本文為具有混合狀態空間的多智能體系統提出了一種迭代規劃框架。該框架使用過渡系統在數學上表示規劃任務,并采用多個求解器來迭代改進規劃,直到計算資源耗盡為止。在整合不同求解器進行迭代規劃時,我們建立了數學框架的理論保證,以確保遞歸可行性。所提出的框架能夠持續改進解決方案的最優性,有效利用分配的計算資源。我們將所提出的方法應用于能源感知的 UGV-UAV 合作任務站點分配,對其進行了驗證。結果表明,與文獻中提出的算法相比,該方法在保持實時執行能力的同時,還能不斷改進解決方案。
可重構智能表面(RIS)是一種前景廣闊的技術,通過在創建智能無線信道時引入前所未有的靈活性和適應性,有可能徹底改變無線系統。最近關于集成傳感與通信(ISAC)系統的研究表明,RIS 平臺可提高信號質量、覆蓋范圍和鏈路容量。在本文中,我們探討了全連接對角線外 RIS(BD-RIS)在 ISAC 系統中的應用。BD-RIS 允許散射矩陣的非零對角元素,從而引入了額外的自由度,有可能實現進一步的功能和性能提升。特別是,考慮的聯合設計目標是,通過利用 BD-RIS 設置中提供的額外自由度,最大化雷達接收器和通信用戶的信噪比(SNR)加權和。通過對此類系統的已知變量和輔助變量(潛變量)進行交替優化,這些自由度得以釋放。我們的數值結果揭示了在 ISAC 背景下部署 BD-RIS 的優勢,以及所提算法的有效性,即雷達和通信用戶的信噪比值都提高了幾個數量級。
圖 1. 啟用 BD-RIS 的 ISAC 系統示意圖。當 LoS 受阻時,通過 BD-RIS 的 NLoS 路徑可在目標/用戶與 DFBS 之間建立鏈接。
在新興的蜂群技術領域,無人機系統條令作為一種規定性的設計要素,一直處于缺乏、潛伏或被忽視的狀態。本文討論了一種與蜂群無人機系統任務條令并行的設計蜂群無人機系統的綜合方法。該方法的結構源自基于模型的系統工程、機器人學、人類系統集成、生物學和計算機科學等學科的啟發式方法。該方法為設計和操作蜂群無人機系統提供了一種標準方法,力求滿足任何預定任務的性能和條令要求。
蜂群體系結構的設計應支持 "少而精"、廣泛分散、高度網絡化、脈沖式攻擊的條令。一般來說,蜂群系統主要采用三種總體指揮與控制(C2)架構:協調控制、集中控制或分級控制,以及分布式控制或分散控制(Dekker,2008 年)。在協調控制中,根據指定的瞬時因素(如位置、狀態、任務場景)選擇一個智能體作為臨時領導者。領導者從其他智能體接收傳感器數據,并廣播融合后的共同綜合畫面。如果領導者失效,則會選擇一個替代者繼續扮演這一角色。這種架構具有一定的魯棒性,但無法擴展到更大的智能體群或地理位置分散的智能體群,而且會給一個智能體帶來很大的處理負擔。集中式控制架構類似于傳統的軍事指揮與控制結構,在這種結構中,智能體按層級組織,詳細的戰術信息通過指揮鏈向上反饋。雖然這種分層設計簡化了數據流,但并不穩健,在處理需要智能體快速反應的動態場景時缺乏靈活性。對蜂群進行集中控制需要一個樞紐-輻條式通信架構,這種架構有幾個缺點:它限制了蜂群的自主行為,無法實現智能體之間的通信,而且在設計中會出現單點故障(Chung 等人,2013 年)。分布式架構的特點是沒有領導者;而是通過智能體之間的集體共識做出蜂群決策。這種架構具有穩健性和可擴展性,但要求通信網絡能夠支持可能增加的數據流量。與蜂群系統設計的其他要素一樣,C2 架構的混合體也可用于發揮各自的優勢。美國海軍的 "合作參與能力"(Cooperative Engagement Capability)防空作戰系統采用分布式架構來獲取態勢感知數據,并采用協調架構來選擇目標定位(Dekker,2008 年)。分散控制架構,包括基于市場(或拍賣)的方法,以及隱式衍生的單智能體解決方案,已在蜂群無人機系統中得到成功驗證(Chung 等人,2013 年)。由于這些原因,無線網狀通信網絡被認為是蜂群無人機系統通信架構的一種潛在的關鍵使能形式(Frew,2008 年)。
有限狀態機(FSM)(或有限狀態自動機)已被證明可有效模擬多車自主無人系統架構(Weiskopf 等人,2002 年)。在有限狀態自動機架構中,每個智能體在給定時間內都處于幾種定義狀態之一。智能體感知到的環境條件或遇到的事件會觸發觸發事件,導致智能體在不同狀態間轉換。這種類型的結構適用于開發軍事蜂群系統,因為狀態和觸發器可以確定性地定義(就像交通信號燈一樣),這對于目標攻擊等高風險任務事件是必要的。相反,在搜索等其他任務事件中,可能需要一定程度的不可預測性。在這種情況下,可以使用概率有限狀態機 (PFSM)(或概率有限狀態自動機),允許在一個狀態內有不同的行為,或在狀態之間提供多種轉換(Paranuk,2003 年)。
