亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

隨著網絡信息的爆炸式增長,推薦系統在緩解信息過載方面發揮了重要作用。由于推薦系統具有重要的應用價值,這一領域的研究一直在不斷涌現。近年來,圖神經網絡(GNN)技術得到了廣泛的關注,它能將節點信息和拓撲結構自然地結合起來。由于GNN在圖形數據學習方面的優越性能,GNN方法在許多領域得到了廣泛的應用。在推薦系統中,主要的挑戰是從用戶/項目的交互和可用的邊信息中學習有效的嵌入用戶/項目。由于大多數信息本質上具有圖結構,而網絡神經網絡在表示學習方面具有優勢,因此將圖神經網絡應用于推薦系統的研究十分活躍。本文旨在對基于圖神經網絡的推薦系統的最新研究成果進行全面的綜述。具體地說,我們提供了基于圖神經網絡的推薦模型的分類,并闡述了與該領域發展相關的新觀點。

摘要:

隨著電子商務和社交媒體平臺的快速發展,推薦系統已經成為許多企業不可缺少的工具[78]。用戶依靠推薦系統過濾掉大量的非信息,促進決策。一個高效的推薦系統應該準確地捕捉用戶的偏好,并提出用戶潛在感興趣的內容,從而提高用戶對平臺的滿意度和用戶留存率。

推薦系統根據用戶的興趣和物品屬性來評估他們對物品的偏好。用戶興趣和項目屬性都用壓縮向量表示。因此,如何通過歷史交互以及社會關系、知識圖譜[49]等側面信息來了解用戶/項目嵌入是該領域面臨的主要挑戰。在推薦系統中,大多數信息都具有圖結構。例如,用戶之間的社會關系和與項目相關的知識圖譜,自然就是圖形數據。此外,用戶與項目之間的交互可以看作是二部圖,項目在序列中的轉換也可以構建為圖。因此,圖形學習方法被用來獲得用戶/項目嵌入。在圖學習方法中,圖神經網絡(graph neural network, GNN)目前受到了極大的追捧。

在過去的幾年里,圖神經網絡在關系提取和蛋白質界面預測等許多應用領域取得了巨大的成功[82]。最近的研究表明,推薦器在以圖[41]的形式引入用戶/項目和邊信息的交互時,性能有了很大的提升,并利用圖神經網絡技術得到了更好的用戶/項目表示。圖神經網絡通過迭代傳播能夠捕捉用戶-項目關系中的高階交互。此外,如果社會關系或知識圖譜的信息是可用的,則可以有效地將這些邊信息集成到網絡結構中。

本文旨在全面回顧基于圖神經網絡的推薦系統的研究進展。對推薦系統感興趣的研究者和實踐者可以大致了解基于圖神經網絡的推薦領域的最新發展,以及如何利用圖神經網絡解決推薦任務。本調查的主要貢獻總結如下:

  • 新的分類法:我們提出了一個系統的分類模式來組織現有的基于圖神經網絡的推薦模型。我們可以很容易地進入這個領域,并對不同的模型進行區分。

  • 對每個類別的全面回顧,我們展示了要處理的主要問題,并總結了模型的總體框架。此外,我們還簡要介紹了代表性模型,并說明它們是如何解決這些問題的。

  • 我們討論了當前方法的局限性,并在效率、多圖集成、可擴展性和序列圖構造方面提出了四個潛在的未來方向。

付費5元查看完整內容

相關內容

圖神經網絡 (GNN) 是一種連接模型,它通過圖的節點之間的消息傳遞來捕捉圖的依賴關系。與標準神經網絡不同的是,圖神經網絡保留了一種狀態,可以表示來自其鄰域的具有任意深度的信息。近年來,圖神經網絡(GNN)在社交網絡、知識圖、推薦系統、問答系統甚至生命科學等各個領域得到了越來越廣泛的應用。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

圖神經網絡(GNNs)最近在人工智能領域變得越來越受歡迎,這是因為它們具有提取相對非結構化數據類型作為輸入數據的獨特能力。盡管GNN體系結構的一些元素在操作上與傳統神經網絡(以及神經網絡變體)的概念相似,但其他元素則不同于傳統的深度學習技術。本教程通過整理和呈現最常見類型的GNNs的動機、概念、數學和應用的詳細信息,向一般深度學習愛好者展示了GNNs的強大功能和新穎之處。重要的是,我們以介紹性的速度簡要地介紹了本教程,并提供了理解和使用GNNs的實用和可訪問的指南。

摘要:

當代人工智能(AI),或者更具體地說,深度學習(DL)近年來被稱為神經網絡(NN)的學習架構所主導。NN變體被設計用于提高某些問題領域的性能;卷積神經網絡(CNN)在基于圖像的任務環境中表現突出,而遞歸神經網絡(RNN)在自然語言處理和時間序列分析空間中表現突出。神經網絡也被用作復合DL框架的組件——它們在生成對抗網絡(GANs)中被用作可訓練的生成器和判別器,在transformers [46]中被用作編碼器和解碼器。雖然在計算機視覺中作為輸入的圖像和在自然語言處理中作為輸入的句子看起來是不相關的,但是它們都可以用一個單一的、通用的數據結構來表示:圖(見圖1)。

形式上,圖是一組不同的頂點(表示項目或實體),這些頂點通過邊(表示關系)選擇性地連接在一起。被設計來處理這些圖的學習架構是有名稱的圖神經網絡(GNN)。輸入圖之間的頂點和邊的數量可以改變。通過這種方式,GNNs可以處理非結構化的、非歐幾里得數據[4],這一特性使得它們在圖形數據豐富的特定問題域中具有價值。相反,基于NN的算法通常需要對具有嚴格定義維數的結構化輸入進行操作。例如,構建一個用于在MNIST數據集上進行分類的CNN,其輸入層必須為28×28個神經元,后續輸入給它的所有圖像大小必須為28×28像素,才能符合這個嚴格的維數要求[27]。

