本書分為三個部分。第一部分介紹了分布式強化學習的構建模塊。我們首先介紹了我們的基本研究對象,收益分布和分布Bellman方程(第二章)。第三章介紹了分類時間差分學習,一種簡單的學習收益分布的算法。在第三章結束時,讀者應該理解分布式強化學習的基本原則,并且應該能夠在簡單的實際設置中使用它。
第二部分是對分布式強化學習理論的發展。第4章介紹了一種用于測量返回分布之間距離的語言,以及與這些分布交互的操作符。第5章介紹了實現分布式強化學習所需的概率表示的概念;在此基礎上,研究了用這種表示來計算和近似收益分布的問題,并引入了分布動態規劃的框架。第6章研究了如何從樣本中以增量的方式學習返回分布,給出了類別時間差分學習的正式結構,以及其他算法,如分位數時間差異學習。第7章將這些思想擴展到最優決策的設置(也稱為控制設置)。最后,第8章介紹了基于統計泛函概念的分布強化學習的不同視角。在第二部分結束時,讀者應該理解在設計分布式強化學習算法時出現的挑戰,以及解決這些挑戰的可用工具。
第三部分和最后一部分為實際場景ios開發了分布式強化學習。第九章回顧了線性值函數逼近的原理,并將這些思想推廣到分布環境中。第10章討論了如何將分布方法與深度神經網絡相結合來獲得深度強化學習的算法,并提出了一個模型來研究這種結合所產生的現象。第11章討論了分布式強化學習在兩個進一步研究領域(多主體學習和神經科學)的新興應用,并得出結論。
本文檔包含了物理模擬環境中與深度學習相關的所有內容的實用和全面的介紹。盡可能多地,所有主題都以Jupyter形式提供了實際操作的代碼示例,以便快速入門。除了標準的監督學習數據,我們將著眼于物理損失約束,更緊密耦合的學習算法與可微分模擬,以及強化學習和不確定性建模。我們生活在一個激動人心的時代: 這些方法有巨大的潛力從根本上改變計算機模擬所能達到的效果。
在本文中,我們將介紹將物理模型引入深度學習的不同方法,即基于物理的深度學習(PBDL)方法。為了增加集成的緊密性,將引入這些算法變體,并將討論不同方法的優缺點。重要的是要知道每種不同的技術在哪些場景中特別有用。
強化學習是一種學習范式,它關注的是如何控制一個系統,從而最大化一個表示長期目標的數值性能度量。強化學習與監督學習的區別在于,對于學習器的預測,只會給予部分反饋。此外,這些預測可能通過影響被控制系統的未來狀態而產生長期影響。因此,時間扮演著特殊的角色。強化學習的目標是發展有效的學習算法,以及了解算法的優點和局限性。強化學習之所以引起人們極大的興趣,是因為它可以用于解決大量的實際應用,從人工智能到運籌學或控制工程的問題。在這本書中,我們專注于那些建立在強大的動態規劃理論基礎上的強化學習算法。我們給出了一個相當全面的學習問題的目錄,描述了核心思想,關注大量的最先進的算法,然后討論了它們的理論性質和局限性。
本書是對機器學習一個領域的全面綜述,處理在分類問題中的未標記數據的使用: 最先進的算法,該領域的分類,應用,基準實驗,和未來的研究方向。
在機器學習領域,半監督學習(SSL)處于監督學習(其中所有訓練示例都被標記)和非監督學習(其中不給出標記數據)之間。近年來,人們對SSL的興趣有所增加,特別是在圖像、文本和生物信息學等未標記數據豐富的應用領域。這是對SSL的第一次全面概述,介紹了最先進的算法、該領域的分類、選定的應用程序、基準測試,以及對未來研究的展望。半監督學習首先提出了該領域的關鍵假設和思想:平滑性、聚類或低密度分離、流形結構和轉導。本書的核心是介紹根據算法策略組織的SSL方法。經過對生成模型的檢查,本書描述了實現低密度分離假設的算法,基于圖的方法,和執行兩步學習的算法。然后,本書討論了SSL應用程序,并通過分析大量基準測試的結果為SSL實踐者提供了指導方針。最后,本書還介紹了SSL研究的有趣方向。本書以半監督學習和轉導之間的關系的討論結束。
近年來,隨機矩陣理論(RMT)已經成為學習理論的前沿,作為一種工具來理解它的一些最重要的挑戰。從深度學習模型的泛化到優化算法的精確分析,RMT提供了易于分析的模型。
第一部分:介紹和經典隨機矩陣理論集合
本節介紹兩個經典的隨機矩陣理論集合,高斯正交集合和Wishart矩陣。通過數值實驗,我們將介紹隨機矩陣理論中一些最重要的分布,如半圓和馬爾欽科-帕斯圖,以及一些關鍵的概念,如通用性。 圖片
第2部分:隨機矩陣理論概論:斯蒂爾吉斯和R變換 本節介紹隨機矩陣理論中的一些核心證明技術: Stieltjes和R變換。
