,如何持續獲取數據,并將分布在不同系統、組織內的數據打通融合是企業數字化轉型的首要命題。目前,多數企業(尤其是中小企業)受限于資金和人才匱乏,對數智技術投入不足,導致企業數字化水平低,缺乏完善的信息網絡基礎設施;此外,由于缺少統一標準、接口和編碼體系,使得企業內外“數據孤島”叢立,無法實現互通、共享,導致企業使用數據規模、種類有限,信息閉環難閉合,海量數據的資產價值無法得到充分發揮。
跨界融合難度大,復合型人才缺乏:數字化轉型實際上是利用數智技術對企業流程再造的過程,需要既具備良好的數智技術素養,又能夠了解產業技術和發展規律的復合型人才。據清華大學互聯網發展和治理研究中心2020年對全球ICT人才調研統計,當前我國數智技術人才主要集中于科技行業,缺乏產業經驗和實踐背景,而產業IT人員總體對數智技術的認知不深,難以支撐產業數字化轉型需要。根據人力資源與社會保障部數據分析,2025年智能制造領域人才需求為900萬人,人才缺口預計達到450萬人。
不同產業差異大,規模效應難一朝形成:由于不同產業或產業中不同領域、不同企業之間存在技術、流程等差異巨大,數智技術在產業中的深入滲透須結合具體場景進行定制化開發,尚不存在一套放之四海而皆準的解決方案,這使得數智技術在產業互聯網中的應用很難像在消費互聯網時代一樣,短期建立規模效應、獲取巨大收益,而是需要與產業合作共進,在垂直領域中不斷積累解決問題的通用能力。
網絡安全問題不容忽視:隨著數智技術的應用推廣,網絡安全問題將成為數字化轉型過程中面臨的重要挑戰。一方面,傳統網絡安全系統跟不上數智技術應用和創新步伐;另一方面,數字化轉型帶來信息節點和信息總量爆發式增長,使得網絡攻擊的潛在損失“指數級”放大,對網絡安全技術提出更高要求。
本白皮書從人工智能治理的實際問題出發,結合當前人工智能治 理在國內外的發展現狀,提出了人工智能治理的6條基本原則,并在 基本原則的基礎上給出具體的行動建議,期待為社會各方提供有益參考。
作為引領未來的戰略性技術,人工智能的迅猛發展將進一步釋放歷次科技革 命和產業變革積蓄的巨大能量,給全球經濟發展、國家治理、社會建設和人民生 活帶來重大而深遠的影響,推動人類邁入以科技進步與產業革新為基礎的智能社 會。但也應該看到,人工智能在創造經濟發展新引擎、推動人類文明邁上新臺階 的同時,模糊了虛擬與現實、數字和實體的界限,給人類社會的法律規范、道德 倫理、公共治理等方面帶來了挑戰。最近幾年,人工智能負面案件頻出,引發了 很多關于音視頻造假、監控隱私、算法偏見、創作版權、就業等各個方面的社會 性問題。因此對人工智能治理的研究迫在眉睫,只有通過深入的研究把握技術的 本質特點,通過務實的行動控制潛在的風險,通過充分的溝通獲得人們的信任, 才能消除人工智能發展進程中的阻礙,促進人工智能對人類福祉的提升。
//www.zhizhi88.com/wp-content/uploads/2021/06/white_paper_on_artificial_intelligence_governance_-v1-0-_public_version.pdf
當前人工智能已經成為全球最為活躍的創新領域,對經濟社會的發展影響深遠。白皮書提出,在過去一年中,人工智能的新算法不斷涌現,深度學習仍是這一時期發展主線,嘗試解決更為復雜的應用任務。人工智能的產業格局與生態體系更為明晰,開源開發框架格局逐步確立,以科技巨頭引領的生態系統垂直整合速度不斷加快;同時,產業發展重心開始轉變,企業比拼重點從單項技術的“理論”準確率轉向應用場景白熱化的“跑馬圈地”;人工智能的技術應用開始全面覆蓋日常生活、科學研究、社會治理、商業創新和國家安全等經濟社會的關鍵領域,以空前的廣度和深度推動社會發展。基于以上人工智能技術產業發展態勢判斷,白皮書建議“十四五”期間,我國應通過加快AI基礎原創技術創新突破、構建協同發展AI基礎核心生態、實現區域差異化發展布局、加快垂直行業深度融合、主動融入全球治理框架等措施,實現我國人工智能產業突破發展。
自1956年首次提出“人工智能”概念起,隨著計算機算力和算法技術的突破,人工智能已滲透進人類生活的方方面面,不斷在模擬、延伸和擴展人的智能上演進。“智適應教育”正是教育行業演進至今的重要成果,它是指基于人工智能、大數據分析等智能技術,結合大量用戶數據,針對個體學習過程中的差異性提供適合個體特征的教育形式,從而為學生提供個性化的學習體驗,推動真正的“因材施教”教學理念落地。
智適應教育產品形態豐富多樣,市場容量亦正處于高速擴張階段,發展極具想象空間,但同時,其技術壁壘較高,應用場景較多元化的特點,導致市場定義不清晰,用戶認知有限的情況依然存在。
安永-博智隆全新發布本《中國智適應教育行業白皮書》,對行業發展現狀、市場規模、競爭格局以及關鍵成功要素進行分析,對智適應OMO模式的商業形態及探索方向進行總結,并提出安永-博智隆對未來行業發展趨勢的相關思考,希望可以幫助行業參與者、用戶更好地認識市場,并幫助智適應教育行業礪行致遠。
?基于語音的交互逐漸成為數字時代人機交互的主流。與此同時,人工智能領域的不斷創新突破成為全球技術研究的焦點。德勤調查顯示,全球人工智能市場到2019年已達1.9萬億美元,預計到2025年將超過6萬億美元,2017 - 2025年復合增長率為30%。人工智能的快速發展為人機交互提供了理論和技術支持。因此,人工智能與人機交互相結合的對話式人工智能(CAI)降低了交互障礙,擴大了用戶基礎,在各個領域展示了廣泛的用例和無限的商業價值。在這個臨界點CAI的快速增強,德勤發布德勤會話人工智能白皮書,德勤的見解闡述CAI技術和在行業應用解決方案,并引入CAI四個愿景,設計工作的未來,重塑未來的生活,打破語言的障礙,和人類和機器連接。