本文提出了一種名為 "自適應蜂群智能體"(ASI)的新范例,在這種范例中,異構設備(或 "智能體")參與協作 "蜂群 "計算,以實現穩健的自適應實時操作。自適應群集智能是受自然界某些系統的協作和分散行為啟發而產生的一種范式,可應用于物聯網、移動計算和分布式系統等領域的各種場景。例如,網絡安全、聯網/自動駕駛汽車和其他類型的無人駕駛車輛,如 "智能 "無人機群。這絕不是一份詳盡無遺的清單,但卻說明了可以從這一范例中獲益的眾多不同領域。本文介紹了在未來聯網/自動駕駛車輛中進行合作傳感器融合的具體人工智能案例研究,該案例構成了由 IBM 主導的 DARPA DSSoC 計劃下的 "認知異構系統的高效可編程性"(EPOCHS)項目的驅動應用。鑒于 EPOCHS 的規模,我們將重點關注項目的一個具體部分:用于多車輛傳感器融合的 EPOCHS 參考應用 (ERA)。我們展示了 x86 系統上的特性分析結果,從而得出了有關 ERA 性能特征和實時需求的初步結論。本文簡要介紹了 EPOCHS 的路線圖和未來工作。
圖 4:作為 DARPA 贊助的 EPOCHS 項目的一部分,互聯/自動駕駛車輛中基于蜂群的傳感器融合。
近來,物聯網(IoT)技術為農業、工業和醫學等許多學科提供了后勤服務。因此,它已成為最重要的科研領域之一。將物聯網應用于軍事領域有許多挑戰,如容錯和 QoS。本文將物聯網技術應用于軍事領域,創建軍事物聯網(IoMT)系統。本文提出了上述 IoMT 系統的架構。該架構由四個主要層組成: 通信層、信息層、應用層和決策支持層。這些層為 IoMT 物聯網提供了容錯覆蓋通信系統。此外,它還采用了過濾、壓縮、抽象和數據優先級隊列系統等數據縮減方法,以保證傳輸數據的 QoS。此外,它還采用了決策支持技術和物聯網應用統一思想。最后,為了評估 IoMT 系統,使用網絡仿真軟件包 NS3 構建了一個密集的仿真環境。仿真結果證明,所提出的 IoMT 系統在性能指標、丟包率、端到端延遲、吞吐量、能耗比和數據減少率等方面均優于傳統的軍事系統。
IoMT 系統由一組在戰場上應組織良好的軍事設備組成。無人機、作戰基地、艦艇、坦克、士兵和飛機等這些物品應在一個有凝聚力的網絡中進行通信。在 IoMT 網絡中,態勢感知、響應時間和風險評估都會得到提高。此外,IoMT 環境應涉及對普適計算、普適管理、普適傳感和普適通信的全面認識。此外,IoMT 可能會導致傳感器等網絡事物產生超大規模的數據。此外,這類網絡所需的計算量非常大,而這些計算的結果應能實時準確地實現。因此,IoMT 系統架構應考慮上述注意事項。
因此,建議的體系結構由四層組成: 通信層、信息層、應用層和決策支持層(見圖 1)。通信層關注的是事物如何在一個大網絡中相互通信。信息層涉及軍事數據的收集、管理和分析。應用層包括控制不同通信軍事系統的應用程序。最后,決策支持層負責決策支持系統,幫助戰爭管理者做出準確、實時的決策。下文將對每一層進行深入討論。
IoMT 系統可視為物聯網的一個特殊例子。因此,IoMT 環境與物聯網環境有些相似,只是在事物類型、通信方式等方面略有不同。根據這一理念,IoMT 環境可定義為一組使用互聯網相互通信的不同網絡。這些網絡應包括軍事任務中的主動和被動事物。IoMT 系統中應構建的主要網絡包括無線傳感器(WSN)、射頻識別(RFID)、移動特設(MANET)、衛星和高空平臺(HAP)網絡。由于 WSN 在許多軍事問題中的重要性,它被納入了 IoMT 系統。WSN 通過快速收集和提供危險數據來協助戰爭行動。然后,將這些數據發送給最合適的人員,以便實時做出正確決策。因此,除了協調自身的軍事活動外,WSN 的主要目標是監測和跟蹤敵方士兵和其他敵方事物的動向。傳感器可以遠距離分布,覆蓋大片區域。這些傳感器通過控制其行為的基站進行通信。由于 RFID 網絡在軍事領域的重要性,它在 IoMT 環境中得到了體現。軍隊中最重要的問題之一就是大部分物品都要貼上標簽。在戰場上使用 RFID 可以為士兵、貨物、小型武器、飛機、射彈、導彈等提供一個具有監控功能的跟蹤系統。例如,定期掃描每個人的醫療情況和效率是戰爭中一個非常重要的問題。城域網在 IoMT 系統中的表現也是一個重要問題,因為它可以用來促進士兵、武器、車輛等的通信。城域網在軍事上有許多特別的應用,如安裝在飛機和地面站之間的網絡或船舶之間的網絡。每種特設網絡的要求都取決于軍事任務的類型。此外,在軍事應用中使用的特設設備都配備了路由場景,可以利用最佳路由路徑自動轉發數據。