有效決策是組織成功的核心。在數字化轉型時代,企業越來越多地采用數據驅動的方法來獲得競爭優勢。根據現有文獻,人工智能(AI)代表了這一領域的重大進步,它能夠分析大量數據、識別模式、做出準確預測,并為組織提供決策支持。本研究旨在探討人工智能技術對組織決策不同層面的影響。通過將這些決策按照其屬性分為戰略決策和運營決策,本研究可以更全面地了解人工智能在組織決策中實施的可行性、當前采用率以及阻礙因素。
為了真實地再現軍事行動,嚴肅的戰斗模擬要求建模實體具有合理的戰術行為。因此,必須定義作戰戰術、條令、交戰規則和行動概念。事實證明,強化學習可以在相關實體的行為邊界內生成廣泛的戰術行動。在多智能體地面作戰場景中,本文展示了人工智能(AI)應用如何制定戰略并向附屬單元提供命令,同時相應地執行任務。我們提出了一種將人類知識和責任與人工智能系統相結合的方法。為了在共同層面上進行交流,人工智能以自然語言下達命令和行動。這樣,人類操作員就可以扮演 "人在回路中 "的角色,對人工智能的推理進行驗證和評估。本文展示了自然語言與強化學習過程的成功整合。
為了獲得模型架構的靈感,我們研究了 DeepMind 的 AlphaStar 架構,因為它被認為是復雜 RL 問題領域的最先進架構。通過我們的架構(如圖 2 所示),我們提出了一種靈活、可擴展的行動空間與深度神經網絡相結合的適應性新方法。觀察空間的設計基于如何準備戰場的軍事經驗。通常使用地圖和可用部隊表。因此,模擬觀測被分為標量數據(如可用坦克數量及其彈藥)。同時,基于地圖的輸入作為視覺輸入提供給空間編碼器。
標量數據用于向人工智能提供幾乎所有場景細節的建議。其中包括有關自身部隊及其平臺的數據,以及有關敵方部隊的部分信息。輸入并非以絕對數字給出,而是采用歸一化方法來提高訓練效果。編碼器可以很容易地寫成多層感知器(MLP);不過,使用多頭注意力網絡可以大大提高訓練后智能體的質量,因此應予以采用(Vaswani 等人,2017 年)。
為了理解地理地形、距離和海拔高度的含義,人工智能會被輸入一個帶有實體編碼的地圖視覺表示。顏色方案基于三通道圖像,這使我們能夠輕松地將數據可視化。雖然使用更多通道會給人類的圖形顯示帶來問題,但人工智能能夠理解更多通道。不同的字段類型和實體會用特殊的顏色進行編碼,以便始終能夠區分。這種所謂的空間編碼器由多個卷積層組成。最初,我們嘗試使用 ResNet-50 (He 和 Zhang,2016 年)和 MobileNetV3 (Howard 等,2019 年)等著名架構,甚至使用預先訓練的權重。然而,這并沒有帶來可接受的訓練性能。因此,我們用自己的架構縮小了卷積神經網絡(CNN)的規模。
為了測試和優化這一架構,我們使用了一個自動編碼器設置,并使用了模擬中的真實樣本。我們能夠將參數數量從大約 200 萬減少到大約 47000。此外,我們還生成了一個預訓練模型,該模型已與模擬的真實觀測數據相匹配。這一步極大地幫助我們加快了 RL 進程。
一個可選元素是添加語言輸入,為人工智能定義任務。雖然一般的戰略人工智能不使用這一元素,但計劃將其用于下屬智能體。這些智能體將以自然語言接收來自戰略人工智能的任務,并使用雙向門控遞歸單元(GRU)編碼器對其進行處理。
視覺數據、任務數據和標量數據的編碼值被合并并輸入核心網絡。根據 Hochreiter 和 Schmidhuber(1997 年)的介紹,核心主要是一個擁有 768 個單元的長短期記憶(LSTM)組件。在軍事場景中,指揮官必須了解高價值資產的長期戰略規劃。在本模擬中,人工智能可以請求戰斗支援要素,這些要素在影響戰場之前需要長達 15 分鐘的時間。因此,人工智能必須了解未來任務的時間安排和規劃。在 RL 中使用 LSTM 網絡相當困難,因為它需要大量的訓練時間,而且會導致上面各層的梯度消失。因此,我們決定在 LSTM 上添加一個跳過連接,以盡量減少新增層的負面影響。
動作頭由一個自然語言處理(NLP)模型組成。這是一個非常簡化的動作頭模型,包含一個小型 LSTM 和一個額外的密集層,共有約 340000 個參數。其結果是一個尺寸為 8 x 125 的多離散動作空間。
除主模型外,還有一個單獨的價值網絡部分。價值網絡使用核心 LSTM 的輸出,并將對手信息串聯起來傳遞給 MLP。然后,MLP 可以精確預測價值函數。通過對手信息,價值網絡對模擬有了一個上帝般的地面實況視圖。由于該網絡只與訓練相關,因此可以在不干擾訓練完整性的情況下進行。
