為破解軍事智能裝備預測性維護中智能化與網絡化程度低、物理模型構建困難等問題,本研究針對人工智能技術在軍事智能裝備中的應用框架、關鍵技術及保障決策方法展開探索。通過將預測性健康管理(PHM)系統架構融入軍事智能裝備健康管理體系,充分發揮人工智能全域通信、泛在感知與自主學習等核心能力,實現軍事智能裝備健康管理的數據驅動化、智能化和網絡化轉型。本研究成果可為復雜戰場環境下軍事智能裝備保障提供參考路徑,有效降低運維成本,持續提升保障效能。
本文重點研究人工智能技術(AIT)在機電控制系統(MECS)中的應用:首先闡釋AIT基礎理論與概念框架,繼而開發現代化AIT核心技術,結合我國現代企業機電控制系統現狀剖析現存瓶頸,最終探究AIT與機械系統的融合路徑,重點討論其在機械電子孔口子系統與電氣控制系統集成中的實踐應用。
"軍事智能裝備"泛指具備預測、感知、分析、推理、決策及控制能力的裝備體系。其在裝備數控化基礎上演進為更高級形態,可顯著提升生產效能與制造精度。其發展關鍵技術涵蓋缺陷檢測與健康維護技術(如高端數控機床、工業機器人),而故障預測與健康管理(PHM)技術正成為未來保障體系的核心方向。隨著軍事智能裝備復雜度提升,構建部件或系統的精確數學模型愈發困難。利用裝備全生命周期多節點歷史數據進行建模,相較物理分析模型更有利于實現PHM功能。鑒于軍事智能裝備向信息化、智能化、網絡化演進,其維護流程也需同步實現網絡協同與智能決策。本研究聚焦PHM與人工智能的融合應用,著力提升軍事裝備智能保障的決策水平、力量編成、方法革新及效能增益,為PHM智能化與網絡化維護模式的落地實施提供支撐。
高端技術的廣泛運用正在深刻改變制勝機理。信息力已超越火力成為戰爭勝負的決定性要素,控制取代摧毀成為壓制對手的首選手段。作戰體系中集群單元的影響力超越傳統集中兵力效果,催生出三大新型作戰樣式:基于集群協同的"新型智能作戰"(亦稱分布式協同戰)、基于多域集群的"集群攻防戰"、以及創新理論體系衍生的"電磁全維戰",三者共同構成未來智能化戰爭的基本形態。
將人工智能技術應用于軍事系統引發重大風險,主要源于國際人道法遵約要求與戰場可靠性能考量。基于風險的監管路徑能依據系統類型特質的風險性質與嚴重度定制緩釋措施,避免過度阻礙技術發展與應用。本文提出五級風險分層框架,采用定性模型評估不同軍事系統風險,其參數體系反映核心關切維度;進而主張建立差異化風險緩釋機制,探討可納入的緩釋措施類型。該路徑還通過兩種方式促進AI軍事系統監管國際共識:首先將龐雜風險解構為簡明集合以聚焦討論;其次推動負責任國家通過自我監管確保可靠性能,為爭議問題建立共同基礎。
當前國際社會普遍認同:人工智能(AI)技術應用于各類系統的風險重大,須妥善應對。近年多邊機構在制定AI全球標準方面取得顯著進展,涵蓋技術標準與負責任AI的倫理政策維度(Kerry等,2021)。2018年七國集團(G7)同意建立"全球人工智能伙伴關系"(GPAI),該多邊倡議致力于探索AI發展的監管挑戰與機遇。公私機構亦涌現大量宣言與框架指導負責任AI發展,其中許多已從原則聲明演進為完整政策框架。軍事領域,2019年聯合國(UN)確立致命性自主武器系統(LAWS)新興技術使用指導原則(聯合國裁軍事務廳,2019);2020年2月美國防部通過《AI倫理原則》(美國防部,2020),然其未必專門針對軍事系統。值得注意的是,歐盟對AI應用監管已采用風險分級路徑。
原則雖是政策制定實施的起點,仍需細化機制指導落地。對軍事系統采用風險分級監管,有望成為從緩釋原則轉向政策實踐的有效路徑。因各類軍事系統風險差異顯著,統一緩釋策略將導致三重困境:對高風險系統失之過寬,對低風險系統矯枉過正,阻礙對人類有益的軍事技術發展。風險分級路徑則可規避這些缺陷。