圖作為數據編碼方法的表達性,以及GNNs相對于非結構化輸入的靈活性,推動了它們的研究和開發。它們代表了一種探索相對通用的深度學習方法的新方法,并且它們促進了深度學習方法對數據集的應用,直到最近,這些數據集還不能使用傳統的神經網絡或其他此類算法。

本篇內容結構:

  • (1) 簡明易懂的GNNs入門教程。
  • (2) 具體GNN架構(RGNNs、CGNNs、GAEs)的操作說明,逐步構建對GNN框架的整體理解(分別參見第3、4、5節)。
  • (3) GNN如何應用于現實世界問題領域的完整例子(見附錄B.1、B.2和B.3)。
  • (4) 具體的進一步閱讀建議和先進的文獻(提供在第3、4、5節的最后)。

//deepai.org/publication/a-practical-guide-to-graph-neural-networks

付費5元查看完整內容

近年來,圖神經網絡(GNNs)由于具有建模和從圖結構數據中學習的能力,在機器學習領域得到了迅猛發展。這種能力在數據具有內在關聯的各種領域具有很強的影響,而傳統的神經網絡在這些領域的表現并不好。事實上,正如最近的評論可以證明的那樣,GNN領域的研究已經迅速增長,并導致了各種GNN算法變體的發展,以及在化學、神經學、電子或通信網絡等領域的突破性應用的探索。然而,在目前的研究階段,GNN的有效處理仍然是一個開放的挑戰。除了它們的新穎性之外,由于它們依賴于輸入圖,它們的密集和稀疏操作的組合,或者在某些應用中需要伸縮到巨大的圖,GNN很難計算。在此背景下,本文旨在做出兩大貢獻。一方面,從計算的角度對GNNs領域進行了綜述。這包括一個關于GNN基本原理的簡短教程,在過去十年中該領域發展的概述,以及在不同GNN算法變體的多個階段中執行的操作的總結。另一方面,對現有的軟硬件加速方案進行了深入分析,總結出一種軟硬件結合、圖感知、以通信為中心的GNN加速方案。

付費5元查看完整內容

當前的深度學習研究以基準評價為主。如果一種方法在專門的測試集上有良好的經驗表現,那么它就被認為是有利的。這種心態無縫地反映在持續學習的重現領域,在這里研究的是持續到達的基準數據集。核心挑戰是如何保護之前獲得的表示,以免由于迭代參數更新而出現災難性地遺忘的情況。然而,各個方法的比較是與現實應用程序隔離的,通常通過監視累積的測試集性能來判斷。封閉世界的假設仍然占主導地位。假設在部署過程中,一個模型保證會遇到來自與用于訓練的相同分布的數據。這帶來了一個巨大的挑戰,因為眾所周知,神經網絡會對未知的實例提供過于自信的錯誤預測,并在數據損壞的情況下崩潰。在這個工作我們認為值得注意的教訓來自開放數據集識別,識別的統計偏差以外的數據觀測數據集,和相鄰的主動學習領域,數據增量查詢等預期的性能收益最大化,這些常常在深度學習的時代被忽略。基于這些遺忘的教訓,我們提出了一個統一的觀點,以搭建持續學習,主動學習和開放集識別在深度神經網絡的橋梁。我們的結果表明,這不僅有利于每個個體范式,而且突出了在一個共同框架中的自然協同作用。我們從經驗上證明了在減輕災難性遺忘、主動學習中查詢數據、選擇任務順序等方面的改進,同時在以前提出的方法失敗的地方展示了強大的開放世界應用。

//www.zhuanzhi.ai/paper/e5bee7a1e93a93ef97e1c

概述:

隨著實用機器學習系統的不斷成熟,社區發現了對持續學習[1]、[2]的興趣。與廣泛練習的孤立學習不同,在孤立學習中,系統的算法訓練階段被限制在一個基于先前收集的i.i.d數據集的單一階段,持續學習需要利用隨著時間的推移而到來的數據的學習過程。盡管這種范式已經在許多機器學習系統中找到了各種應用,回顧一下最近關于終身機器學習[3]的書,深度學習的出現似乎已經將當前研究的焦點轉向了一種稱為“災難性推理”或“災難性遺忘”的現象[4],[5],正如最近的評論[6],[7],[8],[9]和對深度持續學習[8],[10],[11]的實證調查所表明的那樣。后者是機器學習模型的一個特殊效應,機器學習模型貪婪地根據給定的數據群更新參數,比如神經網絡迭代地更新其權值,使用隨機梯度估計。當包括導致數據分布發生任何變化的不斷到達的數據時,學習到的表示集被單向引導,以接近系統當前公開的數據實例上的任何任務的解決方案。自然的結果是取代以前學到的表征,導致突然忘記以前獲得的信息。