認識到當前軍事教育體系的特殊性,并考慮到軍事工程培訓快速現代化的必要性,人機界面需要采用創新技術來加強教育過程。我們的目的是詳細分析在培訓未來軍事工程軍官時人工智能技術的實施情況,概述現有策略,并制定通過人工智能技術強化教育過程的可行策略。為實現研究目的,通過五份問卷對 154 名教官進行了開放式和封閉式調查,以解決研究問題。采用傳統的內容分析法和數據統計處理法對答案進行了研究。結果揭示了人工智能在軍事工程訓練中應用的基本方向,以及人工智能在未來軍事工程軍官專業能力培養中的可能應用。但與此同時,研究結果表明,軍事工程訓練過程正面臨著一些挑戰,使人工智能驅動的轉型實施變得更加復雜。為了克服人工智能目前面臨的挑戰,并為人工智能在人機界面的應用提出建議,概述了通過人工智能技術加強軍事工程訓練的策略。
圖 3:通過人工智能技術加強軍事工程訓練的戰略。
根據調查結果,可以考慮通過人工智能技術加強軍事工程訓練的五項策略。
首先,對未來軍事工程軍官進行有效培訓和數據隱私控制需要制定使用人工智能的法律框架。特別是對于信息獲取受限的人機交互界面而言,這一點至關重要。由于所有烏克蘭教育機構都根據《歐盟-烏克蘭聯系協議》中烏克蘭立法與歐盟(EU)法律相協調的原則運作,因此擬議的歐盟人工智能法(歐盟委員會,2021 年)成為設計人工智能法規的基礎。同時,高校的教育過程近似于北大西洋公約組織(NATO)的標準,他們有義務在北約實施人工智能政策(Stanley-Lockman & Christie, 2021)。針對特定機構的規定可以幫助教師處理具體情況,并解決人工智能應用所帶來的具體風險。此外,官方指南還包括一份不能在人機界面中使用的高風險應用程序清單,并規定了人工智能用戶(包括教員和學員)的具體義務。我們預計,制定使用人工智能的法律框架將促進教育進程,并使學員能夠從已有的幾項創新技術中受益。
其次,將人工智能納入課程涉及將人工智能的原則、道德、法規和基本功能納入人機界面教授的課程,以及創建使用人工智能工具的綜合課程。該戰略以在培養未來軍事工程軍官的過程中有效應用人工智能工具為導向,可用于培養人工智能素養和數字能力。此外,這種影響可能有助于擴大工程單元的運作可能性,提高未來軍事工程軍官專業活動的生產力。將人工智能納入課程是培養教員和學員適應人機界面創新數字教育環境的必要條件。因此,修改現有課程將為在軍事工程訓練中正確和合乎道德地使用人工智能創造一個穩定的位置。
第三,教育過程參與者的高水平人工智能數字化能力意味著他們已準備好正確使用人工智能工具,能夠處理來自不同來源的大量信息,并理解在專業軍事活動中進行數字化轉型的必要性(Ng 等人,2023 年)。培養人工智能數字化能力需要為教官和學員開設專門課程,教授如何在數字化環境中操作以及如何避免可能出現的錯誤。人工智能數字化能力對于優化教育過程、在線環境下的工作、改善學習材料的視覺感知、使用人工智能工具創建高質量內容、收集和系統化數據、開發基于人工智能的項目、積極的在線交流、改善教學實踐、高效的課堂管理等都是必不可少的。
第四,通過人工智能技術加強軍事工程訓練需要制定具體的方法,旨在選擇教學方法和活動,使教學過程高效。適當的方法論可以讓教員合理使用學習材料,在學員中形成深厚的知識和技能,培養未來軍事工程軍官的持續學習能力。目前,人機界面的教學科目正面臨著快速轉型,我們看到的是從傳統教學方法向個性化學習和互動式教學方式的轉變。一方面,行為模型、數據分析和學習管理系統等人工智能工具促進了軍事教育的現代化,形成了有效的定制學習。另一方面,人工智能工具的使用要求根據教學科目和教學目標采用特定的教學方法。
人工智能(AI)通過提供決策建議和與問題相關的信息來協助人類決策者,具有改善人類決策的潛力。然而,要充分發揮人類與人工智能合作的潛力,仍然面臨著一些挑戰。首先,我們必須了解支持互補性的條件,即人類在人工智能輔助下的表現超過無輔助的人類或單獨的人工智能的情況。這項任務要求人類能夠識別在哪些情況下應該利用人工智能,以及開發新的人工智能系統,使其能夠學習如何與人類決策者互補。其次,我們需要準確評估人類對人工智能的心理模型,其中既包括對人工智能的期望,也包括依賴策略。第三,我們需要了解不同的人機交互設計選擇所產生的影響,包括人工智能輔助的時機以及應該向人類決策者展示的模型信息量,以避免認知超載和無效的依賴策略。針對這三大挑戰,我們將基于最新的經驗和理論研究成果提出跨學科觀點,并討論新的研究方向。