第3部分:數值算法分析 本節主要介紹隨機矩陣理論在數值算法分析中的應用。
第4部分:為什么深度學習有效? 本節討論深度神經網絡泛化的隨機矩陣理論模型。
本書將側重于統計學習和序列預測(在線學習)的理論方面。在本筆記的第一部分,我們將使用經典的工具:集中不等式、隨機平均、覆蓋數字和組合參數來分析學習的i.i.d.數據。然后,我們將重點放在序列預測上,并開發許多用于在此場景中學習的相同工具。后一部分是基于最近的研究,并提出了進一步研究的方向。我們在整個課程中強調的極大極小方法,提供了一種比較學習問題的系統方法。除了理論分析,我們將討論學習算法,特別是學習和優化之間的重要聯系。我們的框架將處理開發接近最優和計算效率的算法。我們將用矩陣補全、鏈路預測等問題來說明這一點。如果時間允許,我們將深入了解信息理論和博弈論,并展示我們的新工具如何無縫地產生許多有趣的結果。
有很多關于傅里葉變換的書; 然而,很少有面向多學科讀者的。為工程師寫一本關于代數概念的書是一個真正的挑戰,即使不是太難的事,也要比寫一本關于理論應用的代數書更有挑戰性。這就是本書試圖面對的挑戰。因此,每個讀者都能夠創建一個“按菜單”的程序,并從語句或計算機程序中提取特定元素,以建立他們在該領域的知識,或將其運用于更具體的問題。
本文敘述是非常詳細的。讀者可能偶爾需要一些關于有限組的高級概念,以及對組行為的熟悉程度。我強調了那些重要的定義和符號。例如,從多個角度(交換群、信號處理、非交換群)研究卷積的概念,每次都要放在它的背景知識中。因此,不同的段落,雖然遵循一個邏輯遞進,有一個真正的統一,但可以根據自己需要選取閱讀。
第一章用群論的語言來解釋主要概念,并解釋后面將用到的符號。第二章將所得結果應用于各種問題,并首次接觸快速算法(例如Walsh 變換)。第三章對離散傅里葉變換進行了闡述。第四章介紹了離散傅里葉變換的各種應用,并構成了對前一章的必要補充,以充分理解所涉及的機制以及在實際情況中使用。第五章圍繞傅里葉變換提出了更多新穎的思想和算法,產生了大量的應用。第六章需要一些更高級的知識,特別是對有限場理論的一些熟悉。它研究了有限域中的值變換,并給出了在校正碼中的應用。最后兩章(最困難的一章),具有更多的代數性質,并建議推廣已經在有限非交換群的情況下進行的構造。第七章揭示了線性表示的理論。第八章和最后一章將這一理論應用于理論(群的簡潔性研究)和實際(光譜分析)領域。
這本書的第五版繼續講述如何運用概率論來深入了解真實日常的統計問題。這本書是為工程、計算機科學、數學、統計和自然科學的學生編寫的統計學、概率論和統計的入門課程。因此,它假定有基本的微積分知識。
第一章介紹了統計學的簡要介紹,介紹了它的兩個分支:描述統計學和推理統計學,以及這門學科的簡短歷史和一些人,他們的早期工作為今天的工作提供了基礎。
第二章將討論描述性統計的主題。本章展示了描述數據集的圖表和表格,以及用于總結數據集某些關鍵屬性的數量。
為了能夠從數據中得出結論,有必要了解數據的來源。例如,人們常常假定這些數據是來自某個總體的“隨機樣本”。為了確切地理解這意味著什么,以及它的結果對于將樣本數據的性質與整個總體的性質聯系起來有什么意義,有必要對概率有一些了解,這就是第三章的主題。本章介紹了概率實驗的思想,解釋了事件概率的概念,并給出了概率的公理。
我們在第四章繼續研究概率,它處理隨機變量和期望的重要概念,在第五章,考慮一些在應用中經常發生的特殊類型的隨機變量。給出了二項式、泊松、超幾何、正規、均勻、伽瑪、卡方、t和F等隨機變量。
這本受歡迎的教科書的第一版,當代人工智能,提供了一個學生友好的人工智能介紹。這一版完全修訂和擴大更新,人工智能: 介紹機器學習,第二版,保留相同的可訪問性和解決問題的方法,同時提供新的材料和方法。
該書分為五個部分,重點介紹了人工智能中最有用的技術。書的第一部分涵蓋了基于邏輯的方法,而第二部分著重于基于概率的方法。第三部分是涌現智能的特點,探討了基于群體智能的進化計算和方法。接下來的最新部分將提供神經網絡和深度學習的詳細概述。書的最后一部分著重于自然語言的理解。
適合本科生和剛畢業的研究生,本課程測試教材為學生和其他讀者提供關鍵的人工智能方法和算法,以解決具有挑戰性的問題,涉及系統的智能行為在專門領域,如醫療和軟件診斷,金融決策,語音和文本識別,遺傳分析等。