本文首先剖析AI技術特性如何引致系統潛在問題,比較民用與軍事系統風險分級路徑的演化原則;聚焦軍事系統,探討其核心AI風險關切;主要貢獻在于提出"風險分級體系",勾勒軍事AI系統風險緩釋的實施框架。該體系通過精細化緩釋路徑促進軍事AI責任領域的國際外交:聚焦關鍵議題推動爭議問題早期共識。本文還論證:在AI軍事系統全生命周期實施風險緩釋措施并非零和博弈,純粹基于提升作戰效能的考量亦構成采納這些措施的充分理由。
本文闡述圖像處理技術在軍事領域的應用方案。展示數字圖像分析在軍事安全防御中的多元應用場景,重點探討地球地圖與合成孔徑雷達(SAR)數據中的目標檢測、武器識別、關鍵軍事據點/物體/目標的偵測與分割技術。此外,基于數學離散算法自主開發專用軟件,實現SAR數據中物體、區域、地形區域乃至軍事目標的智能檢測。通過數學建模實現圖像分割,并完成計算機軟件自主開發實現圖像分割功能。該技術使軍事指揮員可分析可視化戰場態勢,評估圖像中具體目標的威脅等級。軍事管理部門可據此制定安防策略與防御戰術決策。
人工智能(AI)融入軍事行動對國際和平產生重大影響,國際社會、學者及政策制定者亟需全面理解其含義。本研究探討現代戰爭中圍繞人工智能的倫理問題,重點關注問責機制——特別是在自主系統故障情形下。基于技術決定論理論。主題分析表明,戰爭中日益增加的人工智能應用引發了有關問責、人類尊嚴及沖突未來的深刻倫理質疑。研究建議建立全球框架以規范人工智能在軍事行動中的使用。
人工智能在軍事行動中的出現已引發關于其倫理影響的激烈爭論。隨著人工智能技術日益精進,其改變現代戰爭的潛力不斷增強,進而對問責機制、人類尊嚴及沖突未來提出關鍵性質疑。人工智能(AI)的迅猛發展具有巨大的潛在優勢(Rowe,2022年)。為避免人工智能在社會應用中引發不可預見的危害與風險,我們必須審視人工智能系統的所有倫理維度。與科幻小說緊密關聯的普遍誤解是:人工智能由能完全感知環境的仿人機器人構成(Osimen, Fulani, Chidozie & Dada, 2024年)。然而根據Copeland(2024年)的見解,其內涵遠不止于此——人工智能(AI)指計算機控制的機器或機器人執行需要與人類同等智能的任務的能力;它們被認為能夠思考、理解并從先驗經驗中學習(Osimen, Fulani, Chidozie & Dada, 2024年)。
無論學者持何種觀點,過去20年間人工智能始終以加速態勢發展。因此,人工智能技術已深刻影響美國及其他工業化國家人民生活的多個維度。人工智能正滲透至日常生活的諸多領域,包括智能手機、移動測繪導航系統、自然語言交互計算機、定向在線營銷及定制化社交媒體信息推送(Morgan, Boudreaux, Curriden & Klima, 2020年)。隨著自動駕駛汽車等自主機器人技術獲得社會認可與整合,此趨勢將持續強化(Morgan, Boudreaux, Curriden & Klima, 2020年)。人工智能已迅速成為日常生活的重要部分,深刻影響著醫療保健、教育、金融及娛樂等行業(Marwala, 2023年;Adom, Kportufe, Asare-Aboagye, & Kquofi, 2024年)。