人工智能(AI)和統計機器學習(ML)與復雜系統的集成,給傳統的測試與評估(T&E)實踐帶來了各種挑戰。隨著更多不同級別的決策由人工智能系統(AIES)處理,我們需要測試與評估流程為確保系統的有效性、適用性和生存性奠定基礎。這涉及到評估 ML 模型和人工智能算法組件的方法,包括展示它們如何產生可重復和可解釋的決策的能力,以及對任何故障模式和故障緩解技術的了解。此外,還需要人工智能保證,以證明人工智能算法按預期運行,不存在因設計缺陷或惡意插入數據或算法代碼而產生的漏洞。T&E 需要新的流程來鑒定 ML 模型的訓練數據是否充足、算法和模型性能、系統性能以及運行能力。弗里曼(Freeman,2020 年)概述了當前復雜軟件支持系統的測試與評價方法所面臨的挑戰、嵌入式人工智能所加劇的關鍵挑戰,以及針對 AIES 的測試與評價需要如何改變的 10 個主題[1]。
為了充分測試 AIES,測試與評估界需要應對以下挑戰:
圖 1 總結了加強測試與評估的 10 個不同主題,以應對充分測試和評估 AIES 所面臨的挑戰。在過去的一年中,弗吉尼亞理工大學致力于測試和評估各種 AIES。本最佳實踐指南對圖 1 中的主題進行了進一步的完善和補充。本文所包含的最佳實踐將這些主題轉化為可執行的測試與評估實踐。在編寫本指南的過程中,我們充分利用了我們在人工智能系統開發和與更廣泛的人工智能社區合作方面的 T&E 工作經驗。這里所包含的最佳實踐反映了我們為使人工智能系統的測試與評估具有可操作性所做的初步嘗試。這些實踐需要在各種人工智能系統中進行測試,以確保它們是真正的最佳實踐。貫穿許多最佳實踐的一個亮點是數據的重要作用。數據不再僅僅是 T&E 的產物。現在,它已成為人工智能系統開發本身的輸入。這一顯著變化推動了對人工智能系統的技術與評估提出新的要求和實踐。此外,這份清單還遠遠不夠完整,應被視為一份活生生的實踐文檔。隨著越來越多的人工智能系統可供測試,新的實踐將不斷發展,本清單也需要不斷更新。不過,本文件中的每種做法都已證明在美國防部 AIES 測試中非常有用。
美國陸軍對人工智能和輔助自動化(AI/AA)技術在戰場上的應用有著濃厚的興趣,以幫助整理、分類和澄清多種態勢和傳感器數據流,為指揮官提供清晰、準確的作戰畫面,從而做出快速、適當的決策。本文提供了一種將作戰模擬輸出數據整合到分析評估框架中的方法。該框架有助于評估AI/AA決策輔助系統在指揮和控制任務中的有效性。我們的方法通過AI/AA增強營的實際操作演示,該營被分配清理戰場的一個區域。結果表明,具有AI/AA優勢的模擬場景導致了更高的預期任務有效性得分。
美國陸軍目前正在開發將人工智能和輔助自動化(AI/AA)技術融入作戰空間的決策輔助系統。據美國陸軍機動中心稱,在決策輔助系統等人工智能/輔助自動化系統的協助下,士兵的作戰效率可提高10倍(Aliotta,2022年)。決策輔助工具旨在協助指揮官在作戰場景中減少決策時間,同時提高決策質量和任務效率(Shaneman, George, & Busart, 2022);這些工具有助于整理作戰數據流,協助指揮官進行戰場感知,幫助他們做出明智的實時決策。與使用AI/AA決策輔助工具相關的一個問題是,陸軍目前缺乏一個有效的框架來評估工具在作戰環境中的使用情況。因此,在本文中,我們將介紹我們對分析框架的研究、設計和開發,并結合建模和仿真來評估AI/AA決策輔助工具在指揮和控制任務中的有效性。
作為分析框架開發的一部分,我們進行了廣泛的文獻綜述,并與30多個利益相關者進行了利益相關者分析,這些利益相關者在人工智能/AA、決策輔助、指揮與控制、建模與仿真等領域具有豐富的知識。根據他們對上述主題的熟悉程度,我們將這些利益相關者分為若干焦點小組。我們與每個小組舉行了虛擬焦點小組會議,收集反饋意見,并將其用于推動我們的發現、結論和建議(FCR)。同時,我們還開發了一個逼真的戰場小故事和場景。利用該場景和我們的FCR輸出,我們與美國陸軍DEVCOM分析中心(DAC)合作開發了一個功能層次結構,通過建模和仿真來測量目標。我們將假設的戰斗場景轉移到 "一個半自動化部隊"(OneSAF)中,該模擬軟件利用計算機生成部隊,提供部分或完全自動化的實體和行為模型,旨在支持陸軍戰備(PEOSTRI, 2023)。使用分析層次過程,我們征詢了評估決策者的偏好,計算了功能層次中目標的權重,并創建了一個電子表格模型,該模型結合了OneSAF的輸出數據,并提供了量化的價值評分。通過A-B測試,我們收集了基線模擬和模擬AI/AA效果的得分。我們比較了A情景和B情景的結果,并評估了AI/AA對模擬中友軍任務有效性的影響。