盡管目前的研究主要集中在通過專門機制的設計來緩解持續深度學習中的這種遺忘,但我們認為,一種非常不同形式的災難性遺忘的風險正在增長,即忘記從過去的文獻中吸取教訓的危險。盡管在連續的訓練中保留神經網絡表示的努力值得稱贊,但除了只捕獲災難性遺忘[12]的度量之外,我們還高度關注了實際的需求和權衡,例如包括內存占用、計算成本、數據存儲成本、任務序列長度和訓練迭代次數等。如果在部署[14]、[15]、[16]期間遇到看不見的未知數據或小故障,那么大多數當前系統會立即崩潰,這幾乎可以被視為誤導。封閉世界的假設似乎無所不在,即認為模型始終只會遇到與訓練過程中遇到的數據分布相同的數據,這在真實的開放世界中是非常不現實的,因為在開放世界中,數據可以根據不同的程度變化,而這些變化是不現實的,無法捕獲到訓練集中,或者用戶能夠幾乎任意地向系統輸入預測信息。盡管當神經網絡遇到不可見的、未知的數據實例時,不可避免地會產生完全沒有意義的預測,這是眾所周知的事實,已經被暴露了幾十年了,但是當前的努力是為了通過不斷學習來規避這一挑戰。選擇例外嘗試解決識別不可見的和未知的示例、拒絕荒謬的預測或將它們放在一邊供以后使用的任務,通常總結在開放集識別的傘下。然而,大多數現有的深度連續學習系統仍然是黑盒,不幸的是,對于未知數據的錯誤預測、數據集的異常值或常見的圖像損壞[16],這些系統并沒有表現出理想的魯棒性。

除了目前的基準測試實踐仍然局限于封閉的世界之外,另一個不幸的趨勢是對創建的持續學習數據集的本質缺乏理解。持續生成模型(如[17]的作者的工作,[18],[19],[20],[21],[22]),以及類增量持續學習的大部分工作(如[12]中給出的工作,[23],[24],[25],[26],[27],[28])一般調查sequentialized版本的經過時間考驗的視覺分類基準如MNIST [29], CIFAR[30]或ImageNet[31],單獨的類只是分成分離集和序列所示。為了在基準中保持可比性,關于任務排序的影響或任務之間重疊的影響的問題通常會被忽略。值得注意的是,從鄰近領域的主動機器學習(半監督學習的一種特殊形式)中吸取的經驗教訓,似乎并沒有整合到現代的連續學習實踐中。在主動學習中,目標是學會在讓系統自己查詢接下來要包含哪些數據的挑戰下,逐步地找到與任務解決方案最接近的方法。因此,它可以被視為緩解災難性遺忘的對抗劑。當前的持續學習忙于維護在每個步驟中獲得的信息,而不是無休止地積累所有的數據,而主動學習則關注于識別合適的數據以納入增量訓練系統的補充問題。盡管在主動學習方面的早期開創性工作已經迅速識別出了通過使用啟發式[32]、[33]、[34]所面臨的強大應用的挑戰和陷阱,但后者在深度學習[35]、[36]、[37]、[38]的時代再次占據主導地位,這些挑戰將再次面臨。

在這項工作中,我們第一次努力建立一個原則性和鞏固的深度持續學習、主動學習和在開放的世界中學習的觀點。我們首先單獨回顧每一個主題,然后繼續找出在現代深度學習中似乎較少受到關注的以前學到的教訓。我們將繼續爭論,這些看似獨立的主題不僅從另一個角度受益,而且應該結合起來看待。在這個意義上,我們建議將當前的持續學習實踐擴展到一個更廣泛的視角,將持續學習作為一個總括性術語,自然地包含并建立在先前的主動學習和開放集識別工作之上。本文的主要目的并不是引入新的技術或提倡一種特定的方法作為通用的解決方案,而是對最近提出的神經網絡[39]和[40]中基于變分貝葉斯推理的方法進行了改進和擴展,以說明一種走向全面框架的可能選擇。重要的是,它作為論證的基礎,努力闡明生成建模作為深度學習系統關鍵組成部分的必要性。我們強調了在這篇論文中發展的觀點的重要性,通過實證證明,概述了未來研究的含義和有前景的方向。

付費5元查看完整內容

推薦系統旨在為用戶推薦個性化的在線商品或信息, 其廣泛應用于眾多Web場景之中, 來處理海量信息數據所導致的信息過載問題, 以此提升用戶體驗. 鑒于推薦系統強大的實用性, 自20世紀90年代中期以來, 研究者針對其方法與應用兩方面, 進行了大量廣泛的研究. 近年來, 很多工作發現知識圖譜中所蘊含的豐富信息可以有效地解決推薦系統中存在的一系列關鍵問題, 例如數據稀疏、冷啟動、推薦多樣性等. 因此, 本文 針對基于知識圖譜的推薦系統這一領域進行了全面的綜述. 具體地, 首先簡單介紹推薦系統與知識圖譜中的一些基本概念. 隨后, 詳細介紹現有方法如何挖掘知識圖譜不同種類的信息并應用于推薦系統. 此外, 總結了相關的一系列推薦應用場景. 最后, 提出了對基于知識圖譜的推薦系統前景的看法, 并展望了該領域未來的研究方向.

付費5元查看完整內容

近年來, 隨著海量數據的涌現, 可以表示對象之間復雜關系的圖結構數據越來越受到重視并給已有的算法帶來了極大的挑戰. 圖神經網絡作為可以揭示深層拓撲信息的模型, 已開始廣泛應用于諸多領域,如通信、生命科學和經濟金融等. 本文對近幾年來提出的圖神經網絡模型和應用進行綜述, 主要分為以下幾類:基于空間方法的圖神經網絡模型、基于譜方法的圖神經網絡模型和基于生成方法的圖神經網絡模型等,并提出可供未來進一步研究的問題.

//engine.scichina.com/publisher/scp/journal/SSM/50/3/10.1360/N012019-00133?slug=fulltext

圖是對對象及其相互關系的一種簡潔抽象的直觀數學表達. 具有相互關系的數據—圖結構數據在眾多領域普遍存在, 并得到廣泛應用. 隨著大量數據的涌現, 傳統的圖算法在解決一些深層次的重要問題, 如節點分類和鏈路預測等方面有很大的局限性. 圖神經網絡模型考慮了輸入數據的規模、異質性和深層拓撲信息等, 在挖掘深層次有效拓撲信息、 提取數據的關鍵復雜特征和 實現對海量數據的快速處理等方面, 例如, 預測化學分子的特性 [1]、文本的關系提取 [2,3]、圖形圖像的結構推理 [4,5]、社交網絡的鏈路預測和節點聚類 [6]、缺失信息的網絡補全 [7]和藥物的相互作用預測 [8], 顯示了令人信服的可靠性能.