物聯網依賴互聯網技術來促進通信,這是一個普遍的邏輯。遺憾的是,某些作戰地點可能沒有互聯網技術。因此,尋找替代通信技術非常重要。這就是在覆蓋目標中使用 HAP 網絡的原因。軍用物資分布面積大,因此必須以可靠的方式進行覆蓋,以保證通信效率。HAP 網絡可作為互聯網之外的第二種通信策略選擇。HAP 網絡的高度有限,因此容易成為敵方的攻擊目標,其故障概率可能很高。如果 HAP 網絡出現故障,通信系統將面臨很大問題,可能會影響軍事任務的執行。因此,應構建一個衛星網絡來覆蓋故障的 HAP 網絡,并覆蓋 HAP 網絡或互聯網可能無法覆蓋的軍事事物(見圖 2)。不同網絡之間的通信難題只需使用報頭恢復技術即可解決。在這種技術中,每個網絡之間都應添加一個翻譯器,用目的節點的報頭封裝每個數據包。新的報頭使數據包可以被理解;這可以通過系統路由器來實現(見圖 3)。
圖2: 通信網絡(該圖部分摘自[23])
圖3: 報頭轉換過程
這一層非常重要,因為它代表著 IoMT 系統架構的核心。射頻識別(RFID)、傳感器等軍用設備收集的信息應以安全、珍貴、實時的方式進行傳輸、存儲和分析。這一層的首要功能是在信息處理后對收集到的信息進行組織和存儲。IoMT 系統數據的處理被認為是一個具有挑戰性的問題,因為在短時間內可以收集到 TB 級的數據。因此,應在不影響質量的前提下盡量減少這些數據。此外,IoMT 的特殊要求(如實時決策)也不容忽視。在 IoMT 系統架構中,數據處理包括四個步驟: 優先化、過濾、壓縮和抽象。下面將對優先級排序過程進行說明。數據過濾、數據壓縮和數據抽象技術在第 4.1 小節中說明。
確定優先級的步驟包括處理不同優先級的數據。對于戰爭管理者(即軍隊將領)來說,收集到的每項數據都有一定的重要程度。因此,應將數據分為若干優先級,以便在 IoMT 系統饑餓的情況下優先處理和發送高優先級的數據。隊列系統就是用來實現這一優先級劃分步驟的。由于 IoMT 系統數據分類數量龐大,因此采用了六隊列系統。因此,IoMT 系統數據將被分為六個不同的類別。第一類代表最重要的 IoMT 系統數據;第二類代表不太重要的數據,依此類推。分類過程將動態完成,因此每個類別中的數據可能會根據戰爭任務的性質發生變化。為切實實現這一步,下一代路由器應具備對 IoMT 系統數據進行分類的能力。圖 4 說明了優先級排序過程。
圖4: 數據分類過程的簡單視圖
IoMT 系統架構中的應用層包括管理、監視等戰爭任務中使用的異構應用。該層應使用一個通用應用程序管理這些應用程序的功能,同時不影響其效率。這些應用程序的統一過程應基于通信數據(信息交換)來實現。在數據通信中,一個應用系統的輸出數據可能是另一個應用系統的輸入數據。因此,確定戰爭應用程序的輸入數據和輸出數據被認為是這一層最重要的目標之一。例如,飛機或發射器的火箭發射應用的輸入需要衛星監控應用的輸出數據,而衛星監控應用可能需要 WSN 應用的數據。信息層和應用層之間的通信非常重要,因為作為輸入和輸出的數據應首先在信息層處理。因此,在設計用于管理軍事應用程序的通用應用程序時,應首先確定每個應用程序的輸入和輸出數據。然后,應確定數據處理的時間(硬、實或軟)。例如,在戰斗停止期間,某個目標的坐標突然發生變化,三個應用程序應實時交互,以完成任務并擊中新位置上的目標。這些相互作用的應用程序構成了 WSN、戰爭管理以及執行任務的飛機機艙。還應確定應用特殊應用程序的優先順序。例如,在敵方多次攻擊特定目標的情況下,防御應用程序將優先啟動。
根據上述討論,一般管理應用程序應有一個專門的數據庫。該數據庫存儲有關單個軍事應用程序的動態變化數據。這些數據與以下主題有關: 輸入和輸出、單個應用程序之間的數據流方向、硬時間軍事情況、實時軍事情況、軟時間軍事情況以及每個應用程序的優先級。這些優先級應根據戰爭形勢來確定。根據綜合管理 IoMT 應用程序的性質,IoMT 系統數據庫的設計可以是分布式的,也可以是集中式的。在分布式數據庫中,應注意數據庫服務器之間交互的復雜性,特別是在需要硬時間或實時交互的事件中(見圖 6)。 、
戰爭中最重要的問題之一是決策過程。在技術戰爭中,決策應具備準確性、實時性、清晰性、安全性和快速分發等諸多規格。所有這些指標都應與信息層收集的數據相關。雖然信息與軍事決策之間關系密切,但所提出的 IoMT 系統架構在信息層和決策支持層之間還有一個中間層,即應用層。短時間內收集到的大量 TB 信息需要進行分析、過濾、優先排序和壓縮。這些過程已經在信息層中完成。但是,信息層沒有能力確定信息在應用層之間的移動方向(即信息的正常順序)。這種信息順序意味著,每個數據段都應指向一個合適的應用程序,以便實現互補和平衡。這些信息將用于決策過程。例如,假設戰爭管理者有一個目標,要求以特定的安排和特定的順序處理信息,直到軍事偵察之旅取得一定的結果。該目標的完成將通過步兵和防空來實現。因此,應用層和決策支持層之間的聯系將對高精度規格的決策產生良好的影響,這將在關鍵的戰爭事件中發揮作用。