分析評估框架可針對多標準決策問題對定量和/或定性數據進行評估。定性框架,如卡諾模型(Violante & Vezzetti, 2017)、法式問答(Hordyk & Carruthers, 2018)和定性空間管理(Pascoe, Bustamante, Wilcox, & Gibbs, 2009),主要用于利益相關者的投入和頭腦風暴(Srivastava & Thomson, 2009),不需要密集的計算或勞動。定量評估框架以數據為導向,提供一種數學方法,通過衡量性能和有效性來確定系統的功能。分析層次過程(AHP)適用于我們的問題,因為它使用層次設計和成對的決策者偏好比較,通過比較權重提供定性和定量分析(Saaty,1987)。雖然AHP已被廣泛應用,但據我們所知,該方法尚未被用于評估人工智能/自動分析決策輔助工具,也未與A-B測試相結合進行評估。
指揮與控制(C2)系統用于提供更詳細、更準確、更通用的戰場作戰畫面,以實現有效決策;這些C2系統主要用于提高態勢感知(SA)。研究表明,使用數字化信息顯示方法的指揮官比使用無線電通信收集信息的指揮官顯示出更高水平的態勢感知(McGuinness和Ebbage,2002年)。AI/AA與C2的集成所帶來的價值可以比作戰斗視頻游戲中的 "作弊器":它提供了關于敵方如何行動的信息優勢,并幫助友軍避免代價高昂的后果(McKeon,2022)。對C2系統和SA的研究有助于推動本文描述的小故事和場景的發展。
建模與仿真(M&S)是對系統或過程的簡化表示,使我們能夠通過仿真進行預測或了解其行為。M&S生成的數據允許人們根據特定場景做出決策和預測(TechTarget,2017)。這使得陸軍能夠從已經經歷過的作戰場景和陸軍預計未來將面臨的作戰場景中生成并得出結論。模擬有助于推動陸軍的能力評估。測試和評估通常與評估同時進行,包括分析模型以學習、改進和得出結論,同時評估風險。軍隊中使用了許多不同的M&S工具。例如,"步兵戰士模擬"(IWARS)是一種戰斗模擬,主要針對個人和小單位部隊,用于評估作戰效能(USMA, 2023)。高級仿真、集成和建模框架(AFSIM)是一種多領域M&S仿真框架,側重于分析、實驗和戰爭游戲(West & Birkmire, 2020)。在我們的項目范圍內,"一支半自動化部隊"(OneSAF)被用于模擬我們所創建的戰斗情況,以模擬在戰場上擁有人工智能/自動機優勢的效果。
如前所述,人工智能/AA輔助決策的目標是提高決策的質量和速度。人工智能可用于不同的場景,并以多種方式為戰場指揮官和戰士提供支持。例如,人工智能/AA輔助決策系統可以幫助空中和地面作戰的戰士更好地 "分析環境 "和 "探測和分析目標"(Adams, 2001)。人工智能/自動機輔助決策系統可以幫助減少人為錯誤,在戰場上創造信息和決策優勢(Cobb, Jalaian, Bastian, & Russell, 2021)。這些由AI/AA輔助決策系統獲得的信息分流優勢指導了我們的作戰小故事和M&S場景開發。
在我們的作戰小故事中,第1營被分配到一個小村莊,直到指定的前進路線。營情報官羅伊上尉(BN S2)使用AI/AA輔助決策系統(即助手)準備情報態勢模板(SITTEMP),該系統可快速收集和整合積累的紅色情報和公開來源情報衍生的態勢數據。然后,它跟隨瓊斯少校和史密斯上尉,即營行動指揮員(BN S3)和S3助理(AS3),使用AI/AA輔助決策系統制定機動行動方案(COA),以評估 "假設 "情景、 她根據選定的機動方案開發指定的利益區域(NAI),然后在其內部資產和上層資源之間協調足夠的情報、監視和偵察(ISR)覆蓋范圍。假設時間為2030年,雙方均不使用核武器或采取對對方構成生存威脅的行動,天氣條件對藍軍和紅軍的影響相同,時間為秋季,天氣溫暖潮濕。