艾倫·圖靈1950年的論文《計算機器與智能》被公認為人工智能的奠基性著作。在這篇論文中,著名數學家兼計算機科學先驅艾倫·圖靈設問:機器是否終能進行推理(Anyoha, 2017年)?縱觀歷史,追求技術進步常被合理化作為實現軍事優勢的手段。自塹壕戰遭棄用后,作戰焦點已從直接物理對抗轉向數字戰爭領域(Chukwudi, Osimen, Dele-Dada, Ahmed, 2024年)。技術最初用于制造更強大的武器系統,但迅速擴展至機械化作戰,從而開啟新時代(Military Africa, 2023年)。Parkin(2015年)指出:在涉及致命性武力的軍事技術與規劃中,以人工智能(AI)軟件替代人力的構想正日益普及。鑒于軍事沖突的危險性,推動參與者自動化的動力尤為強勁(Osimen等, 2024年)。例如,韓國采用基礎人工智能技術的自動炮塔已獲廣泛應用(Parkin, 2015年)。
然而,Alderman、Daniel與Ray(2018年)對軍隊在沖突期間乃至相對和平時期為加強安全而使用人工智能引發的倫理問題表示憂慮。最尖銳的批判聚焦于:機器人可能在未經人類操作員直接授權的情況下殺人,甚至可能在武器選擇錯誤目標時脫離人類監督或干預能力。此外,對人工智能其他應用也存在擔憂——例如決策支持系統可能建議采取更極端措施乃至先發制人的打擊,而指揮官無法審查其復雜運算邏輯;或公民因人臉識別系統及其他尖端人工智能計算被誤判為恐怖分子或罪犯,從而面臨監禁乃至處決(Alderman, Daniel, & Ray, 2018年)。
現代戰爭中人工智能(AI)的應用已引發嚴峻倫理困境與挑戰。隨著技術發展,人工智能在軍事行動中的使用正日益影響作戰效能、目標精確度及決策流程。然而,此進步亦伴隨隱憂:包括潛在的人權侵犯、人工智能決策失準、人類問責弱化,以及違反國際人道法(IHL)的風險。缺乏有力的道德標準與法律框架來規范人工智能在戰斗中的應用,加劇了這些問題,進而引發對創新與問責間張力、技術對平民的影響及自主性在殺戮決策中作用的擔憂。為確保人工智能在戰爭中的使用符合道德標準與國際規范,必須嚴格審視這些難題。
本研究旨在探究這些倫理問題,聚焦自主系統帶來的挑戰,強調建立全球監管框架的必要性,并應對現代戰爭中人工智能開發與應用引發的倫理議題。本定性研究采用二手數據分析法,援引來自在線資源、教科書、期刊論文、會議記錄和報紙的可信數據源,運用主題分析法識別并解析數據模式。
隨著技術快速發展,空中交互模式日益復雜,智能空戰已成為多智能體系統領域前沿研究方向。在此背景下,大規模空戰場景的動態性與不確定性帶來顯著挑戰,包括可擴展性問題、計算復雜性及多智能體協同決策難題。為解決這些問題,我們提出一種基于圖結構與零階優化的多智能體強化學習(MADRL)新型自主空戰決策方法——GraphZeroPPO算法。該方法創新性地將GraphSAGE圖網絡與零階優化融入MADRL框架,通過圖結構適應多智能體系統高動態與高維特性,利用高效采樣策略實現導彈發射快速決策,同時借助零階優化有效探索全局最優解。最后,我們展示了在1v1與8v8空戰場景下的仿真實驗及對比結果。研究表明,該方法能有效適應大規模空戰環境,同時實現高勝率與快速決策性能。
在當今安全格局中,未經授權無人機在禁航空域的擴散已成為重大威脅。這些無人機構成從潛在監視與間諜活動到物理攻擊等惡性行為的多樣化風險。因此,開發高效反無人機激光系統愈發重要。本研究聚焦三大目標:建立內部可靠性模型、識別關鍵組件、探究影響反無人機系統可靠性的因素。通過分析關鍵組件可靠性及系統參數對整體可靠性的影響,旨在提升反無人機激光系統的綜合性能與效能。為此,采用可靠性框圖(RBD)方法計算反無人機系統中激光子系統的可靠性。同時開展組件級可靠性全面評估,識別系統薄弱環節,從而實現針對性改進與優化。為捕捉系統失效行為的真實場景,采用不同分布模型計算系統可靠性,確保深入理解其多工況下的運行可靠性。最終獲取反無人機激光系統的能量值與命中概率,以有效應對環境挑戰。