簡單地說,本文概述的決策支持流程包括五個步驟: 事件權重、解決方案識別、選擇一種解決方案、行動和輸出評估(見圖 7)。戰爭管理者可根據自身經驗水平提取事件權重。一旦對事件有了充分了解,就該確定解決方案了。在準備決策時,有許多不同的備選方案。因此,確定可用行動的范圍非常重要。接下來,應選擇備選方案,并確定每個備選方案的風險。然后,就該采取行動了。應確定實施計劃,并提供實施所選解決方案所需的資源。應預先確定執行時間,然后開始執行。最后,應對選定解決方案的執行結果進行評估。請注意,有許多決策支持系統在經過實際測試(如 [24,25])后,可在 IoMT 中實施。
決策支持層可能面臨三大挑戰。第一個挑戰是數據過多或不足。這意味著決策支持層的輸出會延遲或不準確,這可能會造成災難,因為在大多數戰爭時期都需要實時決策。第二個挑戰是問題識別錯誤。在大多數戰爭任務中,圍繞一項決策會有許多問題。然而,有時卻無法確認這些問題的真實性。第三個挑戰是對結果過于自信。即使決策過程得到了準確執行,實際產出也可能與預期產出不完全一致。應用層將通過確定決策構建所需的準確信息、對問題的準確定義以及輸出調整來應對這些挑戰。因此,決策支持層將使用應用層的輸出。因此,在擬議的 IoMT 架構中,這些層之間的分離是一個需要考慮的重要問題。
首先,應構建一個軍事模擬環境,以測試所提議的 IoMT 架構的性能。網絡模擬器 3(NS3)是最廣泛使用的網絡模擬軟件包之一,將用于實現這一目標。軍事模擬環境由五種不同類型的網絡組成,其中包括分布在大片區域的大量節點。這五種網絡分別是 WSN、RFID、MANET、HAP 和衛星網絡。這些網絡是根據戰場需求確定的。文獻[26]中的仿真用于評估所提出的 IoMT 架構。在 WSN 仿真中,成千上萬的傳感器分布并部署在戰爭環境中。一個或多個基站將這些傳感器相互連接起來,并從中收集信息。在突發事件中,傳感器能夠向基站發送陷阱信息。然后,如果情況緊急,需要迅速做出決定,基站將直接把信息發送給執行者,如戰士、管理人員等。不過,在正常情況下,基站會將收集到的信息(詳細信息或摘要)重新發送給負責決策的管理人員。基站應該是智能的,并通過編程來實現這一目標。為了在 IoMT 中準確呈現 WSN,傳感器應具有不同的傳輸范圍。對于 RFID,美國軍方在第二次海灣戰爭中使用了最佳方案[27]。每個士兵身上都應貼有一個 RFID 標簽,以便在戰場上進行追蹤。此外,商業貨運和航空托盤等戰爭工具也應貼上 RFID 標簽,以便了解坦克和計劃等關鍵工具的最新狀態。此外,為了挽救士兵的生命,建議的模擬系統考慮了專門用于戰爭的移動醫院,并應配備 RFID 技術。此外,還利用 RFID 技術觀察軍隊的小型庫存物品,以實現更嚴格的庫存控制。對于城域網仿真,它包含戰場對象(如車輛、士兵和信息提供者)之間的臨時通信。在某些軍事情況下,很難通過數據采集中心傳遞或發送信息。因此,城域網仿真的一個考慮因素就是在數據傳輸中使用這種網絡。文獻[28]中所述的架構用于 HAP 和衛星網絡的通信。互聯網仿真使用了 [29] 中介紹的路由算法和 [30] 中介紹的物聯網混合組播架構。多媒體傳輸使用[31],但傳統軍事系統的模擬則使用[32,33]中所述的準則。
在信息層模擬中,將隨機、動態地創建 IoMT 數據。然后,這些數據將被分類并進入隊列,每個隊列將作為一個數據類別。動態數據的創建取決于存儲在特殊數據庫中的戰爭任務。本模擬場景中使用了 [34] 中所述的壓縮技術和數據過濾技術來減少數據,這是信息層的主要目標之一。應用層模擬也取決于戰爭任務,其中包括許多模擬網絡場景。每個網絡應用程序的輸入和輸出數據都在模擬文件中預先確定。網絡應用程序與綜合管理應用程序之間的通信是通過信息傳輸實現的。文獻[35]中的仿真用于決策支持層。戰爭任務的部分建模和仿真來自文獻[36],仿真中使用的武器的一般規格來自文獻[37]。圖 8 顯示了擬議的 IoMT 系統模擬環境的全貌。
我們的研究展示了如何將技術和數據科學實踐與用戶知識相結合,既提高任務性能,又讓用戶對所使用的系統充滿信心。在本手稿中,我們重點關注圖像分類,以及當分析師需要及時、準確地對大量圖像進行分類時出現的問題。利用著名的無監督分類算法(k-means),并將其與用戶對某些圖像的手動分類相結合,我們創建了一種半監督圖像分類方法。這種半監督分類方法比嚴格的無監督方法具有更高的準確性,而且比用戶手動標記每張圖像所花費的時間要少得多,這表明機器和人工優勢的結合比任何替代方法都能更快地產生更好的結果。
