亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

全局優化是一個快速發展的領域,在應用數學和物理科學中有著強大的應用。這本書提供了這一領域的全面概述,材料上的關鍵主題,如復雜性;啟發式方法;極小化問題下界的推導分支定界方法和收斂性。最后一章提供了基準測試問題和全局優化的應用,如尋找分子的構造或規劃星際空間旅行的最優軌跡。此外,凸函數和凹函數的基本信息在索引中提供。這本書是為研究生,研究人員,和實踐者尋找困難的優化問題的高級解決方法。它適合作為一個補充文本在一個高級研究生水平的研討會。

這本書致力于全局優化算法,這是為給定問題找到最優解的方法。它特別關注演化計算,通過討論演化算法,遺傳算法,遺傳規劃,學習分類器系統,進化策略,差分演化,粒子群優化,蟻群優化。它還詳細闡述了其他元啟發式算法,如模擬退火、極值優化、Tabu搜索和隨機優化。這本書不是傳統意義上的書:由于頻繁的更新和變化,它不是真正的順序閱讀,而是某種材料收集、百科全書或參考工作,你可以在其中查找內容,找到正確的上下文,并提供基礎知識。

這本書的內容分為四個部分。第一部分將介紹不同的優化技術,并描述它們的特點。為了便于理解,通常會給出一些小例子。在第二部分,從第315頁開始,我們詳細闡述了不同的應用實例。在Sigoa框架中,我們討論了一種用Java實現優化算法的可能方法,并在第3部分(439頁)中展示了如何實現前面問題實例的一些解決方案。最后,在455頁后面的最后一部分,為本書的其余部分提供了背景知識。優化是與隨機密切相關的,因此,可以在這里找到對這一主題的介紹。其他重要的背景信息涉及理論計算機科學和聚類算法。

//www.e-booksdirectory.com/details.php?ebook=19

付費5元查看完整內容

相關內容

本教材介紹了線性代數的概念和技巧,為一年級或二年級的學生提供了高中代數的基本知識。課程內容有足夠的靈活性,既可以介紹傳統的入門課程,也可以提供更實用的課程。第1-4章為初學者提供一個學期的課程,而第5-9章為第二學期的課程(參見下面的建議課程大綱)。這篇文章主要是關于在適當的時候提到復數的真實線性代數(在附錄A中復習)。總的來說,這篇文章的目的是在計算技能、理論和線性代數的應用之間取得平衡。微積分不是先決條件;提到它的地方可以省略。

線性代數在自然科學、工程、管理、社會科學以及數學中都有應用。因此,18個可選的“應用”部分包括在文本中介紹各種各樣的主題,如電力網絡,經濟模型,馬爾可夫鏈,線性遞歸,微分方程組,和有限域上的線性代碼。此外,還介紹了一些應用(例如線性動力系統和有向圖)。申請部分出現在相關章節的末尾,以鼓勵學生瀏覽。

//math.emory.edu/~lchen41/teaching/2020_Fall/Nicholson-OpenLAWA-2019A.pdf

付費5元查看完整內容

《量子信息理論》這本書基本上是自成體系的,主要關注構成這門學科基礎的基本事實的精確數學公式和證明。它是為研究生和研究人員在數學,計算機科學,理論物理學尋求發展一個全面的理解關鍵結果,證明技術,和方法,與量子信息和計算理論的廣泛研究主題相關。本書對基礎數學,包括線性代數,數學分析和概率論有一定的理解。第一章總結了這些必要的數學先決條件,并從這個基礎開始,這本書包括清晰和完整的證明它提出的所有結果。接下來的每一章都包含了具有挑戰性的練習,旨在幫助讀者發展自己的技能,發現關于量子信息理論的證明。

這是一本關于量子信息的數學理論的書,專注于定義、定理和證明的正式介紹。它主要是為對量子信息和計算有一定了解的研究生和研究人員準備的,比如將在本科生或研究生的入門課程中涵蓋,或在目前存在的關于該主題的幾本書中的一本中。量子信息科學近年來有了爆炸性的發展,特別是在過去的二十年里。對這個問題的全面處理,即使局限于理論方面,也肯定需要一系列的書,而不僅僅是一本書。與這一事實相一致的是,本文所涉及的主題的選擇并不打算完全代表該主題。量子糾錯和容錯,量子算法和復雜性理論,量子密碼學,和拓撲量子計算是在量子信息科學的理論分支中發現的許多有趣的和基本的主題,在這本書中沒有涵蓋。然而,當學習這些主題時,人們很可能會遇到本書中討論的一些核心數學概念。

//www.cambridge.org/core/books/theory-of-quantum-information/AE4AA5638F808D2CFEB070C55431D897#fndtn-information