無人機已迅速融入現代社會生活,在多個領域獲得廣泛應用。盡管最初主要與軍事行動相關,無人機當前在民用領域發揮關鍵作用。其應用場景涵蓋娛樂(航拍攝影)、地質學(地圖繪制、勘測)、交通(流量監測)、安防(搜救、人群監控、救災)、物流(包裹投遞)、農業(作物監測、噴灑)及通信(應急基礎設施)等多元化領域。這些創新應用標志著社會向更高自主性轉型的重要進程,無人機正深刻改變日常生活的各個方面。
在當今安全格局中,禁航空域內非法無人機活動構成的威脅與日俱增。此類無人機可被用于監視、間諜活動甚至物理攻擊等惡意行為。為有效應對此類威脅,開發強健的反無人機激光系統勢在必行。圖1展示了激光反無人機系統的典型配置。
反無人機激光系統作為關鍵安防技術,旨在檢測、追蹤并反制禁航空域內的非法無人機。通過先進檢測機制、精確追蹤能力與有效反制手段,此類系統致力于保護敏感區域免受惡意無人機的潛在威脅。激光武器憑借其光速響應、精準光束定位與單次打擊成本效益[19],正成為應對無人機威脅升級的有效解決方案。為分析激光對無人機引擎的打擊效能,文獻[16]研究了目標對激光的脆弱性綜合評估方法。Ball在文獻[24]中指出,評估目標對激光的脆弱性類似于評估非爆炸性穿透物撞擊目標時造成的損傷機制,盡管未明確闡述具體評估方法。
本文開發了一種基于人工智能的戰斗機智能體,通過定制化Pygame模擬環境實現多目標任務求解。該智能體采用深度強化學習(DRL)算法,核心功能包括環境高效導航、目標點抵達、選擇性接敵/避敵。研究通過獎勵函數平衡多目標優化,結合超參數調優提升學習效率,實現超過80%的任務完成率。為增強決策透明度,采用事實-反事實對比分析方法:通過比較智能體實際選擇動作(事實動作)與替代動作(反事實動作)的獎勵差異,揭示其決策邏輯。本研究表明DRL與可解釋AI(XAI)在多目標問題求解中的協同潛力。
近年來,AI技術快速發展,已在多個領域展現變革性力量。從1997年國際象棋超越人類,到攻克復雜圍棋博弈,AI逐步實現高風險戰略任務的自主執行。強化學習(RL)作為AI子領域,通過試錯機制使智能體自主探索有效行動策略,擺脫了對人類專家數據的依賴。
在戰機導航與作戰領域,已有研究存在以下局限:仿真模型聚焦空戰場景模擬,缺乏DRL算法設計與獎勵函數優化;雖涉及強化學習,但未通過事實-反事實分析實現決策可解釋性,且未闡明智能體效率提升機制;飛行員訓練系統側重訓練場景構建,其獎勵機制局限于訓練目標導向,未實現效率與資源管理的復雜平衡;采用簡單獎勵函數(如擊落目標/規避墜毀),難以支持長短期決策權衡的精細化學習
本研究針對上述缺陷進行系統性改進,主要貢獻包括:
研究分為以下幾個主要部分:首先,開發了一個定制的模擬環境。接下來,使用雙深度 q 學習(DDQN)算法訓練戰斗機智能體做出戰略交戰決策。然后,重點優化任務資源,并通過事實和反事實情景解釋智能體的決策過程。通過解決優先級排序、自適應行為和風險評估等挑戰,這項研究旨在推動復雜多目標場景下智能自主系統的發展,最終增強人工智能在高風險環境中的作用。