美國陸軍對人工智能和輔助自動化(AI/AA)技術在戰場上的應用有著濃厚的興趣,以幫助整理、分類和澄清多種態勢和傳感器數據流,為指揮官提供清晰、準確的作戰畫面,從而做出快速、適當的決策。本文提供了一種將作戰模擬輸出數據整合到分析評估框架中的方法。該框架有助于評估AI/AA決策輔助系統在指揮和控制任務中的有效性。我們的方法通過AI/AA增強營的實際操作演示,該營被分配清理戰場的一個區域。結果表明,具有AI/AA優勢的模擬場景導致了更高的預期任務有效性得分。
美國陸軍目前正在開發將人工智能和輔助自動化(AI/AA)技術融入作戰空間的決策輔助系統。據美國陸軍機動中心稱,在決策輔助系統等人工智能/輔助自動化系統的協助下,士兵的作戰效率可提高10倍(Aliotta,2022年)。決策輔助工具旨在協助指揮官在作戰場景中減少決策時間,同時提高決策質量和任務效率(Shaneman, George, & Busart, 2022);這些工具有助于整理作戰數據流,協助指揮官進行戰場感知,幫助他們做出明智的實時決策。與使用AI/AA決策輔助工具相關的一個問題是,陸軍目前缺乏一個有效的框架來評估工具在作戰環境中的使用情況。因此,在本文中,我們將介紹我們對分析框架的研究、設計和開發,并結合建模和仿真來評估AI/AA決策輔助工具在指揮和控制任務中的有效性。
作為分析框架開發的一部分,我們進行了廣泛的文獻綜述,并與30多個利益相關者進行了利益相關者分析,這些利益相關者在人工智能/AA、決策輔助、指揮與控制、建模與仿真等領域具有豐富的知識。根據他們對上述主題的熟悉程度,我們將這些利益相關者分為若干焦點小組。我們與每個小組舉行了虛擬焦點小組會議,收集反饋意見,并將其用于推動我們的發現、結論和建議(FCR)。同時,我們還開發了一個逼真的戰場小故事和場景。利用該場景和我們的FCR輸出,我們與美國陸軍DEVCOM分析中心(DAC)合作開發了一個功能層次結構,通過建模和仿真來測量目標。我們將假設的戰斗場景轉移到 "一個半自動化部隊"(OneSAF)中,該模擬軟件利用計算機生成部隊,提供部分或完全自動化的實體和行為模型,旨在支持陸軍戰備(PEOSTRI, 2023)。使用分析層次過程,我們征詢了評估決策者的偏好,計算了功能層次中目標的權重,并創建了一個電子表格模型,該模型結合了OneSAF的輸出數據,并提供了量化的價值評分。通過A-B測試,我們收集了基線模擬和模擬AI/AA效果的得分。我們比較了A情景和B情景的結果,并評估了AI/AA對模擬中友軍任務有效性的影響。
分析評估框架可針對多標準決策問題對定量和/或定性數據進行評估。定性框架,如卡諾模型(Violante & Vezzetti, 2017)、法式問答(Hordyk & Carruthers, 2018)和定性空間管理(Pascoe, Bustamante, Wilcox, & Gibbs, 2009),主要用于利益相關者的投入和頭腦風暴(Srivastava & Thomson, 2009),不需要密集的計算或勞動。定量評估框架以數據為導向,提供一種數學方法,通過衡量性能和有效性來確定系統的功能。分析層次過程(AHP)適用于我們的問題,因為它使用層次設計和成對的決策者偏好比較,通過比較權重提供定性和定量分析(Saaty,1987)。雖然AHP已被廣泛應用,但據我們所知,該方法尚未被用于評估人工智能/自動分析決策輔助工具,也未與A-B測試相結合進行評估。
指揮與控制(C2)系統用于提供更詳細、更準確、更通用的戰場作戰畫面,以實現有效決策;這些C2系統主要用于提高態勢感知(SA)。研究表明,使用數字化信息顯示方法的指揮官比使用無線電通信收集信息的指揮官顯示出更高水平的態勢感知(McGuinness和Ebbage,2002年)。AI/AA與C2的集成所帶來的價值可以比作戰斗視頻游戲中的 "作弊器":它提供了關于敵方如何行動的信息優勢,并幫助友軍避免代價高昂的后果(McKeon,2022)。對C2系統和SA的研究有助于推動本文描述的小故事和場景的發展。