付費5元查看完整內容

圖論因其在計算機科學、通信網絡和組合優化方面的應用而成為一門重要的學科。它與其他數學領域的互動也越來越多。雖然這本書可以很好地作為圖表理論中許多最重要的主題的參考,但它甚至正好滿足了成為一本有效的教科書的期望。主要關注的是服務于計算機科學、應用數學和運籌學專業的學生,確保滿足他們對算法的需求。在材料的選擇和介紹方面,已試圖在基本的基礎上容納基本概念,以便對那些剛進入這一領域的人提供指導。此外,由于它既強調定理的證明,也強調應用,所以應該先吸收主題,然后對主題的深度和方法有一個印象。本書是一篇關于圖論的綜合性文章,主題是有組織的、系統的。這本書在理論和應用之間取得了平衡。這本書以這樣一種方式組織,主題出現在完美的順序,以便于學生充分理解主題。這些理論已經用簡單明了的數學語言進行了描述。這本書各方面都很完整。它將為主題提供一個完美的開端,對主題的完美理解,以及正確的解決方案的呈現。本書的基本特點是,概念已經用簡單的術語提出,并詳細解釋了解決過程。

這本書有10章。每一章由緊湊但徹底的理論、原則和方法的基本討論組成,然后通過示例進行應用。本書所介紹的所有理論和算法都通過大量的算例加以說明。這本書在理論和應用之間取得了平衡。第一章介紹圖。第一章描述了同構、完全圖、二部圖和正則圖的基本和初等定義。第二章介紹了不同類型的子圖和超圖。本章包括圖形運算。第二章還介紹了步行、小徑、路徑、循環和連通或不連通圖的基本定義。第三章詳細討論了歐拉圖和哈密頓圖。第四章討論樹、二叉樹和生成樹。本章深入探討了基本電路和基本割集的討論。第五章涉及提出各種重要的算法,在數學和計算機科學中是有用的。第六章的數學前提包括線性代數的第一個基礎。矩陣關聯、鄰接和電路在應用科學和工程中有著廣泛的應用。第七章對于討論割集、割頂點和圖的連通性特別重要。第八章介紹了圖的著色及其相關定理。第九章著重介紹了平面圖的基本思想和有關定理。最后,第十章給出了網絡流的基本定義和定理。

付費5元查看完整內容

機器學習中復雜的統計數據讓許多開發人員感到擔憂。了解統計學可以幫助你建立強大的機器學習模型,針對給定的問題陳述進行優化。這本書將教你所有需要執行復雜的統計計算所需的機器學習。您將獲得有關監督學習、非監督學習、強化學習等統計信息。了解真實世界的例子,討論機器學習的統計方面,并熟悉它。您還將設計用于執行諸如模型、參數擬合、回歸、分類、密度收集等任務的程序。

到本書結束時,你將掌握機器學習所需的統計數據,并能夠將你的新技能應用于任何類型的行業問題。

付費5元查看完整內容

近年來,圖論已經成為一個重要的數學工具在廣泛的學科,從運籌學和化學到遺傳學和語言學,從電氣工程和地理學到社會學和建筑學。與此同時,它本身也成為一門有價值的數學學科。鑒于此,有必要編寫一份廉價的關于這一主題的介紹性文本,既適合學習圖論課程的數學家,也適合希望盡快學習這一主題的非專業人士。我希望這本書能在某種程度上滿足這一需求。閱讀它的唯一先決條件是初等集合理論和矩陣理論的基本知識,盡管抽象代數的進一步知識需要更困難的練習。

這本書的內容可以很方便地分為四部分。第一部分(1-4章)提供了一個基本的基礎課程,包括圖的定義和例子,連通性,歐拉和哈密頓路徑和循環,以及樹。接下來是關于平面性和著色的兩章(第5章和第6章),特別提到了四色定理。第三部分(第7章和第8章)討論有向圖理論和截線理論,以及在關鍵路徑分析、馬爾可夫鏈和網絡流中的應用。書的最后一章是關于matroids的(第9章),這一章將前幾章的材料聯系在一起,并介紹了一些最近的發展。

付費5元查看完整內容

這本書的書名聽起來有點神秘。如果這本書以一種錯誤的方式呈現了這個主題,人們為什么要讀它呢?書中哪些地方做得特別“不對”?

在回答這些問題之前,讓我先描述一下本文的目標受眾。這本書是“榮譽線性代數”課程的課堂講稿。這應該是高等數學學生的第一門線性代數課程。它的目標是一個學生,雖然還不是非常熟悉抽象推理,但愿意學習更嚴格的數學,在“烹飪書風格”的微積分類型課程。除了作為線性代數的第一門課程,它也應該是第一門向學生介紹嚴格證明、形式定義——簡而言之,現代理論(抽象)數學風格的課程。

目標讀者解釋了基本概念和具體實例的非常具體的混合,它們通常出現在介紹性的線性代數文本中,具有更抽象的定義和高級書籍的典型構造。

//www.math.brown.edu/streil/papers/LADW/LADW_2017-09-04.pdf

付費5元查看完整內容

這是我2004年,2006年和2009年在斯坦福大學教授的概率理論博士課程的講義。本課程的目標是為斯坦福大學數學和統計學系的博士生做概率論研究做準備。更廣泛地說,文本的目標是幫助讀者掌握概率論的數學基礎和在這一領域中證明定理最常用的技術。然后將此應用于隨機過程的最基本類的嚴格研究。

