亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

隨著廣泛的應用,人工智能(AI)催生了一系列與人工智能相關的研究活動。其中一個領域就是可解釋的人工智能。它是值得信賴的人工智能系統的重要組成部分。本文概述了可解釋的人工智能方法,描述了事后人工智能系統(為先前構建的常規人工智能系統提供解釋)和事后人工智能系統(從一開始就配置為提供解釋)。解釋的形式多種多樣:基于特征的解釋、基于說明性訓練樣本的解釋、基于嵌入式表示的解釋、基于熱度圖的解釋。也有結合了神經網絡模型和圖模型的概率解釋。可解釋人工智能與許多人工智能研究前沿領域密切相關,如神經符號人工智能和機器教學

付費5元查看完整內容

相關內容

我們給出了一個關于調查透明度和可解釋性的前沿教程,因為它們與NLP有關。研究團體和業界都在開發新的技術,以使黑箱型NLP模型更加透明和可解釋。來自社會科學、人機交互(HCI)和NLP研究人員的跨學科團隊的報告,我們的教程有兩個組成部分:對可解釋的人工智能(XAI)的介紹和對NLP中可解釋性研究的最新回顧; 研究結果來自一個大型跨國技術和咨詢公司在現實世界中從事NLP項目的個人的定性訪談研究。第一部分將介紹NLP中與可解釋性相關的核心概念。然后,我們將討論NLP任務的可解釋性,并對AI、NLP和HCI會議上的最新文獻進行系統的文獻綜述。第二部分報告了我們的定性訪談研究,該研究確定了包括NLP在內的現實世界開發項目中出現的實際挑戰和擔憂。

自然語言處理中可解釋AI的現狀調研

近年來,最領先的模型在性能上取得了重要的進步,但這是以模型變得越來越難以解釋為代價的。本調研提出了可解釋AI (XAI)的當前狀態的概述,在自然語言處理(NLP)領域內考慮。我們討論解釋的主要分類,以及解釋可以達到和可視化的各種方式。我們詳細介紹了目前可用來為NLP模型預測生成解釋的操作和可解釋性技術,以作為社區中模型開發人員的資源。最后,我們指出了在這個重要的研究領域目前的挑戰和未來可能工作方向。

//www.zhuanzhi.ai/paper/377e285abccf56a823a3fd0ad7a3f958

付費5元查看完整內容

隨著機器學習模型越來越多地用于在醫療保健和刑事司法等高風險環境中幫助決策者,確保決策者(最終用戶)正確理解并因此信任這些模型的功能是很重要的。本課程旨在讓學生熟悉可解釋和可解釋ML這一新興領域的最新進展。在本報告中,我們將回顧該領域的重要論文,理解模型可解釋和可解釋的概念,詳細討論不同類別的可解釋模型(如基于原型的方法、稀疏線性模型、基于規則的技術、廣義可加性模型),事后解釋(黑箱解釋包括反事實解釋和顯著性圖),并探索可解釋性與因果關系、調試和公平性之間的聯系。該課程還將強調各種應用,可以極大地受益于模型的可解釋性,包括刑事司法和醫療保健。

//himalakkaraju.github.io/

付費5元查看完整內容

作為傳統DNNs對圖的推廣,GNN繼承了傳統DNNs的優點和缺點。與傳統的DNNs一樣,GNN在許多圖形相關的任務中被證明是有效的,比如節點聚類和圖聚焦任務。傳統的DNNs已被證明易受專門設計的對抗性攻擊(Goodfellow et al., 2014b;徐等,2019b)。在對抗性的攻擊下,受害樣本會受到干擾,不容易被發現,但會導致錯誤的結果。越來越明顯的是,GNNs也繼承了這個缺點。對手可以通過操縱圖的結構或節點特征來欺騙GNN模型,從而產生圖的對抗性擾動。GNN的這種局限性引起了人們對在諸如金融系統和風險管理等安全關鍵應用程序中采用它們的極大關注。例如,在一個信用評分系統中,欺詐者可以偽造與幾個高信用客戶的關系,以逃避欺詐者檢測模型;垃圾郵件發送者可以很容易地創建虛假關注者,以增加虛假新聞被推薦和傳播的機會。因此,圖形對抗性攻擊及其對策的研究越來越受到人們的關注。在這一章中,我們首先介紹了圖對抗攻擊的概念和定義,并詳細介紹了一些具有代表性的圖對抗攻擊方法。然后,我們討論了針對這些對抗性攻擊的典型防御技術。

//cse.msu.edu/~mayao4/dlg_book/

付費5元查看完整內容

隨著機器學習模型越來越多地用于在醫療保健和刑事司法等高風險環境中幫助決策者,確保決策者(最終用戶)正確理解并信任這些模型的功能非常重要。我們將回顧了解模型的可解釋性和explainability的概念,詳細討論不同類型的可說明的模型(例如,基于原型方法,稀疏線性模型、基于規則的技術,廣義可加模型),事后解釋(黑箱解釋,包括反事實解釋和顯著性映射),并探索可解釋性與因果性、調試和公平性之間的聯系。可解釋機器學習這些應用可以極大地受益于模型的可解釋性,包括刑事司法和醫療保健。

付費5元查看完整內容

【導讀】國際萬維網大會(The Web Conference,簡稱WWW會議)是由國際萬維網會議委員會發起主辦的國際頂級學術會議,創辦于1994年,每年舉辦一屆,是CCF-A類會議。WWW 2020將于2020年4月20日至4月24日在中國臺灣臺北舉行。本屆會議共收到了1129篇長文投稿,錄用217篇長文,錄用率為19.2%。這周會議已經召開。來自美國Linkedin、AWS等幾位學者共同給了關于在工業界中可解釋人工智能的報告,講述了XAI概念、方法以及面臨的挑戰和經驗教訓。

人工智能在我們的日常生活中扮演著越來越重要的角色。此外,隨著基于人工智能的解決方案在招聘、貸款、刑事司法、醫療和教育等領域的普及,人工智能對個人和職業的影響將是深遠的。人工智能模型在這些領域所起的主導作用已經導致人們越來越關注這些模型中的潛在偏見,以及對模型透明性和可解釋性的需求。此外,模型可解釋性是在需要可靠性和安全性的高風險領域(如醫療和自動化交通)以及具有重大經濟意義的關鍵工業應用(如預測維護、自然資源勘探和氣候變化建模)中建立信任和采用人工智能系統的先決條件。

因此,人工智能的研究人員和實踐者將他們的注意力集中在可解釋的人工智能上,以幫助他們更好地信任和理解大規模的模型。研究界面臨的挑戰包括 (i) 定義模型可解釋性,(ii) 為理解模型行為制定可解釋性任務,并為這些任務開發解決方案,最后 (iii)設計評估模型在可解釋性任務中的性能的措施。

在本教程中,我們將概述AI中的模型解譯性和可解釋性、關鍵規則/法律以及作為AI/ML系統的一部分提供可解釋性的技術/工具。然后,我們將關注可解釋性技術在工業中的應用,在此我們提出了有效使用可解釋性技術的實踐挑戰/指導方針,以及在幾個網絡規模的機器學習和數據挖掘應用中部署可解釋模型的經驗教訓。我們將介紹不同公司的案例研究,涉及的應用領域包括搜索和推薦系統、銷售、貸款和欺詐檢測。最后,根據我們在工業界的經驗,我們將確定數據挖掘/機器學習社區的開放問題和研究方向。

//sites.google.com/view/www20-explainable-ai-tutorial

付費5元查看完整內容
北京阿比特科技有限公司