建模與仿真(M&S)是對系統或過程的簡化表示,使我們能夠通過仿真進行預測或了解其行為。M&S生成的數據允許人們根據特定場景做出決策和預測(TechTarget,2017)。這使得陸軍能夠從已經經歷過的作戰場景和陸軍預計未來將面臨的作戰場景中生成并得出結論。模擬有助于推動陸軍的能力評估。測試和評估通常與評估同時進行,包括分析模型以學習、改進和得出結論,同時評估風險。軍隊中使用了許多不同的M&S工具。例如,"步兵戰士模擬"(IWARS)是一種戰斗模擬,主要針對個人和小單位部隊,用于評估作戰效能(USMA, 2023)。高級仿真、集成和建模框架(AFSIM)是一種多領域M&S仿真框架,側重于分析、實驗和戰爭游戲(West & Birkmire, 2020)。在我們的項目范圍內,"一支半自動化部隊"(OneSAF)被用于模擬我們所創建的戰斗情況,以模擬在戰場上擁有人工智能/自動機優勢的效果。
如前所述,人工智能/AA輔助決策的目標是提高決策的質量和速度。人工智能可用于不同的場景,并以多種方式為戰場指揮官和戰士提供支持。例如,人工智能/AA輔助決策系統可以幫助空中和地面作戰的戰士更好地 "分析環境 "和 "探測和分析目標"(Adams, 2001)。人工智能/自動機輔助決策系統可以幫助減少人為錯誤,在戰場上創造信息和決策優勢(Cobb, Jalaian, Bastian, & Russell, 2021)。這些由AI/AA輔助決策系統獲得的信息分流優勢指導了我們的作戰小故事和M&S場景開發。
在我們的作戰小故事中,第1營被分配到一個小村莊,直到指定的前進路線。營情報官羅伊上尉(BN S2)使用AI/AA輔助決策系統(即助手)準備情報態勢模板(SITTEMP),該系統可快速收集和整合積累的紅色情報和公開來源情報衍生的態勢數據。然后,它跟隨瓊斯少校和史密斯上尉,即營行動指揮員(BN S3)和S3助理(AS3),使用AI/AA輔助決策系統制定機動行動方案(COA),以評估 "假設 "情景、 她根據選定的機動方案開發指定的利益區域(NAI),然后在其內部資產和上層資源之間協調足夠的情報、監視和偵察(ISR)覆蓋范圍。假設時間為2030年,雙方均不使用核武器或采取對對方構成生存威脅的行動,天氣條件對藍軍和紅軍的影響相同,時間為秋季,天氣溫暖潮濕。
作為解決方案框架背景研究的一部分,我們與32位民用和軍用利益相關者進行了接觸,他們都是AI/AA及其對決策和仿真建模的貢獻方面的專家。我們進行的利益相關者分析過程如下: 1)定義和識別利益相關者;2)定義焦點小組;3)將利益相關者分配到焦點小組;4)為每個焦點小組制定具體問題;5)聯系利益相關者并安排焦點小組會議;6)進行焦點小組會議;7)綜合并分析利益相關者的反饋;以及8)制定FCR矩陣。我們利用FCR矩陣的結果來繪制功能層次圖,其中包括從模擬場景中生成/收集的目標、衡量標準和度量。然后根據這些目標、措施和指標對任務集的重要性進行排序。這為使用層次分析法(如下所述)奠定了基礎。
AHP是托馬斯-薩蒂(Thomas Saaty)于1987年提出的一種方法,它利用專家判斷得出的一系列成對比較,將功能層次結構中的每個功能和子功能放入一個優先級表中。然后通過有形數據或專家定性意見對各種屬性進行排序。如表1所示,這些排序被置于1-9的范圍內。在賦予每個屬性1-9的權重后,再賦予標準和次級標準權重,以顯示其相對重要性(Saaty,1987)。
本項目的目標是提高具有智能體間通信基礎設施的多智能體分布式任務協調的效率。在這個項目的第一階段,我們探索了基于共識的捆綁算法(CBBA)在預算約束下的分布式任務分配的改進。CBBA技術的局限性在于,環境必須被所有的智能體預先知道,任務必須被明確定義,并有已知的成本和獎勵。這種技術顯然不適合在未知環境中的合作任務,在這種環境中,智能體必須一起探索和即興行動。在這個項目的第二階段,我們研究了在未知環境中執行任務的合作技術,其中智能體只有部分觀察。該研究使用多智能體捕食者和獵物游戲作為平臺。目標是讓智能體聯合定位并捕獲獵物。智能體對環境和獵物的逃逸算法沒有事先了解。他們相互交流,以獲得超出他們自己本地觀察范圍的環境信息。基于他們對環境的局部理解,智能體選擇自己的行動,包括在哪里移動以及是否與其他智能體溝通,以使團隊獎勵最大化。強化學習被應用于優化智能體的政策,以便用最少的步驟完成游戲。
第二階段研究的主要貢獻是信仰圖譜輔助的多智能體系統(BAMS)。信念圖代表了智能體在融合了傳入的信息后所保持的環境的隱藏狀態。通過將信仰圖譜與強化學習框架相結合,并向信仰圖譜提供反饋,我們加速了訓練并提高了系統可以獲得的獎勵。在不同復雜程度的環境中,使用合作的捕食者和獵物游戲對BAMS的性能進行了評估。與現有的具有信息傳遞能力的多智能體模型相比,BAMS具有以下優點。
1)訓練收斂速度快68%,使用BAMS模型訓練的智能體完成游戲的步驟少27.5%。