為此,我們在第一章中介紹了測度與積分理論中的相關元素,即事件的概率空間與格-代數、作為可測函數的隨機變量、它們的期望作為相應的勒貝格積分,以及獨立性的重要概念。

利用這些元素,我們在第二章中研究了隨機變量收斂的各種概念,并推導了大數的弱定律和強定律。

第三章討論了弱收斂的理論、分布函數和特征函數的相關概念以及中心極限定理和泊松近似的兩個重要特例。

基于第一章的框架,我們在第四章討論了條件期望的定義、存在性和性質,以及相關的規則條件概率分布。

第五章討論了過濾、信息在時間上的級數的數學概念以及相應的停止時間。關于后者的結果是作為一組稱為鞅的隨機過程研究的副產品得到的。討論了鞅表示、極大不等式、收斂定理及其各種應用。為了更清晰和更容易的表述,我們在這里集中討論離散時間的設置來推遲與第九章相對應的連續時間。

第六章簡要介紹了馬爾可夫鏈的理論,概率論的核心是一個龐大的主題,許多教科書都致力于此。我們通過研究一些有趣的特殊情況來說明這類過程的一些有趣的數學性質。

在第七章中,我們簡要介紹遍歷理論,將注意力限制在離散時間隨機過程的應用上。我們定義了平穩過程和遍歷過程的概念,推導了Birkhoff和Kingman的經典定理,并強調了該理論的許多有用應用中的少數幾個。

第八章建立了以連續時間參數為指標的右連續隨機過程的研究框架,引入了高斯過程族,并嚴格構造了布朗運動為連續樣本路徑和零均值平穩獨立增量的高斯過程。

第九章將我們先前對鞅和強馬爾可夫過程的處理擴展到連續時間的設定,強調了右連續濾波的作用。然后在布朗運動和馬爾可夫跳躍過程的背景下說明了這類過程的數學結構。

在此基礎上,在第十章中,我們利用不變性原理重新構造了布朗運動作為某些重新標定的隨機游動的極限。進一步研究了其樣本路徑的豐富性質以及布朗運動在clt和迭代對數定律(簡稱lil)中的許多應用。

//statweb.stanford.edu/~adembo/stat-310b/lnotes.pdf

付費5元查看完整內容

作為布爾邏輯的替代

雖然邏輯是理性推理的數學基礎和計算的基本原理,但它僅限于信息既完整又確定的問題。然而,許多現實世界的問題,從金融投資到電子郵件過濾,本質上是不完整或不確定的。概率論和貝葉斯計算共同提供了一個處理不完整和不確定數據的框架。

不完全和不確定數據的決策工具和方法

貝葉斯編程強調概率是布爾邏輯的替代選擇,它涵蓋了為真實世界的應用程序構建概率程序的新方法。本書由設計并實現了一個高效概率推理引擎來解釋貝葉斯程序的團隊編寫,書中提供了許多Python示例,這些示例也可以在一個補充網站上找到,該網站還提供了一個解釋器,允許讀者試驗這種新的編程方法。

原則和建模

只需要一個基本的數學基礎,本書的前兩部分提出了一種新的方法來建立主觀概率模型。作者介紹了貝葉斯編程的原理,并討論了概率建模的良好實踐。大量簡單的例子突出了貝葉斯建模在不同領域的應用。

形式主義和算法

第三部分綜合了已有的貝葉斯推理算法的工作,因為需要一個高效的貝葉斯推理引擎來自動化貝葉斯程序中的概率演算。對于想要了解貝葉斯編程的形式主義、主要的概率模型、貝葉斯推理的通用算法和學習問題的讀者,本文提供了許多參考書目。

常見問題

第四部分連同詞匯表包含了常見問題的答案。作者比較了貝葉斯規劃和可能性理論,討論了貝葉斯推理的計算復雜性,討論了不完全性的不可約性,討論了概率的主觀主義和客觀主義認識論。

貝葉斯計算機的第一步

創建一個完整的貝葉斯計算框架需要新的建模方法、新的推理算法、新的編程語言和新的硬件。本書著重于方法論和算法,描述了實現這一目標的第一步。它鼓勵讀者探索新興領域,例如仿生計算,并開發新的編程語言和硬件架構。

付費5元查看完整內容

高斯過程(GPs)為核機器的學習提供了一種有原則的、實用的、概率的方法。在過去的十年中,GPs在機器學習社區中得到了越來越多的關注,這本書提供了GPs在機器學習中理論和實踐方面長期需要的系統和統一的處理。該書是全面和獨立的,針對研究人員和學生在機器學習和應用統計學。

這本書處理監督學習問題的回歸和分類,并包括詳細的算法。提出了各種協方差(核)函數,并討論了它們的性質。從貝葉斯和經典的角度討論了模型選擇。討論了許多與其他著名技術的聯系,包括支持向量機、神經網絡、正則化網絡、相關向量機等。討論了包括學習曲線和PAC-Bayesian框架在內的理論問題,并討論了幾種用于大數據集學習的近似方法。這本書包含說明性的例子和練習,和代碼和數據集在網上是可得到的。附錄提供了數學背景和高斯馬爾可夫過程的討論。

付費5元查看完整內容
北京阿比特科技有限公司