圖神經網絡的概念最早于 2005 年由 Gori 等 [9]提出, 他借鑒神經網絡領域的研究成果, 設計了一種用于處理圖結構數據的模型. 2009 年, Scarselli 等 [10]對此模型進行了詳細闡述. 此后, 陸續有關于圖神經網絡的新模型及應用研究被提出. 近年來, 隨著對圖結構數據研究興趣的不斷增加, 圖神經網絡研究論文數量呈現出快速上漲的趨勢, 圖神經網絡的研究方向和應用領域都得到了很大的拓展.

目前已有一些文獻對圖神經網絡進行了綜述. 文獻 [11]對圖結構數據和流形數據領域的深度學習方法進行了綜述, 側重于將所述各種方法置于一個稱為幾何深度學習的統一框架之內; 文獻[12]將圖神經網絡方法分為三類: 半監督學習、無監督學習和最新進展, 并根據發展歷史對各種方法進行介紹、分析和對比; 文獻[13]介紹了圖神經網絡原始模型、變體和一般框架, 并將圖神經網絡的應用劃分為結構場景、非結構場景和其他場景; 文獻[14]提出了一種新的圖神經網絡分類方法, 重點介紹了圖卷積網絡, 并總結了圖神經網絡方法在不同學習任務中的開源代碼和基準.

本文將對圖神經網絡模型的理論及應用進行綜述, 并討論未來的方向和挑戰性問題. 與其他綜述文獻的不同之處在于, 我們給出新的分類標準, 并且介紹圖神經網絡豐富的應用成果. 本文具體結構如下: 首先介紹三類主要的圖神經網絡模型, 分別是基于空間方法的圖神經網絡、基于譜方法的圖神經網絡和基于生成方法的圖神經網絡等; 然后介紹模型在節點分類、鏈路預測和圖生成等方面的應用; 最后提出未來的研究方向.

付費5元查看完整內容

隨著web技術的發展,多模態或多視圖數據已經成為大數據的主要流,每個模態/視圖編碼數據對象的單個屬性。不同的模態往往是相輔相成的。這就引起了人們對融合多模態特征空間來綜合表征數據對象的研究。大多數現有的先進技術集中于如何融合來自多模態空間的能量或信息,以提供比單一模態的同行更優越的性能。最近,深度神經網絡展示了一種強大的架構,可以很好地捕捉高維多媒體數據的非線性分布,對多模態數據自然也是如此。大量的實證研究證明了深多模態方法的優勢,從本質上深化了多模態深特征空間的融合。在這篇文章中,我們提供了從淺到深空間的多模態數據分析領域的現有狀態的實質性概述。在整個調查過程中,我們進一步指出,該領域的關鍵要素是多模式空間的協作、對抗性競爭和融合。最后,我們就這一領域未來的一些方向分享我們的觀點。

付費5元查看完整內容

近年來,人們對學習圖結構數據表示的興趣大增。基于標記數據的可用性,圖表示學習方法一般分為三大類。第一種是網絡嵌入(如淺層圖嵌入或圖自動編碼器),它側重于學習關系結構的無監督表示。第二種是圖正則化神經網絡,它利用圖來增加半監督學習的正則化目標的神經網絡損失。第三種是圖神經網絡,目的是學習具有任意結構的離散拓撲上的可微函數。然而,盡管這些領域很受歡迎,但在統一這三種范式方面的工作卻少得驚人。在這里,我們的目標是彌合圖神經網絡、網絡嵌入和圖正則化模型之間的差距。我們提出了圖結構數據表示學習方法的一個綜合分類,旨在統一幾個不同的工作主體。具體來說,我們提出了一個圖編碼解碼器模型(GRAPHEDM),它將目前流行的圖半監督學習算法(如GraphSage、Graph Convolutional Networks、Graph Attention Networks)和圖表示的非監督學習(如DeepWalk、node2vec等)歸納為一個統一的方法。為了說明這種方法的一般性,我們將30多個現有方法放入這個框架中。我們相信,這種統一的觀點既為理解這些方法背后的直覺提供了堅實的基礎,也使該領域的未來研究成為可能。

概述

學習復雜結構化數據的表示是一項具有挑戰性的任務。在過去的十年中,針對特定類型的結構化數據開發了許多成功的模型,包括定義在離散歐幾里德域上的數據。例如,序列數據,如文本或視頻,可以通過遞歸神經網絡建模,它可以捕捉序列信息,產生高效的表示,如機器翻譯和語音識別任務。還有卷積神經網絡(convolutional neural networks, CNNs),它根據移位不變性等結構先驗參數化神經網絡,在圖像分類或語音識別等模式識別任務中取得了前所未有的表現。這些主要的成功僅限于具有簡單關系結構的特定類型的數據(例如,順序數據或遵循規則模式的數據)。

在許多設置中,數據幾乎不是規則的: 通常會出現復雜的關系結構,從該結構中提取信息是理解對象之間如何交互的關鍵。圖是一種通用的數據結構,它可以表示復雜的關系數據(由節點和邊組成),并出現在多個領域,如社交網絡、計算化學[41]、生物學[105]、推薦系統[64]、半監督學習[39]等。對于圖結構的數據來說,將CNNs泛化為圖并非易事,定義具有強結構先驗的網絡是一項挑戰,因為結構可以是任意的,并且可以在不同的圖甚至同一圖中的不同節點之間發生顯著變化。特別是,像卷積這樣的操作不能直接應用于不規則的圖域。例如,在圖像中,每個像素具有相同的鄰域結構,允許在圖像中的多個位置應用相同的過濾器權重。然而,在圖中,我們不能定義節點的順序,因為每個節點可能具有不同的鄰域結構(圖1)。此外,歐幾里德卷積強烈依賴于幾何先驗(如移位不變性),這些先驗不能推廣到非歐幾里德域(如平移可能甚至不能在非歐幾里德域上定義)。

