亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

作為傳統DNNs對圖的推廣,GNN繼承了傳統DNNs的優點和缺點。與傳統的DNNs一樣,GNN在許多圖形相關的任務中被證明是有效的,比如節點聚類和圖聚焦任務。傳統的DNNs已被證明易受專門設計的對抗性攻擊(Goodfellow et al., 2014b;徐等,2019b)。在對抗性的攻擊下,受害樣本會受到干擾,不容易被發現,但會導致錯誤的結果。越來越明顯的是,GNNs也繼承了這個缺點。對手可以通過操縱圖的結構或節點特征來欺騙GNN模型,從而產生圖的對抗性擾動。GNN的這種局限性引起了人們對在諸如金融系統和風險管理等安全關鍵應用程序中采用它們的極大關注。例如,在一個信用評分系統中,欺詐者可以偽造與幾個高信用客戶的關系,以逃避欺詐者檢測模型;垃圾郵件發送者可以很容易地創建虛假關注者,以增加虛假新聞被推薦和傳播的機會。因此,圖形對抗性攻擊及其對策的研究越來越受到人們的關注。在這一章中,我們首先介紹了圖對抗攻擊的概念和定義,并詳細介紹了一些具有代表性的圖對抗攻擊方法。然后,我們討論了針對這些對抗性攻擊的典型防御技術。

//cse.msu.edu/~mayao4/dlg_book/

付費5元查看完整內容

相關內容

圖神經網絡 (GNN) 是一種連接模型,它通過圖的節點之間的消息傳遞來捕捉圖的依賴關系。與標準神經網絡不同的是,圖神經網絡保留了一種狀態,可以表示來自其鄰域的具有任意深度的信息。近年來,圖神經網絡(GNN)在社交網絡、知識圖、推薦系統、問答系統甚至生命科學等各個領域得到了越來越廣泛的應用。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

隨著網絡信息的爆炸式增長,推薦系統在緩解信息過載方面發揮了重要作用。由于推薦系統具有重要的應用價值,這一領域的研究一直在不斷涌現。近年來,圖神經網絡(GNN)技術得到了廣泛的關注,它能將節點信息和拓撲結構自然地結合起來。由于GNN在圖形數據學習方面的優越性能,GNN方法在許多領域得到了廣泛的應用。在推薦系統中,主要的挑戰是從用戶/項目的交互和可用的邊信息中學習有效的嵌入用戶/項目。由于大多數信息本質上具有圖結構,而網絡神經網絡在表示學習方面具有優勢,因此將圖神經網絡應用于推薦系統的研究十分活躍。本文旨在對基于圖神經網絡的推薦系統的最新研究成果進行全面的綜述。具體地說,我們提供了基于圖神經網絡的推薦模型的分類,并闡述了與該領域發展相關的新觀點。

摘要:

隨著電子商務和社交媒體平臺的快速發展,推薦系統已經成為許多企業不可缺少的工具[78]。用戶依靠推薦系統過濾掉大量的非信息,促進決策。一個高效的推薦系統應該準確地捕捉用戶的偏好,并提出用戶潛在感興趣的內容,從而提高用戶對平臺的滿意度和用戶留存率。

推薦系統根據用戶的興趣和物品屬性來評估他們對物品的偏好。用戶興趣和項目屬性都用壓縮向量表示。因此,如何通過歷史交互以及社會關系、知識圖譜[49]等側面信息來了解用戶/項目嵌入是該領域面臨的主要挑戰。在推薦系統中,大多數信息都具有圖結構。例如,用戶之間的社會關系和與項目相關的知識圖譜,自然就是圖形數據。此外,用戶與項目之間的交互可以看作是二部圖,項目在序列中的轉換也可以構建為圖。因此,圖形學習方法被用來獲得用戶/項目嵌入。在圖學習方法中,圖神經網絡(graph neural network, GNN)目前受到了極大的追捧。

在過去的幾年里,圖神經網絡在關系提取和蛋白質界面預測等許多應用領域取得了巨大的成功[82]。最近的研究表明,推薦器在以圖[41]的形式引入用戶/項目和邊信息的交互時,性能有了很大的提升,并利用圖神經網絡技術得到了更好的用戶/項目表示。圖神經網絡通過迭代傳播能夠捕捉用戶-項目關系中的高階交互。此外,如果社會關系或知識圖譜的信息是可用的,則可以有效地將這些邊信息集成到網絡結構中。

本文旨在全面回顧基于圖神經網絡的推薦系統的研究進展。對推薦系統感興趣的研究者和實踐者可以大致了解基于圖神經網絡的推薦領域的最新發展,以及如何利用圖神經網絡解決推薦任務。本調查的主要貢獻總結如下:

  • 新的分類法:我們提出了一個系統的分類模式來組織現有的基于圖神經網絡的推薦模型。我們可以很容易地進入這個領域,并對不同的模型進行區分。

  • 對每個類別的全面回顧,我們展示了要處理的主要問題,并總結了模型的總體框架。此外,我們還簡要介紹了代表性模型,并說明它們是如何解決這些問題的。

  • 我們討論了當前方法的局限性,并在效率、多圖集成、可擴展性和序列圖構造方面提出了四個潛在的未來方向。

付費5元查看完整內容

深度學習算法已經在圖像分類方面取得了最先進的性能,甚至被用于安全關鍵應用,如生物識別系統和自動駕駛汽車。最近的研究表明,這些算法甚至可以超越人類的能力,很容易受到對抗性例子的攻擊。在計算機視覺中,與之相對的例子是惡意優化算法為欺騙分類器而產生的含有細微擾動的圖像。為了緩解這些漏洞,文獻中不斷提出了許多對策。然而,設計一種有效的防御機制已被證明是一項困難的任務,因為許多方法已經證明對自適應攻擊者無效。因此,這篇自包含的論文旨在為所有的讀者提供一篇關于圖像分類中對抗性機器學習的最新研究進展的綜述。本文介紹了新的對抗性攻擊和防御的分類方法,并討論了對抗性實例的存在性。此外,與現有的調查相比,它還提供了相關的指導,研究人員在設計和評估防御時應該考慮到這些指導。最后,在文獻綜述的基礎上,對未來的研究方向進行了展望。

//www.zhuanzhi.ai/paper/396e587564dc2922d222cd3ac7b84288

付費5元查看完整內容

當前的深度學習研究以基準評價為主。如果一種方法在專門的測試集上有良好的經驗表現,那么它就被認為是有利的。這種心態無縫地反映在持續學習的重現領域,在這里研究的是持續到達的基準數據集。核心挑戰是如何保護之前獲得的表示,以免由于迭代參數更新而出現災難性地遺忘的情況。然而,各個方法的比較是與現實應用程序隔離的,通常通過監視累積的測試集性能來判斷。封閉世界的假設仍然占主導地位。假設在部署過程中,一個模型保證會遇到來自與用于訓練的相同分布的數據。這帶來了一個巨大的挑戰,因為眾所周知,神經網絡會對未知的實例提供過于自信的錯誤預測,并在數據損壞的情況下崩潰。在這個工作我們認為值得注意的教訓來自開放數據集識別,識別的統計偏差以外的數據觀測數據集,和相鄰的主動學習領域,數據增量查詢等預期的性能收益最大化,這些常常在深度學習的時代被忽略。基于這些遺忘的教訓,我們提出了一個統一的觀點,以搭建持續學習,主動學習和開放集識別在深度神經網絡的橋梁。我們的結果表明,這不僅有利于每個個體范式,而且突出了在一個共同框架中的自然協同作用。我們從經驗上證明了在減輕災難性遺忘、主動學習中查詢數據、選擇任務順序等方面的改進,同時在以前提出的方法失敗的地方展示了強大的開放世界應用。

//www.zhuanzhi.ai/paper/e5bee7a1e93a93ef97e1c

概述:

隨著實用機器學習系統的不斷成熟,社區發現了對持續學習[1]、[2]的興趣。與廣泛練習的孤立學習不同,在孤立學習中,系統的算法訓練階段被限制在一個基于先前收集的i.i.d數據集的單一階段,持續學習需要利用隨著時間的推移而到來的數據的學習過程。盡管這種范式已經在許多機器學習系統中找到了各種應用,回顧一下最近關于終身機器學習[3]的書,深度學習的出現似乎已經將當前研究的焦點轉向了一種稱為“災難性推理”或“災難性遺忘”的現象[4],[5],正如最近的評論[6],[7],[8],[9]和對深度持續學習[8],[10],[11]的實證調查所表明的那樣。后者是機器學習模型的一個特殊效應,機器學習模型貪婪地根據給定的數據群更新參數,比如神經網絡迭代地更新其權值,使用隨機梯度估計。當包括導致數據分布發生任何變化的不斷到達的數據時,學習到的表示集被單向引導,以接近系統當前公開的數據實例上的任何任務的解決方案。自然的結果是取代以前學到的表征,導致突然忘記以前獲得的信息。