2)它具有強大的性能。在應用模式中,智能體的數量不必與訓練環境相同。
3)智能體之間的信息是加密的。BAMS中的信息是智能體對環境信念的學習表示的向量。它們不僅包含關于智能體和環境的當前狀態的信息,而且還包含未來的狀態。每個數字都與智能體或環境的任何物理屬性沒有對應關系。除非有經過訓練的BAMS模型,否則不可能解碼這些信息。
4)智能體在訓練中達成默契。從實驗結果來看,使用BAMS訓練的智能體似乎不需要明確的交流就能理解對方的意圖。
近幾十年來,國防系統的規劃已經演變成基于能力的規劃(CBP)過程。本文試圖回答兩個問題:首先,如何表達一個復雜的、真實世界的能力需求;其次,如何評估一個具有交互元素的系統是否滿足這一需求。我們建議用一套一致的模型以可追蹤的方式來表達能力需求和滿足該需求的解決方案。這些模型將目前的能力模型,具體到規劃級別和能力觀點,與系統思維方法相結合。我們的概念模型定義了環境中的防御系統,數據模型定義并組織了CBP術語,類圖定義了CBP規劃元素。通過給出一個能力參數化的例子來說明這個方法,并將其與DODAF能力觀點和通用CBP過程進行比較。我們的數據模型描述了能力在行動中是如何退化的,并將該方法擴展到能力動態。定量能力定義的目的是支持解決現實世界中相互作用的子系統,這些子系統共同實現所需的能力。
在本節中,能力被定義為執行任務的效果或功能并作為系統時,我們討論CBP;在1.2小節中進一步討論Anteroinen的分類中的第三和第五類。為了專注于軍事系統或軍事單位的結構定義和未來的數學建模,只考慮系統的物理組成部分,即人員和物資,以及他們與能力的關系。環境的影響--天氣條件、地形、周圍的基礎設施和其他軍事單位--被省略,以關注兩種力量之間的相互作用;盡管在實踐中,環境和其他更廣泛的系統問題顯然是相關的。通常情況下,CBP過程定義了環境的相關方面和軍事行動的類型,為能力需求定義、能力評估和解決方案選擇制定了可能的規劃情況集合。
一個軍事單位或一個組織由其人員和物資組成。經過組織和訓練的人員配備了適當的物資,代表、擁有或產生能力。當兩個軍事單位相互作戰時,他們會啟動自己的能力,以造成敵人的物資和人員的退化。為了定義能力需求并計劃如何作為軍事單位或系統來實施,需要解決的問題是:在與敵人的互動過程中,能力將如何演變,而敵人的能力卻鮮為人知?圖1說明了在敵人能力的作用下,自己的軍事作戰和維持能力的動態互動。我們的能力削弱了敵方的人員和物資,對敵方的能力產生了影響;而敵方的能力削弱了我們的人員和物資,對我們的能力產生了影響。外部資源,也就是供應和維持能力,維持著被削弱的人員和物資。如因果循環圖所示,敵方的能力可以與我方的能力對稱地表示。第3節的進一步建模集中在我們自己的能力上,由圖1中的虛線表示,以便更純粹地表示。
對我們自己的能力的定義說明,由人員和物資提供,表明了復雜的結構和與能力有關的功能和元素之間的相互作用。此外,真正的軍事單位,通常由較小的編隊組成,有幾種能力,由大量不同的物資和人員組成,并與環境互動。
架構被定義為 "一個系統在其環境中的基本概念或屬性,體現在其元素、關系以及設計和進化的原則中"。因此,架構描述是一種表達架構的工作產品。架構框架是在一些應用領域或社區應用架構描述的基礎。架構框架為網絡系統的復雜性管理提供了結構化的方法,使利益相關者之間能夠進行溝通,并支持未來和現有系統的系統分析和設計。企業架構的Zachman框架是這類通用框架的一個例子。DoDAF、MODAF和NAF是用于國防系統分析和定義的架構框架,特別是用于指揮、控制、通信、計算機、情報、監視和偵察系統(C4ISR)。這些架構框架由觀點組成,定義了代表特定系統關注點的一組架構視圖的規則。架構視圖由一個或多個模型組成。架構框架基礎的元模型定義了不同視點中元素之間的關系。DoDAF元模型DM2有一個概念數據模型圖(DIV-1),用來向管理者和執行者傳達架構描述的高層數據構造的概念。MODAF元模型詳細定義了每個架構視圖的數據模型。
利益相關者需要適當的支持,以促進他們彼此之間以及與規劃專家團體的溝通,從而從CBP方法中獲益。軍事專家的作用不是參與復雜的工具和方法,而是為規劃過程提供重要的領域專業知識。架構框架是一個很好的工具,可以定義當前的防御系統,確定能力需求,并描述系統解決方案。不幸的是,架構框架和相關元模型的精確但復雜的機制與復雜的符號并不一定能以明顯的方式解釋能力觀點和要素之間的關系。因此,架構觀點和典型的CBP流程并沒有明顯的聯系。因此,參與能力規劃的軍事專家和決策者很少能夠加深理解,或者在沒有專門掌握這些工具和方法的人員的情況下,通過應用架構框架確定解決方案。需要對能力進行更簡單的定義,與流程兼容。