這些挑戰導致了幾何深度學習(GDL)研究的發展,旨在將深度學習技術應用于非歐幾里德數據。特別是,考慮到圖在現實世界應用中的廣泛流行,人們對將機器學習方法應用于圖結構數據的興趣激增。其中,圖表示學習(GRL)方法旨在學習圖結構數據的低維連續向量表示,也稱為嵌入。

廣義上講,GRL可以分為兩類學習問題,非監督GRL和監督(或半監督)GRL。第一個系列的目標是學習保持輸入圖結構的低維歐幾里德表示。第二系列也學習低維歐幾里德表示,但為一個特定的下游預測任務,如節點或圖分類。與非監督設置不同,在非監督設置中輸入通常是圖結構,監督設置中的輸入通常由圖上定義的不同信號組成,通常稱為節點特征。此外,底層的離散圖域可以是固定的,這是直推學習設置(例如,預測一個大型社交網絡中的用戶屬性),但也可以在歸納性學習設置中發生變化(例如,預測分子屬性,其中每個分子都是一個圖)。最后,請注意,雖然大多數有監督和無監督的方法學習歐幾里德向量空間中的表示,最近有興趣的非歐幾里德表示學習,其目的是學習非歐幾里德嵌入空間,如雙曲空間或球面空間。這項工作的主要動機是使用一個連續的嵌入空間,它類似于它試圖嵌入的輸入數據的底層離散結構(例如,雙曲空間是樹的連續版本[99])。

鑒于圖表示學習領域的發展速度令人印象深刻,我們認為在一個統一的、可理解的框架中總結和描述所有方法是很重要的。本次綜述的目的是為圖結構數據的表示學習方法提供一個統一的視圖,以便更好地理解在深度學習模型中利用圖結構的不同方法。

目前已有大量的圖表示學習綜述。首先,有一些研究覆蓋了淺層網絡嵌入和自動編碼技術,我們參考[18,24,46,51,122]這些方法的詳細概述。其次,Bronstein等人的[15]也給出了非歐幾里德數據(如圖或流形)的深度學習模型的廣泛概述。第三,最近的一些研究[8,116,124,126]涵蓋了將深度學習應用到圖數據的方法,包括圖數據神經網絡。這些調查大多集中在圖形表示學習的一個特定子領域,而沒有在每個子領域之間建立聯系。

在這項工作中,我們擴展了Hamilton等人提出的編碼-解碼器框架,并介紹了一個通用的框架,圖編碼解碼器模型(GRAPHEDM),它允許我們將現有的工作分為四大類: (i)淺嵌入方法,(ii)自動編碼方法,(iii) 圖正則化方法,和(iv) 圖神經網絡(GNNs)。此外,我們還介紹了一個圖卷積框架(GCF),專門用于描述基于卷積的GNN,該框架在廣泛的應用中實現了最先進的性能。這使我們能夠分析和比較各種GNN,從在Graph Fourier域中操作的方法到將self-attention作為鄰域聚合函數的方法[111]。我們希望這種近期工作的統一形式將幫助讀者深入了解圖的各種學習方法,從而推斷出相似性、差異性,并指出潛在的擴展和限制。盡管如此,我們對前幾次綜述的貢獻有三個方面

  • 我們介紹了一個通用的框架,即GRAPHEDM,來描述一系列廣泛的有監督和無監督的方法,這些方法對圖形結構數據進行操作,即淺層嵌入方法、圖形正則化方法、圖形自動編碼方法和圖形神經網絡。

  • 我們的綜述是第一次嘗試從同一角度統一和查看這些不同的工作線,我們提供了一個通用分類(圖3)來理解這些方法之間的差異和相似之處。特別是,這種分類封裝了30多個現有的GRL方法。在一個全面的分類中描述這些方法,可以讓我們了解這些方法究竟有何不同。

  • 我們為GRL發布了一個開源庫,其中包括最先進的GRL方法和重要的圖形應用程序,包括節點分類和鏈接預測。我們的實現可以在//github.com/google/gcnn-survey-paper上找到。

付費5元查看完整內容

【導讀】近來,知識圖譜用于推薦系統是關注的焦點,能夠提升推薦系統的準確性與可解釋性。如何將知識圖譜融入到推薦系統呢? 最近中科院計算所百度微軟等學者最新綜述論文《A Survey on Knowledge Graph-Based Recommender Systems》,闡述對基于知識圖譜的推薦系統進行了系統的研究。

地址://www.zhuanzhi.ai/paper/90d0d696560bc88ea93f629b478a2128

為了解決各種在線應用中的信息爆炸問題,提高用戶體驗,推薦系統被提出來進行用戶偏好建模。盡管人們已經做出了許多努力來實現更加個性化的推薦,但是推薦系統仍然面臨著一些挑戰,比如數據稀疏性和冷啟動。近年來,以知識圖譜作為邊信息生成推薦引起了人們的極大興趣。這種方法不僅可以緩解上述問題,提供更準確的推薦,而且可以對推薦的項目進行解釋。本文對基于知識圖譜的推薦系統進行了系統的研究。我們收集了這一領域最近發表的論文,并從兩個角度進行了總結。一方面,我們通過研究論文如何利用知識圖譜進行準確和可解釋的推薦來研究所提出的算法。另一方面,我們介紹了這些工作中使用的數據集。最后,我們提出了幾個可能的研究方向。