作為解決方案框架背景研究的一部分,我們與32位民用和軍用利益相關者進行了接觸,他們都是AI/AA及其對決策和仿真建模的貢獻方面的專家。我們進行的利益相關者分析過程如下: 1)定義和識別利益相關者;2)定義焦點小組;3)將利益相關者分配到焦點小組;4)為每個焦點小組制定具體問題;5)聯系利益相關者并安排焦點小組會議;6)進行焦點小組會議;7)綜合并分析利益相關者的反饋;以及8)制定FCR矩陣。我們利用FCR矩陣的結果來繪制功能層次圖,其中包括從模擬場景中生成/收集的目標、衡量標準和度量。然后根據這些目標、措施和指標對任務集的重要性進行排序。這為使用層次分析法(如下所述)奠定了基礎。
AHP是托馬斯-薩蒂(Thomas Saaty)于1987年提出的一種方法,它利用專家判斷得出的一系列成對比較,將功能層次結構中的每個功能和子功能放入一個優先級表中。然后通過有形數據或專家定性意見對各種屬性進行排序。如表1所示,這些排序被置于1-9的范圍內。在賦予每個屬性1-9的權重后,再賦予標準和次級標準權重,以顯示其相對重要性(Saaty,1987)。
近幾十年來,國防系統的規劃已經演變成基于能力的規劃(CBP)過程。本文試圖回答兩個問題:首先,如何表達一個復雜的、真實世界的能力需求;其次,如何評估一個具有交互元素的系統是否滿足這一需求。我們建議用一套一致的模型以可追蹤的方式來表達能力需求和滿足該需求的解決方案。這些模型將目前的能力模型,具體到規劃級別和能力觀點,與系統思維方法相結合。我們的概念模型定義了環境中的防御系統,數據模型定義并組織了CBP術語,類圖定義了CBP規劃元素。通過給出一個能力參數化的例子來說明這個方法,并將其與DODAF能力觀點和通用CBP過程進行比較。我們的數據模型描述了能力在行動中是如何退化的,并將該方法擴展到能力動態。定量能力定義的目的是支持解決現實世界中相互作用的子系統,這些子系統共同實現所需的能力。
在本節中,能力被定義為執行任務的效果或功能并作為系統時,我們討論CBP;在1.2小節中進一步討論Anteroinen的分類中的第三和第五類。為了專注于軍事系統或軍事單位的結構定義和未來的數學建模,只考慮系統的物理組成部分,即人員和物資,以及他們與能力的關系。環境的影響--天氣條件、地形、周圍的基礎設施和其他軍事單位--被省略,以關注兩種力量之間的相互作用;盡管在實踐中,環境和其他更廣泛的系統問題顯然是相關的。通常情況下,CBP過程定義了環境的相關方面和軍事行動的類型,為能力需求定義、能力評估和解決方案選擇制定了可能的規劃情況集合。
一個軍事單位或一個組織由其人員和物資組成。經過組織和訓練的人員配備了適當的物資,代表、擁有或產生能力。當兩個軍事單位相互作戰時,他們會啟動自己的能力,以造成敵人的物資和人員的退化。為了定義能力需求并計劃如何作為軍事單位或系統來實施,需要解決的問題是:在與敵人的互動過程中,能力將如何演變,而敵人的能力卻鮮為人知?圖1說明了在敵人能力的作用下,自己的軍事作戰和維持能力的動態互動。我們的能力削弱了敵方的人員和物資,對敵方的能力產生了影響;而敵方的能力削弱了我們的人員和物資,對我們的能力產生了影響。外部資源,也就是供應和維持能力,維持著被削弱的人員和物資。如因果循環圖所示,敵方的能力可以與我方的能力對稱地表示。第3節的進一步建模集中在我們自己的能力上,由圖1中的虛線表示,以便更純粹地表示。
對我們自己的能力的定義說明,由人員和物資提供,表明了復雜的結構和與能力有關的功能和元素之間的相互作用。此外,真正的軍事單位,通常由較小的編隊組成,有幾種能力,由大量不同的物資和人員組成,并與環境互動。
架構被定義為 "一個系統在其環境中的基本概念或屬性,體現在其元素、關系以及設計和進化的原則中"。因此,架構描述是一種表達架構的工作產品。架構框架是在一些應用領域或社區應用架構描述的基礎。架構框架為網絡系統的復雜性管理提供了結構化的方法,使利益相關者之間能夠進行溝通,并支持未來和現有系統的系統分析和設計。企業架構的Zachman框架是這類通用框架的一個例子。DoDAF、MODAF和NAF是用于國防系統分析和定義的架構框架,特別是用于指揮、控制、通信、計算機、情報、監視和偵察系統(C4ISR)。這些架構框架由觀點組成,定義了代表特定系統關注點的一組架構視圖的規則。架構視圖由一個或多個模型組成。架構框架基礎的元模型定義了不同視點中元素之間的關系。DoDAF元模型DM2有一個概念數據模型圖(DIV-1),用來向管理者和執行者傳達架構描述的高層數據構造的概念。MODAF元模型詳細定義了每個架構視圖的數據模型。