配備先進傳感器的無人平臺的集成有望提高態勢感知能力,緩解軍事行動中的 “戰爭迷霧”。然而,管理這些平臺涌入的大量數據給指揮與控制(C2)系統帶來了巨大挑戰。本研究提出了一種新穎的多智能體學習框架來應對這一挑戰。該方法可實現智能體與人類之間自主、安全的通信,進而實時形成可解釋的 “共同作戰圖景”(COP)。每個智能體將其感知和行動編碼為緊湊向量,然后通過傳輸、接收和解碼形成包含戰場上所有智能體(友方和敵方)當前狀態的 COP。利用深度強化學習(DRL),聯合訓練 COP 模型和智能體的行動選擇策略。展示了在全球定位系統失效和通信中斷等惡劣條件下的復原能力。在 Starcraft-2 模擬環境中進行了實驗驗證,以評估 COP 的精度和策略的魯棒性。報告顯示,COP 誤差小于 5%,策略可抵御各種對抗條件。總之,貢獻包括自主 COP 形成方法、通過分布式預測提高復原力以及聯合訓練 COP 模型和多智能體 RL 策略。這項研究推動了自適應和彈性 C2 的發展,促進了對異構無人平臺的有效控制。
圖:從學習到的交流中預測 COP 的框架概覽。在決策過程中確定并使用 COP。使用 QMIX作為 COP 集成的 MARL 方法示例。
配備先進傳感器的無人平臺的集成為減輕 “戰爭迷霧 ”和提高態勢感知能力帶來了希望。然而,管理和傳播來自此類平臺的大量數據對中央指揮與控制(C2)節點的信息處理能力構成了巨大挑戰,特別是考慮到隨著平臺數量的增加,數據量也會呈指數級增長。目前的人工處理方法不適合未來涉及無人平臺群的 C2 場景。在本研究中,我們提出了一個利用多智能體學習方法來克服這一障礙的框架。
我們考慮的框架是,智能體以自主方式相互通信(以及與人類通信),并以數據驅動的方式訓練這種通信功能。在每個時間步驟中,每個智能體都可以發送/接收一個實值信息向量。該向量是智能體感知或視場(FoV)的學習編碼。這些向量不易被對手解讀,因此可以實現安全的信息傳輸。
在接收方,必須對信息進行解碼,以恢復發送方的感知和行動。此外,還應將信息整合(隨時間匯總)到 “共同作戰圖像”(COP)中。與編碼器一樣,解碼器也是以數據驅動的方式學習的。在本文中,我們將 COP 的定義簡化為戰場上每個友方和敵方智能體的當前狀態(位置、健康狀況、護盾、武器等)。我們認為,COP 對決策智能體至關重要。
近年來,以數據驅動方式進行端到端訓練的人工智能/人工智能方法大有可為。在數據驅動型自主 COP 的背景下,一個優勢是無需對傳感器和執行器中的噪聲、對手的動態等做出建模假設。通過充分的訓練,我們的數據驅動方法將產生高度精確的 COP。
不過,ML 模型可能對訓練數據或訓練場景的偏差很敏感。這與陸軍 C2 場景中通常假設的 DDIL(拒絕、中斷、間歇和有限影響)環境形成了鮮明對比。我們的實驗強調評估對霧增加、全球定位系統失效和通信中斷(如干擾)的適應能力。
我們使用深度神經網絡(DNN)的深度學習實現了編碼器和解碼器的數據驅動端到端訓練。將 DNN 應用于 COP 形成的一個挑戰是通信中缺乏人類可解釋性。人類可解釋性對于人類操作員有效控制蜂群至關重要。例如,通過解釋通信,操作員可以理解蜂群用于(自主)決策的特征。我們的方法具有人機互換性,這意味著人類操作員可以解碼傳入的信息,并將自己的感知編碼,與蜂群進行交流。由此產生的 COP 使人類能夠指揮蜂群。
在實踐中,COP 被大量用于任務執行,例如,確保協調運動。我們假設,將 COP 納入自主決策智能體將產生彈性多智能體策略(例如,對敵方變化的彈性)。我們在實驗中將有 COP 和沒有 COP 的多智能體策略學習與多種最先進的方法進行了比較,并驗證了這一假設。
接下來,我們總結一下我們的方法。我們首先描述了我們的深度學習方案,其中每個智能體將其感知和行動編碼成緊湊向量并進行傳輸。各智能體共享底層嵌入向量空間,以實現對態勢的共同理解。每個智能體都要訓練一個編碼器-解碼器,以生成本地 COP。本地 COP 應與智能體的感知一致,并能預測行動區域內所有單元的狀態(包括位置)。