盡管目前的研究主要集中在通過專門機制的設計來緩解持續深度學習中的這種遺忘,但我們認為,一種非常不同形式的災難性遺忘的風險正在增長,即忘記從過去的文獻中吸取教訓的危險。盡管在連續的訓練中保留神經網絡表示的努力值得稱贊,但除了只捕獲災難性遺忘[12]的度量之外,我們還高度關注了實際的需求和權衡,例如包括內存占用、計算成本、數據存儲成本、任務序列長度和訓練迭代次數等。如果在部署[14]、[15]、[16]期間遇到看不見的未知數據或小故障,那么大多數當前系統會立即崩潰,這幾乎可以被視為誤導。封閉世界的假設似乎無所不在,即認為模型始終只會遇到與訓練過程中遇到的數據分布相同的數據,這在真實的開放世界中是非常不現實的,因為在開放世界中,數據可以根據不同的程度變化,而這些變化是不現實的,無法捕獲到訓練集中,或者用戶能夠幾乎任意地向系統輸入預測信息。盡管當神經網絡遇到不可見的、未知的數據實例時,不可避免地會產生完全沒有意義的預測,這是眾所周知的事實,已經被暴露了幾十年了,但是當前的努力是為了通過不斷學習來規避這一挑戰。選擇例外嘗試解決識別不可見的和未知的示例、拒絕荒謬的預測或將它們放在一邊供以后使用的任務,通常總結在開放集識別的傘下。然而,大多數現有的深度連續學習系統仍然是黑盒,不幸的是,對于未知數據的錯誤預測、數據集的異常值或常見的圖像損壞[16],這些系統并沒有表現出理想的魯棒性。

除了目前的基準測試實踐仍然局限于封閉的世界之外,另一個不幸的趨勢是對創建的持續學習數據集的本質缺乏理解。持續生成模型(如[17]的作者的工作,[18],[19],[20],[21],[22]),以及類增量持續學習的大部分工作(如[12]中給出的工作,[23],[24],[25],[26],[27],[28])一般調查sequentialized版本的經過時間考驗的視覺分類基準如MNIST [29], CIFAR[30]或ImageNet[31],單獨的類只是分成分離集和序列所示。為了在基準中保持可比性,關于任務排序的影響或任務之間重疊的影響的問題通常會被忽略。值得注意的是,從鄰近領域的主動機器學習(半監督學習的一種特殊形式)中吸取的經驗教訓,似乎并沒有整合到現代的連續學習實踐中。在主動學習中,目標是學會在讓系統自己查詢接下來要包含哪些數據的挑戰下,逐步地找到與任務解決方案最接近的方法。因此,它可以被視為緩解災難性遺忘的對抗劑。當前的持續學習忙于維護在每個步驟中獲得的信息,而不是無休止地積累所有的數據,而主動學習則關注于識別合適的數據以納入增量訓練系統的補充問題。盡管在主動學習方面的早期開創性工作已經迅速識別出了通過使用啟發式[32]、[33]、[34]所面臨的強大應用的挑戰和陷阱,但后者在深度學習[35]、[36]、[37]、[38]的時代再次占據主導地位,這些挑戰將再次面臨。

在這項工作中,我們第一次努力建立一個原則性和鞏固的深度持續學習、主動學習和在開放的世界中學習的觀點。我們首先單獨回顧每一個主題,然后繼續找出在現代深度學習中似乎較少受到關注的以前學到的教訓。我們將繼續爭論,這些看似獨立的主題不僅從另一個角度受益,而且應該結合起來看待。在這個意義上,我們建議將當前的持續學習實踐擴展到一個更廣泛的視角,將持續學習作為一個總括性術語,自然地包含并建立在先前的主動學習和開放集識別工作之上。本文的主要目的并不是引入新的技術或提倡一種特定的方法作為通用的解決方案,而是對最近提出的神經網絡[39]和[40]中基于變分貝葉斯推理的方法進行了改進和擴展,以說明一種走向全面框架的可能選擇。重要的是,它作為論證的基礎,努力闡明生成建模作為深度學習系統關鍵組成部分的必要性。我們強調了在這篇論文中發展的觀點的重要性,通過實證證明,概述了未來研究的含義和有前景的方向。

付費5元查看完整內容

在本章中,我們將訪問圖神經網絡(GNNs)的一些理論基礎。GNNs最有趣的方面之一是,它們是根據不同的理論動機獨立開發的。一方面,基于圖信號處理理論開發了GNN,將歐氏卷積推廣到非歐氏圖域[Bruna et al., 2014]。然而,與此同時,神經信息傳遞方法(構成了大多數現代GNN的基礎)被類比提出,用于圖模型中的概率推理的信息傳遞算法[Dai等人,2016]。最后,基于GNN與weisfeler - lehman圖同構檢驗的聯系,許多研究對其進行了激發[Hamilton et al., 2017b]。