利益相關者需要適當的支持,以促進他們彼此之間以及與規劃專家團體的溝通,從而從CBP方法中獲益。軍事專家的作用不是參與復雜的工具和方法,而是為規劃過程提供重要的領域專業知識。架構框架是一個很好的工具,可以定義當前的防御系統,確定能力需求,并描述系統解決方案。不幸的是,架構框架和相關元模型的精確但復雜的機制與復雜的符號并不一定能以明顯的方式解釋能力觀點和要素之間的關系。因此,架構觀點和典型的CBP流程并沒有明顯的聯系。因此,參與能力規劃的軍事專家和決策者很少能夠加深理解,或者在沒有專門掌握這些工具和方法的人員的情況下,通過應用架構框架確定解決方案。需要對能力進行更簡單的定義,與流程兼容。
圖2提出了一個高層次的數據模型,它代表了能力定義問題的抽象。數據模型描述了能力模型類型及其關系,作為能力和防御系統建模的框架。符號的選擇是為了保持信息量,但對更多的人來說是可讀的,因此它不遵循任何特定的方法,但與SODA的認知圖譜有一些共同點。
能力的現實世界實例在圖的左邊,而概念模型類型在右邊。該模型的第一個版本已經被Koivisto和Tuukkanen應用于一個基于研發的自下而上的過程和概念性的未來系統,即認知無線電。原始模型描述,系統模型定義了物資、戰斗力和功能能力。實際上,這是一種雙向的關系:在所需能力和所需資源的驅動下建立系統模型,然后用系統模型來預測特定環境和實例中的結果。
防御系統由系統、系統要素及其相互作用組成,其突發屬性由系統、系統要素和它們的相互作用界定。圖3中的模型代表了系統層次結構中的防御系統層次。防御系統可以被看作是SoS,但我們應用一般的系統術語來保持模型的可擴展性,并為防御系統層次結構的較低層次提供合適的術語。在國防系統層次結構的任何一級,系統代表一個由系統元素組成的軍事單位:人員和物資。
圖3 國防系統在其背景下的概念系統模型。防御系統,即利益系統(SOI),被環境和其他行為者的系統所包圍。這些系統包括相互作用的系統要素人員(P)和物資(M)。子系統和系統元素之間的聯系是示范性的。
除了系統元素和它們的組織之外,還要定義功能和相應的輸出,以獲得更全面的系統定義。我們將能力定義為執行任務的效果或功能,是一種功能能力。在CBP過程中,功能能力定義了一些當前或計劃中的軍事單位或由物資和人員組成的系統的能力潛力。最終,能力發展過程必須以現實世界的軍事單位來定義系統的實施。力量要素的概念定義了最終的系統結構,也就是要生產的現實世界的軍事單位的組織。在我們的數據模型中,功能能力被安排在SOI內部,以代表系統的涌現屬性。當這種潛力或涌現被計劃為引起某種效果時,系統,具體來說是其功能能力,在計劃過程中被分配到一個任務中。此外,當軍事單位執行任務時,效果就會產生。高層數據模型的作用,如圖4,是將關鍵的術語及其關系可視化。
圖 4 基于能力的規劃中術語及其關系的高級數據模型表示
圖5中的類圖將圖3所示的概念系統模型中確定的國防系統規劃要素與圖4中的能力模型類型結合起來。由于我們關注的是國防系統,國家權力和軍事力量的要素被認為是其環境的一部分,不在圖中。然而,我們建議,國家權力也可以通過效應來表示。
圖 5 基于能力的規劃元素的統一建模語言 (UML) 類圖表示
近年來,機器學習的巨大進步已經開始對科學技術的許多領域產生重大影響。在本篇透視文章中,我們探討了量子技術是如何從這場革命中受益的。我們通過說明性的例子展示了科學家們在過去幾年是如何開始使用機器學習和更廣泛的人工智能方法來分析量子測量,估計量子設備的參數,發現新的量子實驗設置、協議和反饋策略,并普遍改善量子計算、量子通信和量子模擬的各個方面。我們強調了開放的挑戰和未來的可能性,并以對未來十年的一些推測性愿景作為結束。
圖1. 機器學習和人工智能可以幫助更好地解決的量子技術領域的任務概述。
圖3. 通過神經網絡進行狀態估計。(a) 對一個量子態的許多相同副本的測量可以被處理以產生一個量子態的估計。(b)對單個量子系統的連續弱測量可以用來更新估計的狀態。在(a)和(b)中,一個單一的網絡被訓練來正確估計任意的狀態。(c) 我們也可以訓練一個基于網絡的生成模型來重現一個量子狀態的統計數據,即從概率分布中取樣。訓練需要許多可以測量的相同的副本,因此可以學習統計學。這里一個網絡只代表一個量子態。它可以被擴展到處理任意基數的測量。