在不同的模擬場景、初始部隊配置和對手行動中,使用深度強化學習(DRL)對 COP 和智能體策略進行端到端訓練。訓練的輸出是一個編碼器-解碼器神經網絡(NN)和一個跨智能體共享的策略 NN。可通過多種方式對訓練進行配置:最小化帶寬、最大化對干擾(如信道噪聲、數據包丟失、GPS 干擾等)的恢復能力。該方法可用于協調信息收集任務。
實驗在星際爭霸-2(SC2)多智能體環境中進行。在 SC2 中模擬的多個藍方與紅方場景中,通過經驗觀察了方法的有效性。具體來說,在具有挑戰性和現實性的 TigerClaw 場景(圖 1)中測試和評估了方法,該場景由 DEVCOM 陸軍研究實驗室(ARL)和陸軍主題專家(SMEs)在美國佐治亞州摩爾堡的上尉職業課程中開發。
圖 1:(左)Tigerclaw場景中的狀態示例。(右)每個智能體的感知(本地觀察)和它們之間的通信聯系。
對 COP 的準確性和幻覺進行評估,以揭示有趣的訓練動態。在整個模擬過程中,方法生成的 COP 高度準確,誤差小于 5%(與地面實況相比)。為了測試策略的魯棒性,我們將我們的方法與多種最先進的多智能體 RL 方法和基線進行了比較。結果表明,我們的方法所制定的策略能夠抵御視覺范圍下降、通信能力下降、GPS 被拒絕以及場景變化等因素的影響。
總之,這項研究通過數據驅動的 COP 形成,實現了人在環內的異構自主平臺的指揮和控制,推動了自適應和彈性 C2 領域的發展。其貢獻如下:
實時自主形成可解釋的共同行動圖像(COP)的方法,包括預測整個行動區域的敵方位置。
由于利用智能體間的通信進行分布式 COP 預測,因此展示了對可視范圍和 GPS 拒絕的更強的應變能力。
通過聯合訓練 COP 模型和多智能體 RL 策略,提高整體任務成功率。
本文介紹了一種為戰場環境量身定制的動態三維場景感知創新系統,該系統利用配備雙目視覺和慣性測量單元(IMU)的無人智能體。該系統處理雙目視頻流和 IMU 數據,部署先進的深度學習技術,包括實例分割和密集光流預測,并通過專門策劃的目標數據集加以輔助。通過集成 ResNet101+FPN 骨干進行模型訓練,作戰單元類型識別準確率達到 91.8%,平均交叉比聯合(mIoU)為 0.808,平均精度(mAP)為 0.6064。動態場景定位和感知模塊利用這些深度學習輸出來完善姿態估計,并通過克服通常與 SLAM 方法相關的環境復雜性和運動引起的誤差來提高定位精度。
在模擬戰場元環境中進行的應用測試表明,與傳統的 ORB-SLAM2 立體方法相比,自定位精度提高了 44.2%。該系統能有效地跟蹤和注釋動態和靜態戰場元素,并利用智能體姿勢和目標移動的精確數據不斷更新全局地圖。這項工作不僅解決了戰場場景中的動態復雜性和潛在信息丟失問題,還為未來增強網絡能力和環境重建方法奠定了基礎框架。未來的發展將側重于作戰單元模型的精確識別、多代理協作以及三維場景感知的應用,以推進聯合作戰場景中的實時決策和戰術規劃。這種方法在豐富戰場元宇宙、促進深度人機交互和指導實際軍事應用方面具有巨大潛力。
認識到當前軍事教育體系的特殊性,并考慮到軍事工程培訓快速現代化的必要性,人機界面需要采用創新技術來加強教育過程。我們的目的是詳細分析在培訓未來軍事工程軍官時人工智能技術的實施情況,概述現有策略,并制定通過人工智能技術強化教育過程的可行策略。為實現研究目的,通過五份問卷對 154 名教官進行了開放式和封閉式調查,以解決研究問題。采用傳統的內容分析法和數據統計處理法對答案進行了研究。結果揭示了人工智能在軍事工程訓練中應用的基本方向,以及人工智能在未來軍事工程軍官專業能力培養中的可能應用。但與此同時,研究結果表明,軍事工程訓練過程正面臨著一些挑戰,使人工智能驅動的轉型實施變得更加復雜。為了克服人工智能目前面臨的挑戰,并為人工智能在人機界面的應用提出建議,概述了通過人工智能技術加強軍事工程訓練的策略。