將三個不同的領域匯聚成一個單一的算法框架是值得注意的。也就是說,這三種理論動機中的每一種都有其自身的直覺和歷史,而人們所采用的視角可以對模型的發展產生實質性的影響。事實上,我們推遲對這些理論動機的描述直到引入GNN模型本身之后,這并非偶然。在這一章,我們的目標是介紹這些背后的關鍵思想不同理論的動機,這樣一個感興趣的讀者可以自由探索和組合這些直覺和動機,因為他們認為合適的。

付費5元查看完整內容

在本章中,我們將關注更復雜的編碼器模型。我們將介紹圖神經網絡(GNN)的形式,它是定義圖數據上的深度神經網絡的一般框架。關鍵思想是,我們想要生成實際上依賴于圖結構的節點的表示,以及我們可能擁有的任何特征信息。在開發復雜的圖結構數據編碼器的主要挑戰是,我們通常的深度學習工具箱不適用。例如,卷積神經網絡(CNNs)只在網格結構的輸入(如圖像)上定義良好,而遞歸神經網絡(RNNs)只在序列(如文本)上定義良好。要在一般圖上定義深度神經網絡,我們需要定義一種新的深度學習架構。

付費5元查看完整內容

當對大量的標記數據集合(如ImageNet)進行訓練時,深度神經網絡展示了它們在特殊監督學習任務(如圖像分類)上的卓越表現。然而,創建這樣的大型數據集需要大量的資源、時間和精力。這些資源在很多實際案例中可能無法獲得,限制了許多深度學習方法的采用和應用。為了尋找數據效率更高的深度學習方法,以克服對大型標注數據集的需求,近年來,我們對半監督學習應用于深度神經網絡的研究興趣日益濃厚,通過開發新的方法和采用現有的半監督學習框架進行深度學習設置。在本文中,我們從介紹半監督學習開始,對深度半監督學習進行了全面的概述。然后總結了在深度學習中占主導地位的半監督方法。

付費5元查看完整內容

盡管生成式對抗網絡(GAN)的歷史并不長,但它已被廣泛地研究和用于各種任務,包括其最初的目的,即合成樣品的生成。然而,將GAN用于具有不同神經網絡結構的不同數據類型,由于其在訓練方面的局限性,使得模型很容易出現混亂。這種臭名昭著的GAN訓練是眾所周知的,并已在許多研究中提出。因此,為了使GAN的訓練更加穩定,近年來提出了許多正則化方法。本文綜述了近年來引入的正則化方法,其中大部分是近三年來發表的。具體地說,我們關注的是那些可以被普遍使用的方法,而不管神經網絡體系結構如何。根據其運算原理將其分為若干組,并分析了各方法之間的差異。此外,為了提供使用這些方法的實際知識,我們調研了在最先進的GANs中經常使用的流行方法。此外,我們還討論了現有方法的局限性,并提出了未來的研究方向。

付費5元查看完整內容

隨著高計算設備的發展,深度神經網絡(DNNs)近年來在人工智能(AI)領域得到了廣泛的應用。然而,之前的研究表明,DNN在經過策略性修改的樣本(稱為對抗性樣本)面前是脆弱的。這些樣本是由一些不易察覺的擾動產生的,但可以欺騙DNN做出錯誤的預測。受圖像DNNs中生成對抗性示例的流行啟發,近年來出現了針對文本應用的攻擊DNNs的研究工作。然而,現有的圖像擾動方法不能直接應用于文本,因為文本數據是離散的。在這篇文章中,我們回顧了針對這一差異的研究工作,并產生了關于DNN的電子對抗實例。我們對這些作品進行了全面的收集、選擇、總結、討論和分析,涵蓋了所有相關的信息,使文章自成一體。最后,在文獻回顧的基礎上,我們提出了進一步的討論和建議。

付費5元查看完整內容

卷積神經網絡(Convolutional Neural Network, CNN)是深度學習領域中最重要的網絡之一。由于CNN在計算機視覺和自然語言處理等諸多領域都取得了令人矚目的成就,因此在過去的幾年里,CNN受到了業界和學術界的廣泛關注。現有的綜述主要關注CNN在不同場景下的應用,并沒有從整體的角度來考慮CNN,也沒有涉及到最近提出的一些新穎的想法。在這篇綜述中,我們的目標是在這個快速增長的領域提供盡可能多的新想法和前景。不僅涉及到二維卷積,還涉及到一維和多維卷積。首先,這篇綜述首先簡單介紹了CNN的歷史。第二,我們提供CNN的概述。第三,介紹了經典的和先進的CNN模型,特別是那些使他們達到最先進的結果的關鍵點。第四,通過實驗分析,得出一些結論,并為函數選擇提供一些經驗法則。第五,介紹了一維、二維和多維卷積的應用。最后,討論了CNN的一些有待解決的問題和有發展前景的方向,為今后的工作提供參考。

付費5元查看完整內容
北京阿比特科技有限公司