概述

隨著互聯網的快速發展,數據量呈指數級增長。由于信息量過大,用戶在眾多的選擇中很難找到自己感興趣的。為了提高用戶體驗,推薦系統已被應用于音樂推薦[1]、電影推薦[2]、網上購物[3]等場景。

推薦算法是推薦系統的核心要素,主要分為基于協同過濾(CF)的推薦系統、基于內容的推薦系統和混合推薦系統[4]。基于CF的推薦基于用戶或交互數據項的相似度來建模用戶偏好,而基于內容的推薦利用了物品項的內容特征。基于CF的推薦系統得到了廣泛的應用,因為它可以有效地捕獲用戶的偏好,并且可以很容易地在多個場景中實現,而不需要在基于內容的推薦系統[5]、[6]中提取特征。然而,基于CF的推薦存在數據稀疏性和冷啟動問題[6]。為了解決這些問題,提出了混合推薦系統來統一交互級相似度和內容級相似度。在這個過程中,我們探索了多種類型的邊信息,如項目屬性[7]、[8]、項目評論[9]、[10],以及用戶的社交網絡[11]、[12]。

近年來,將知識圖譜(KG)作為邊信息引入推薦系統引起了研究者的關注。KG是一個異構圖,其中節點作為實體,邊表示實體之間的關系。可以將項目及其屬性映射到KG中,以了解項目[2]之間的相互關系。此外,還可以將用戶和用戶端信息集成到KG中,從而更準確地捕捉用戶與物品之間的關系以及用戶偏好。圖1是一個基于KG的推薦示例,其中電影“Avatar”和“Blood Diamond”被推薦給Bob。此KG包含用戶、電影、演員、導演和類型作為實體,而交互、歸屬、表演、導演和友誼是實體之間的關系。利用KG,電影與用戶之間存在不同的潛關系,有助于提高推薦的精度。基于知識的推薦系統的另一個優點是推薦結果[14]的可解釋性。在同一個示例中,根據user-item圖中的關系序列可以知道向Bob推薦這兩部電影的原因。例如,推薦《阿凡達》的一個原因是,《阿凡達》與鮑勃之前看過的《星際穿越》屬于同一類型。最近提出了多種KGs,如Freebase[15]、DBpedia[16]、YAGO[17]、谷歌的知識圖譜[18],方便了KGs的推薦構建。

圖1 一個基于kg的推薦的例子

本次綜述的目的是提供一個全面的文獻綜述利用KGs作為側信息的推薦系統。在我們的研究過程中,我們發現現有的基于KG的推薦系統以三種方式應用KGs: 基于嵌入的方法、基于路徑的方法和統一的方法。我們詳細說明了這些方法的異同。除了更準確的推薦之外,基于KG的推薦的另一個好處是可解釋性。我們討論了不同的作品如何使用KG來進行可解釋的推薦。此外,根據我們的綜述,我們發現KGs在多個場景中充當了輔助信息,包括電影、書籍、新聞、產品、興趣點(POIs)、音樂和社交平臺的推薦。我們收集最近的作品,根據應用程序對它們進行分類,并收集在這些作品中評估的數據集。

本次綜述的組織如下: 在第二部分,我們介紹了KGs和推薦系統的基礎;在第3節中,我們介紹了本文中使用的符號和概念;在第4節和第5節中,我們分別從方法和評價數據集的角度對基于知識的推薦系統進行了綜述;第六部分提出了該領域的一些潛在研究方向;最后,我們在第7節總結了這次調查。

術語概念

圖2 常用知識圖譜集合

圖3 符號

知識圖譜推薦系統方法

Embedding-based方法

基于嵌入的方法通常直接使用來自KG的信息來豐富項目或用戶的表示。為了利用KG信息,需要使用知識圖嵌入(KGE)算法將KG編碼為低秩嵌入。KGE算法可分為兩類[98]:翻譯距離模型,如TransE[99]、TransH[100]、TransR[101]、TransD[102]等;語義匹配模型,如DistMult[103]等。

根據KG中是否包含用戶,可以將基于嵌入的方法分為兩個類。在第一種方法中,KGs由項目及其相關屬性構成,這些屬性是從數據集或外部知識庫中提取的。我們將這樣的圖命名為項目圖。注意,用戶不包括在這樣的項目圖中。遵循這一策略的論文利用知識圖嵌入(KGE)算法對圖進行編碼,以更全面地表示項目,然后將項目側信息集成到推薦框架中。其大意可以如下所示。

另一種embedding-based方法直接建立user-item圖,用戶,項目,以及相關屬性函數作為節點。在用戶-項目圖中,屬性級關系(品牌、類別等)和用戶級關系(共同購買、共同查看等)都是邊。

Path-based Methods

基于路徑的方法構建一個用戶-項目圖,并利用圖中實體的連接模式進行推薦。基于路徑的方法在2013年就已經開發出來了,傳統的論文將這種方法稱為HIN中的推薦方法。通常,這些模型利用用戶和/或項的連接性相似性來增強推薦。

統一方法

基于嵌入的方法利用KG中用戶/項的語義表示進行推薦,而基于路徑的方法使用語義連接信息,并且兩種方法都只利用圖中信息的一個方面。為了更好地利用KG中的信息,提出了將實體和關系的語義表示和連通性信息結合起來的統一方法。統一的方法是基于嵌入傳播的思想。這些方法以KG中的連接結構為指導,對實體表示進行細化。

總結:

基于嵌入的方法使用KGE方法對KG(項目圖或用戶-項目圖)進行預處理,以獲得實體和關系的嵌入,并將其進一步集成到推薦框架中。然而,這種方法忽略了圖中信息的連通性模式,很少有文獻能夠給出有原因的推薦結果。基于路徑的方法利用用戶-項圖,通過預先定義元路徑或自動挖掘連接模式來發現項的路徑級相似性。基于路徑的方法還可以為用戶提供對結果的解釋。將基于嵌入的方法與基于路徑的方法相結合,充分利用雙方的信息是當前的研究趨勢。此外,統一的方法還具有解釋推薦過程的能力。