圖 3:通過人工智能技術加強軍事工程訓練的戰略。
根據調查結果,可以考慮通過人工智能技術加強軍事工程訓練的五項策略。
首先,對未來軍事工程軍官進行有效培訓和數據隱私控制需要制定使用人工智能的法律框架。特別是對于信息獲取受限的人機交互界面而言,這一點至關重要。由于所有烏克蘭教育機構都根據《歐盟-烏克蘭聯系協議》中烏克蘭立法與歐盟(EU)法律相協調的原則運作,因此擬議的歐盟人工智能法(歐盟委員會,2021 年)成為設計人工智能法規的基礎。同時,高校的教育過程近似于北大西洋公約組織(NATO)的標準,他們有義務在北約實施人工智能政策(Stanley-Lockman & Christie, 2021)。針對特定機構的規定可以幫助教師處理具體情況,并解決人工智能應用所帶來的具體風險。此外,官方指南還包括一份不能在人機界面中使用的高風險應用程序清單,并規定了人工智能用戶(包括教員和學員)的具體義務。我們預計,制定使用人工智能的法律框架將促進教育進程,并使學員能夠從已有的幾項創新技術中受益。
其次,將人工智能納入課程涉及將人工智能的原則、道德、法規和基本功能納入人機界面教授的課程,以及創建使用人工智能工具的綜合課程。該戰略以在培養未來軍事工程軍官的過程中有效應用人工智能工具為導向,可用于培養人工智能素養和數字能力。此外,這種影響可能有助于擴大工程單元的運作可能性,提高未來軍事工程軍官專業活動的生產力。將人工智能納入課程是培養教員和學員適應人機界面創新數字教育環境的必要條件。因此,修改現有課程將為在軍事工程訓練中正確和合乎道德地使用人工智能創造一個穩定的位置。
第三,教育過程參與者的高水平人工智能數字化能力意味著他們已準備好正確使用人工智能工具,能夠處理來自不同來源的大量信息,并理解在專業軍事活動中進行數字化轉型的必要性(Ng 等人,2023 年)。培養人工智能數字化能力需要為教官和學員開設專門課程,教授如何在數字化環境中操作以及如何避免可能出現的錯誤。人工智能數字化能力對于優化教育過程、在線環境下的工作、改善學習材料的視覺感知、使用人工智能工具創建高質量內容、收集和系統化數據、開發基于人工智能的項目、積極的在線交流、改善教學實踐、高效的課堂管理等都是必不可少的。
第四,通過人工智能技術加強軍事工程訓練需要制定具體的方法,旨在選擇教學方法和活動,使教學過程高效。適當的方法論可以讓教員合理使用學習材料,在學員中形成深厚的知識和技能,培養未來軍事工程軍官的持續學習能力。目前,人機界面的教學科目正面臨著快速轉型,我們看到的是從傳統教學方法向個性化學習和互動式教學方式的轉變。一方面,行為模型、數據分析和學習管理系統等人工智能工具促進了軍事教育的現代化,形成了有效的定制學習。另一方面,人工智能工具的使用要求根據教學科目和教學目標采用特定的教學方法。
有效決策是組織成功的核心。在數字化轉型時代,企業越來越多地采用數據驅動的方法來獲得競爭優勢。根據現有文獻,人工智能(AI)代表了這一領域的重大進步,它能夠分析大量數據、識別模式、做出準確預測,并為組織提供決策支持。本研究旨在探討人工智能技術對組織決策不同層面的影響。通過將這些決策按照其屬性分為戰略決策和運營決策,本研究可以更全面地了解人工智能在組織決策中實施的可行性、當前采用率以及阻礙因素。