圖4. 機器學習用于量子設備的參數估計。(a) 一個典型的場景,測量結果的統計取決于一些可調整的測量設置和未知參數,這里表示為馬赫-澤恩德設置中的相移。(b) 一個自適應的測量策略可以用一棵樹來說明,每一層的分支都對應著不同的測量結果。根據這些結果,需要選擇一個特定的下一個測量設置(表示為 "αj")。尋找最佳策略是一項具有挑戰性的任務,因為它相當于搜索所有這樣的樹的空間。 (c) 神經生成模型可用于隨機抽查與先前測量結果兼容的未來可能的測量結果(這里是二維電流-電壓圖,如[68])。這對于選擇最佳的下一個測量位置是有幫助的。潛伏空間中不同的隨機位置會產生不同的樣本。(d) 五個可能的基本參數值的測量結果與測量設置(不同的曲線;測量不確定性通過厚度表示)。我們的目標是使信息增益最大化,即選擇最能確定參數的設置(這不等同于使結果的不確定性最大化)。
圖5. (a) 無模型強化學習的最終目標是直接應用于實驗,然后可以將其作為一個黑盒。然而,許多實際的實現是使用無模型的RL技術應用于基于模型的模擬。(b) 基于模型的強化學習直接利用了模型的可用性,例如,通過可微調的動力學取梯度。
圖6. 量子實驗的發現。量子光學實驗可以用彩色的圖來表示。使用最一般的、完整的圖作為起始表示,人工智能的目標是提取解決方案的概念核心,然后可以被人類科學家理解。然后,該解決方案可以轉化為眾多不同的實驗配置[113]。
圖7. 用離散門發現量子電路和反饋策略。(a) 強化學習智能體通過選擇門來作用于多量子比特系統,可能以測量結果為條件,找到一個優化的量子電路或量子反饋策略。(b) 一個固定布局的量子電路,其參數可以通過梯度上升進行優化,以實現一些目標,如狀態準備或變異基態搜索(可能包括反饋)。
圖8. 量子糾錯。綜合癥在表面代碼中解釋為神經網絡可以被訓練來執行的任務。
本研究報告分析了當前利益相關者對軍事自主系統的人為輸入或控制的想法。作者首先定義了關鍵術語,如 "機器學習"、"自主系統"、"人在回路中"以及軍事背景下的 "有意義的人為控制",然后討論了當代利益相關者的文獻對無人駕駛軍事系統的人的輸入/控制的說明。然后,報告討論了各利益攸關方是否對進攻性和防御性系統中所需要或期望的人類控制水平達成了共識,以及是否因系統具有致命性和非致命性能力或西方和非西方國家之間的意見不同而有所不同。報告最后從政策和操作的角度闡述了利益相關者的想法對加拿大國防部/空軍的可能影響。
主要研究結果
在與自主系統有關的關鍵術語的定義方面存在著相當多的爭論。
在國家對自主武器應采取何種監管手段的問題上,各利益攸關方一直存在分歧。
參加這些討論的締約國已就自主武器的一系列指導原則達成共識,包括 "必須保留人類對使用武器系統決定的責任"。
在近30個表示支持禁止致命性自主武器系統(LAWS)的國家中,沒有一個是主要的軍事大國或機器人開發商,主要的軍事大國似乎都在對沖自己的賭注。
許多民主國家認為,他們打算保留人類對使用武力的控制/判斷,不需要禁止,因為現有的國際人道主義法律(IHL)足以解決圍繞自主武器的問題。
加拿大擁有重要的人工智能(AI)能力,該能力被用于民用而非軍事用途。
如果在國防領域不接受至少某種程度的(人工智能支持的)自主性,可能會降低與盟國的互操作性,給加拿大武裝部隊(CAF)的行動帶來風險,并且隨著時間的推移,使CAF對國際和平與安全的貢獻失去意義。
盡管近年來深度學習取得了巨大進展,但訓練神經網絡所帶來的爆炸式經濟和環境成本正變得不可持續。為了解決這個問題,已經有大量關于算法高效深度學習的研究,這些研究旨在通過改變訓練程序的語義,而不是在硬件或實現級別上降低訓練成本。本文對該領域的研究進行了系統、全面的綜述。首先,我們將算法加速問題形式化,然后我們使用算法高效訓練的基本構建塊來開發分類。我們的分類強調了看似不同的方法的共性,并揭示了當前的研究差距。接下來,我們將介紹評估最佳實踐,以實現對加速技術的全面、公平和可靠的比較。為進一步幫助研究和應用,討論了訓練管道中的常見瓶頸(通過實驗說明),并為它們提供分類緩解策略。最后,我們強調了一些尚未解決的研究挑戰,并提出了有希望的未來方向。 //arxiv.org/abs/2210.06640