圖4 收集論文表。在表格中,Emb代表基于嵌入的方法,Uni代表統一方法,Att’代表注意力機制,’RL’代表強化學習,’AE’代表自動編碼器,’MF’代表矩陣分解。

代表數據集

圖5 不同應用場景和相應論文的數據集集合

未來方向

在以上幾節中,我們從更準確的推薦和可解釋性方面展示了基于知識的推薦系統的優勢。雖然已經提出了許多利用KG作為側信息進行推薦的新模型,但仍然存在一些改進的機會。在這一部分中,我們概述并討論了一些未來的研究方向。

  • 動態推薦。雖然基于KG的推薦系統在GNN或GCN架構下取得了良好的性能,但是訓練過程是耗時的。因此,這些模型可以看作是靜態的偏好推薦。然而,在某些情況下,如網上購物、新聞推薦、Twitter和論壇,用戶的興趣會很快受到社會事件或朋友的影響。在這種情況下,使用靜態偏好建模的推薦可能不足以理解實時興趣。為了捕獲動態偏好,利用動態圖網絡可以是一個解決方案。最近,Song等[127]設計了一個動態圖-注意力網絡,通過結合來自朋友的長期和短期興趣來捕捉用戶快速變化的興趣。按照這種方法,很自然地要集成其他類型的側信息,并構建一個KG來進行動態推薦。

  • 多任務學習。基于kg的推薦系統可以看作是圖中鏈接預測。因此,考慮到KG的性質,有可能提高基于圖的推薦的性能。例如,KG中可能存在缺失的事實,從而導致關系或實體的缺失。然而,用戶的偏好可能會被忽略,因為這些事實是缺失的,這可能會惡化推薦結果。[70]、[95]已經證明了聯合訓練KG完成模塊和推薦模塊以獲得更好的推薦是有效的。其他的工作利用多任務學習,將推薦模塊與KGE task[45]和item relation regulation task聯合訓練[73]。利用從其他kg相關任務(例如實體分類和解析)遷移知識來獲得更好的推薦性能,這是很有趣的。

  • 跨域推薦。最近,關于跨域推薦的研究已經出現。其動機是跨域的交互數據不相等。例如,在Amazon平臺上,圖書評級比其他域更密集。使用遷移學習技術,可以共享來自具有相對豐富數據的源域的交互數據,以便在目標域內進行更好的推薦。Zhang等[128]提出了一種基于矩陣的跨域推薦方法。后來,Zhao等人[129]引入了PPGN,將來自不同領域的用戶和產品放在一個圖中,并利用user item交互圖進行跨領域推薦。雖然PPGN的性能顯著優于SOTA,但是user item圖只包含交互關系,并不考慮用戶和項目之間的其他關系。通過將不同類型的用戶和項目端信息合并到用戶-項目交互圖中,以獲得更好的跨域推薦性能。

  • 知識增強語言表示。為了提高各種自然語言處理任務的性能,有將外部知識集成到語言表示模型中的趨勢。知識表示和文本表示可以相互細化。例如,Chen等人[130]提出了短文本分類的STCKA,利用來自KGs(如YAGO)的先驗知識,豐富了短文本的語義表征。Zhang等人[131]提出了ERNIE,該方法融合了Wikidata的知識,增強了語言的表示能力,該方法已被證明在關系分類任務中是有效的。雖然DKN模型[48]既利用了文本嵌入,也利用了新聞中的實體嵌入,但這兩種嵌入方式只是簡單地串聯起來,得到新聞的最終表現形式,而沒有考慮兩個向量之間的信息融合。因此,將知識增強的文本表示策略應用于新聞推薦任務和其他基于文本的推薦任務中,能夠更好地表示學習,從而獲得更準確的推薦結果,是很有前景的。

  • 知識圖譜嵌入方法。基于不同約束條件的KGE方法有兩種:翻譯距離模型和語義匹配模型。在本次綜述中,這兩種類型的KGE方法被用于三種基于KGE的推薦系統和推薦任務中。但是,還沒有全面的工作建議在什么情況下,包括數據源、推薦場景和模型架構,應該采用特定的KGE方法。因此,另一個研究方向是比較不同KGE方法在不同條件下的優勢。

  • 用戶端信息。目前,大多數基于KG的推薦系統都是通過合并項目側信息來構建圖的,而很少有模型考慮用戶側信息。然而,用戶側信息,如用戶網絡和用戶的人口統計信息,也可以很自然地集成到當前基于KGbased的推薦系統框架中。最近,Fan等人[132]使用GNN分別表示用戶-用戶社交網絡和用戶-項目交互圖,該方法在用戶社交信息方面優于傳統的基于cf的推薦系統。在我們最近的調查[96]中,一篇論文將用戶關系整合到圖表中,并展示了這種策略的有效性。因此,在KG中考慮用戶側信息可能是另一個研究方向。

付費5元查看完整內容

【導讀】近年來,隨著網絡數據量的不斷增加,挖掘圖形數據已成為計算機科學領域的熱門研究課題,在學術界和工業界都得到了廣泛的研究。但是,大量的網絡數據為有效分析帶來了巨大的挑戰。因此激發了圖表示的出現,該圖表示將圖映射到低維向量空間中,同時保持原始圖結構并支持圖推理。圖的有效表示的研究具有深遠的理論意義和重要的現實意義,本教程將介紹圖表示/網絡嵌入的一些基本思想以及一些代表性模型。