圖2提出了一個高層次的數據模型,它代表了能力定義問題的抽象。數據模型描述了能力模型類型及其關系,作為能力和防御系統建模的框架。符號的選擇是為了保持信息量,但對更多的人來說是可讀的,因此它不遵循任何特定的方法,但與SODA的認知圖譜有一些共同點。
能力的現實世界實例在圖的左邊,而概念模型類型在右邊。該模型的第一個版本已經被Koivisto和Tuukkanen應用于一個基于研發的自下而上的過程和概念性的未來系統,即認知無線電。原始模型描述,系統模型定義了物資、戰斗力和功能能力。實際上,這是一種雙向的關系:在所需能力和所需資源的驅動下建立系統模型,然后用系統模型來預測特定環境和實例中的結果。
防御系統由系統、系統要素及其相互作用組成,其突發屬性由系統、系統要素和它們的相互作用界定。圖3中的模型代表了系統層次結構中的防御系統層次。防御系統可以被看作是SoS,但我們應用一般的系統術語來保持模型的可擴展性,并為防御系統層次結構的較低層次提供合適的術語。在國防系統層次結構的任何一級,系統代表一個由系統元素組成的軍事單位:人員和物資。
圖3 國防系統在其背景下的概念系統模型。防御系統,即利益系統(SOI),被環境和其他行為者的系統所包圍。這些系統包括相互作用的系統要素人員(P)和物資(M)。子系統和系統元素之間的聯系是示范性的。
除了系統元素和它們的組織之外,還要定義功能和相應的輸出,以獲得更全面的系統定義。我們將能力定義為執行任務的效果或功能,是一種功能能力。在CBP過程中,功能能力定義了一些當前或計劃中的軍事單位或由物資和人員組成的系統的能力潛力。最終,能力發展過程必須以現實世界的軍事單位來定義系統的實施。力量要素的概念定義了最終的系統結構,也就是要生產的現實世界的軍事單位的組織。在我們的數據模型中,功能能力被安排在SOI內部,以代表系統的涌現屬性。當這種潛力或涌現被計劃為引起某種效果時,系統,具體來說是其功能能力,在計劃過程中被分配到一個任務中。此外,當軍事單位執行任務時,效果就會產生。高層數據模型的作用,如圖4,是將關鍵的術語及其關系可視化。
圖 4 基于能力的規劃中術語及其關系的高級數據模型表示
圖5中的類圖將圖3所示的概念系統模型中確定的國防系統規劃要素與圖4中的能力模型類型結合起來。由于我們關注的是國防系統,國家權力和軍事力量的要素被認為是其環境的一部分,不在圖中。然而,我們建議,國家權力也可以通過效應來表示。
圖 5 基于能力的規劃元素的統一建模語言 (UML) 類圖表示
這項工作考慮了一個由多個子系統組成的通用系統,其中可以在系統的不同級別收集可能具有不同概率分布的數據。使用分布的一般公式和最大似然估計的原則,我們開發了一種估計參數的方法,包括與相關性能指標相關的估計的不確定性界限。所提出的方法在兩個應用中得到了證明:(1) 通過集成來自 UAV(無人駕駛飛行器)和多普勒雷達的數據來檢測目標位置,以及 (2) 在空中加油問題中檢測“標記”的位置。
這篇論文提出了在自動化制造背景下的多智能體機器人裝配規劃的算法。我們的工作涉及到 "工廠自主權堆棧 "的許多部分。本論文的第一個貢獻是引入了一個離散工廠問題的表述,其中包括時間延長的多機器人任務分配、任務間的優先權約束和避免碰撞的約束。我們提出了一種解決此類問題的有效方法。我們算法效率的兩個關鍵是它將任務分配和路線規劃解耦,以及它能夠利用一些機器人在自己的時間表中被推遲而不對工廠的整體性能造成任何負面影響的情況。
本論文的下一個主要貢獻是針對我們的離散工廠問題的在線版本的重新規劃算法系列。在在線設置中,工廠指揮中心定期收到新的制造工作量,這些工作量必須被迅速納入整體計劃中。我們通過大量的實驗表明,我們的重新規劃方法適用于廣泛的問題。此外,我們提出的方法在應用時可以使工廠在等待收到更新的計劃時永遠不必凍結。
我們最后的貢獻是一個概念驗證系統,用于大規模的多機器人裝配計劃,包括任意形狀和尺寸的裝配體和原材料。我們的系統從原材料和一套關于這些材料如何組合的基本指令開始。然后,規劃器合成一個施工計劃,其中定義了每個有效載荷將如何攜帶(由一個或多個機器人攜帶),每個組件和子組件將在哪里建造,以及哪些特定的機器人將被分配到每個單獨和協作的運輸任務。最后,一個反應式防撞控制策略使機器人能夠以分布式方式執行建造計劃。我們在模擬中證明,我們的系統可以在幾分鐘內合成具有數百個部件的裝配體的施工計劃。雖然我們沒有解決圍繞多機器人制造的所有相關的 "現實世界 "的考慮,但我們的工作是向使用移動機器人的大規模自動化施工邁出的一小步。