在過去的幾年里,深度學習(DL)在廣泛的應用領域取得了顯著的進展,如蛋白質結構預測(AlphaFold [Jumper et al。2021])、文本到圖像合成(DL - e [Ramesh et al。2021])、文本生成(GPT-3 [Brown等人。2020a])等。實現這些性能提升的關鍵策略是將DL模型擴展到非常大的規模,并對它們進行大量數據的訓練。對于大多數應用程序,可訓練參數的數量至少每18至24個月翻一番——語言模型以4至8個月的翻倍時間領先(Sevilla and Villalobos 2021)。大規模人工智能模型的著名例子包括:用于視覺應用的Swin Transformer-V2 [Liu等人2022a],用于語言建模的PaLM [Chowdhery等人2022],用于內容推薦的波斯[Lian等人2021],具有100萬億參數。
盡管擴大DL模型正在實現前所未有的進步,但訓練大型模型已經變得極其昂貴。例如,GPT-3訓練成本估計為165萬美元,使用谷歌v3 TPU[Lohn和Musser 2022],且transformer 模型的低效/幼稚開發將產生相當于5輛汽車終生碳足跡的二氧化碳(CO2) [Strubell等人,2019]。值得關注的是,DL仍然沒有達到許多應用所要求的性能水平:例如,在現實世界中部署全自動駕駛汽車需要人類水平的性能,但還沒有達到。不斷增長的模型和數據規模以達到所需的性能將使當前的訓練策略在金融、環境和其他方面不可持續。事實上,根據目前的趨勢推斷,2026年最大的人工智能模型的訓練成本將超過美國的GDP總量(Lohn and Musser 2022)。此外,DL對計算的高度依賴引發了人們對財務資源有限的用戶(如學者、學生和研究人員(特別是來自新興經濟體的人)的邊緣化的擔憂[Ahmed and Wahed 2020]。我們將在附錄A中更詳細地討論這些關鍵問題。考慮到其計算負擔的不可持續增長,DL的進步需要更多的計算效率訓練方法。一個自然的方向是消除學習過程中的算法效率低下,以減少DL訓練的時間、成本、能量和碳足跡。這種算法高效的深度學習方法可以通過多種方式改變訓練過程,包括:改變數據或樣本呈現給模型的順序;調整模型的結構;改變優化算法。這些算法改進對于實現有效深度學習訓練所需計算負擔的估計下界至關重要,目前的做法導致的負擔大大超過了該下界[Thompson等人,2020]。
此外,這些算法增益與軟件和硬件加速技術相結合[Hernandez和Brown 2020]。因此,我們相信算法高效的邏輯學習提供了一個巨大的機會來增加邏輯學習的收益并降低其成本。雖然最近涌現的算法效率論文支持了這一觀點,但這些論文也表明,算法效率方法的研究和應用受到碎片化的阻礙。不同的指標被用來量化效率,這產生了不一致的加速方法的排名。評估是在狹窄或特征不佳的環境中執行的,這將導致不正確或過于寬泛的結論。在討論算法效率方法時,缺乏反映它們的廣度和關系的分類法,這使得人們很難理解如何遍歷加速環境,將不同的方法結合起來并開發新的方法。因此,本文的核心貢獻是組織算法效率文獻(通過受[Von Rueden等人2019]啟發的分類法和調研),以及對影響報告和實現加速的實際問題的技術描述(通過評估和實踐指南)。我們的討論始終強調這兩個重點的關鍵交集:例如,算法效率方法是否會導致實際的加速確實取決于方法(通過我們的分類法可以理解)和計算平臺(通過我們的從業者指南可以理解)之間的交互。
我們的貢獻總結如下:
有了這些貢獻,我們希望改進算法效率的研究和應用,這是計算效率深度學習的關鍵部分,需要克服現有研究面臨的經濟、環境和包容相關的障礙。本文主要分為四個部分:第2節概述了DNN訓練和效率度量以及算法加速問題的形式化。第3節使用廣泛適用的加速方法的構建塊以及它們影響的訓練管道組件來開發我們的分類法。第4節根據我們的分類法對加速文獻進行了全面的分類,并討論了研究機會和挑戰。第5節和第6節分別討論了比較不同方法的最佳評估實踐和選擇合適的加速方法的實際建議。最后,第7節總結并提出了算法效率領域的開放問題。
隨著廣泛的應用,人工智能(AI)催生了一系列與人工智能相關的研究活動。其中一個領域就是可解釋的人工智能。它是值得信賴的人工智能系統的重要組成部分。本文概述了可解釋的人工智能方法,描述了事后人工智能系統(為先前構建的常規人工智能系統提供解釋)和事后人工智能系統(從一開始就配置為提供解釋)。解釋的形式多種多樣:基于特征的解釋、基于說明性訓練樣本的解釋、基于嵌入式表示的解釋、基于熱度圖的解釋。也有結合了神經網絡模型和圖模型的概率解釋。可解釋人工智能與許多人工智能研究前沿領域密切相關,如神經符號人工智能和機器教學