關于圖或網絡的文獻有兩個名稱:圖表示和網絡嵌入。我們注意到圖和網絡都指的是同一種結構,盡管它們每個都有自己的術語,例如,圖和網絡的頂點和邊。挖掘圖/網絡的核心依賴于正確表示的圖/網絡,這使得圖/網絡上的表示學習成為學術界和工業界的基本研究問題。傳統表示法直接基于拓撲圖來表示圖,通常會導致許多問題,包括稀疏性,高計算復雜性等,從而激發了基于機器學習的方法的出現,這種方法探索了除矢量空間中的拓撲結構外還能夠捕獲額外信息的潛在表示。因此,對于圖來說,“良好”的潛在表示可以更加精確的表示圖形。但是,學習網絡表示面臨以下挑戰:高度非線性,結構保持,屬性保持,稀疏性。

深度學習在處理非線性方面的成功為我們提供了研究新方向,我們可以利用深度學習來提高圖形表示學習的性能,作者在教程中討論了將深度學習技術與圖表示學習相結合的一些最新進展,主要分為兩類方法:面向結構的深層方法和面向屬性的深層方法。

對于面向結構的方法:

  • 結構性深層網絡嵌入(SDNE),專注于保持高階鄰近度。

  • 深度遞歸網絡嵌入(DRNE),其重點是維護全局結構。

  • 深度超網絡嵌入(DHNE),其重點是保留超結構。

對于面向屬性的方法:

  • 專注于不確定性屬性的深度變異網絡嵌入(DVNE)。

  • 深度轉換的基于高階Laplacian高斯過程(DepthLGP)的網絡嵌入,重點是動態屬性。

本教程的第二部分就以上5種方法,通過對各個方法的模型介紹、算法介紹、對比分析等不同方面進行詳細介紹。

1、Structural Deep Network Embedding

network embedding,是為網絡中的節點學習出一個低維表示的方法。目的在于在低維中保持高度非線性的網絡結構特征,但現有方法多采用淺層網絡不足以挖掘高度非線性,或同時保留局部和全局結構特征。本文提出一種結構化深度網絡嵌入方法,叫SDNE該方法用半監督的深度模型來捕捉高度非線性結構,通過結合一階相似性(監督)和二階相似性(非監督)來保留局部和全局特征。

2、 Deep recursive network embedding with regular equivalence

網絡嵌入旨在保留嵌入空間中的頂點相似性。現有方法通常通過節點之間的連接或公共鄰域來定義相似性,即結構等效性。但是,位于網絡不同部分的頂點可能具有相似的角色或位置,即規則的等價關系,在網絡嵌入的文獻中基本上忽略了這一點。以遞歸的方式定義規則對等,即兩個規則對等的頂點具有也規則對等的網絡鄰居。因此,文章中提出了一種名為深度遞歸網絡嵌入(DRNE)的新方法來學習具有規則等價關系的網絡嵌入。更具體地說,我們提出了一種層歸一化LSTM,以遞歸的方式通過聚合鄰居的表示方法來表示每個節點。

3、Structural Deep Embedding for Hyper-Networks

是在hyperedge(超邊是不可分解的)的基礎上保留object的一階和二階相似性,學習異質網絡表示。于與HEBE的區別在于,本文考慮了網絡high-oeder網絡結構和高度稀疏性。

傳統的基于clique expansion 和star expansion的方法,顯式或者隱式地分解網絡。也就說,分解后hyper edge節點地子集,依然可以構成一個新的超邊。對于同質網絡這個假設是合理地,因為同質網絡地超邊,大多數情況下都是根據潛在地相似性(共同地標簽等)構建的。

4、** Deep variational network embedding in wasserstein space**

大多數現有的嵌入方法將節點作為點向量嵌入到低維連續空間中。這樣,邊緣的形成是確定性的,并且僅由節點的位置確定。但是,現實世界網絡的形成和發展充滿不確定性,這使得這些方法不是最優的。為了解決該問題,在本文中提出了一種新穎的在Wasserstein空間中嵌入深度變分網絡(DVNE)。所提出的方法學習在Wasserstein空間中的高斯分布作為每個節點的潛在表示,它可以同時保留網絡結構并為節點的不確定性建模。具體來說,我們使用2-Wasserstein距離作為分布之間的相似性度量,它可以用線性計算成本很好地保留網絡中的傳遞性。此外,我們的方法通過深度變分模型隱含了均值和方差的數學相關性,可以通過均值矢量很好地捕獲節點的位置,而由方差可以很好地捕獲節點的不確定性。此外,本文方法通過保留網絡中的一階和二階鄰近性來捕獲局部和全局網絡結構。

5、Learning embeddings of out-of-sample nodes in dynamic networks

迄今為止的網絡嵌入算法主要是為靜態網絡設計的,在學習之前,所有節點都是已知的。如何為樣本外節點(即學習后到達的節點)推斷嵌入仍然是一個懸而未決的問題。該問題對現有方法提出了很大的挑戰,因為推斷的嵌入應保留復雜的網絡屬性,例如高階鄰近度,與樣本內節點嵌入具有相似的特征(即具有同質空間),并且計算成本較低。為了克服這些挑戰,本文提出了一種深度轉換的高階拉普拉斯高斯過程(DepthLGP)方法來推斷樣本外節點的嵌入。DepthLGP結合了非參數概率建模和深度學習的優勢。特別是,本文設計了一個高階Laplacian高斯過程(hLGP)來對網絡屬性進行編碼,從而可以進行快速和可擴展的推理。為了進一步確保同質性,使用深度神經網絡來學習從hLGP的潛在狀態到節點嵌入的非線性轉換。DepthLGP是通用的,因為它適用于任何網絡嵌入算法學習到的嵌入。

付費5元查看完整內容
北京阿比特科技有限公司