亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

這是一門關于機器學習的入門課程。機器學習是一組技術,它允許機器從數據和經驗中學習,而不是要求人類手工指定所需的行為。在過去的20年里,機器學習技術在人工智能的學術領域和科技行業中都變得越來越重要。本課程提供了一些最常用的ML算法的廣泛介紹。

課程的前半部分側重于監督學習。我們從最近鄰、決策樹和集合開始。然后介紹了參數化模型,包括線性回歸、logistic回歸和softmax回歸以及神經網絡。然后我們轉向無監督學習,特別關注概率模型,以及主成分分析和k均值。最后,我們介紹了強化學習的基礎知識。

課程內容:

  • 最近鄰導論
  • 決策樹集成
  • 線性回歸線性分類
  • Softmax回歸、SVM、Boosting
  • PCA、Kmeans、最大似然
  • 概率圖模型
  • 期望最大化
  • 神經網絡
  • 卷積神經網絡
  • 強化學習
  • 可微分隱私
  • 算法公平性

//www.cs.toronto.edu/~huang/courses/csc2515_2020f/

推薦閱讀材料: Hastie, Tibshirani, and Friedman: “The Elements of Statistical Learning” Christopher Bishop: “Pattern Recognition and Machine Learning”, 2006. Kevin Murphy: “Machine Learning: a Probabilistic Perspective”, 2012. David Mackay: “Information Theory, Inference, and Learning Algorithms”, 2003. Shai Shalev-Shwartz & Shai Ben-David: “Understanding Machine Learning: From Theory to Algorithms”, 2014.

學習路線圖:

付費5元查看完整內容

相關內容

“機器學習是近20多年興起的一門多領域交叉學科,涉及概率論、統計學、逼近論、凸分析、算法復雜度理論等多門學科。機器學習理論主要是設計和分析一些讓 可以自動“ ”的算法。機器學習算法是一類從數據中自動分析獲得規律,并利用規律對未知數據進行預測的算法。因為學習算法中涉及了大量的統計學理論,機器學習與統計推斷學聯系尤為密切,也被稱為統計學習理論。算法設計方面,機器學習理論關注可以實現的,行之有效的學習算法。很多 問題屬于 ,所以部分的機器學習研究是開發容易處理的近似算法。” ——中文維基百科

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

本課程由四個部分組成。

  • 數學基礎。矩陣、向量、Lp范數、范數的幾何、對稱性、正確定性、特征分解。無約束優化,graident下降,凸函數,拉格朗日乘數,線性最小二乘。概率空間,隨機變量,聯合分布,多維高斯函數。

  • 線性分類器。線性判別分析、分離超平面、多類分類、貝葉斯決策規則、貝葉斯決策規則的幾何、線性回歸、邏輯回歸、感知器算法、支持向量機、非線性變換。

  • 學習理論。偏差與方差、訓練與測試、泛化、PAC框架、Hoeffding不等式、VC維。

  • 魯棒性。對抗性攻擊,有目標和無目標攻擊,最小距離攻擊,最大損失攻擊,規則攻擊。通過納微擾。支持向量機的魯棒性。

//engineering.purdue.edu/ChanGroup/ECE595/index.html

付費5元查看完整內容

機器學習(ML)是一組技術,允許計算機從數據和經驗中學習,而不是要求人類手工指定所需的行為。ML在AI的學術領域和工業領域都越來越重要。本課程提供了一些最常用的ML算法的廣泛介紹。它還將介紹一些關鍵的算法原理,這些原理將作為更高級課程的基礎,如CSC412/2506(概率學習和推理)和CSC413/2516(神經網絡和深度學習)。

我們從最近鄰,典型非參數模型開始。然后我們轉向參數模型:線性回歸、邏輯回歸、softmax回歸和神經網絡。然后我們轉向無監督學習,特別關注概率模型,以及主成分分析和k均值。最后,我們介紹了強化學習的基礎知識。

//www.cs.toronto.edu/~rgrosse/courses/csc311_f20/

付費5元查看完整內容

強化學習理論(RL),重點是樣本復雜性分析。

  • Basics of MDPs and RL.
  • Sample complexity analyses of tabular RL.
  • Policy Gradient.
  • Off-policy evaluation.
  • State abstraction theory.
  • Sample complexity analyses of approximate dynamic programming.
  • PAC exploration theory (tabular).
  • PAC exploration theory (function approximation).
  • Partial observability and dynamical system modeling.

//nanjiang.cs.illinois.edu/cs598/

付費5元查看完整內容

課程內容:

  • 數學基礎:矩陣、向量、Lp范數、范數的幾何、對稱性、正確定性、特征分解。無約束最優化,graident下降法,凸函數,拉格朗日乘子,線性最小二乘法。概率空間,隨機變量,聯合分布,多維高斯。

  • 線性分類器:線性判別分析,分離超平面,多類分類,貝葉斯決策規則,貝葉斯決策規則幾何,線性回歸,邏輯回歸,感知機算法,支持向量機,非線性變換。

  • 魯棒性:對抗性攻擊、定向攻擊和非定向攻擊、最小距離攻擊、最大允許攻擊、基于規則的攻擊。通過納微擾。支持向量機的魯棒性。

  • 學習理論:偏差和方差,訓練和測試,泛化,PAC框架,Hoeffding不等式,VC維。

參考書籍:

  • Pattern Classification, by Duda, Hart and Stork, Wiley-Interscience; 2 edition, 2000.
  • Learning from Data, by Abu-Mostafa, Magdon-Ismail and Lin, AMLBook, 2012.
  • Elements of Statistical Learning, by Hastie, Tibshirani and Friedman, Springer, 2 edition, 2009.
  • Pattern Recognition and Machine Learning, by Bishop, Springer, 2006.

講者: Stanley Chan 教授 //engineering.purdue.edu/ChanGroup/stanleychan.html

課程目標: 您將能夠應用基本的線性代數、概率和優化工具來解決機器學習問題

?你將了解一般監督學習方法的原理,并能評論它們的優缺點。 ?你會知道處理數據不確定性的方法。 ?您將能夠使用學習理論的概念運行基本的診斷。 ?您將獲得機器學習算法編程的實際經驗。

付費5元查看完整內容

【導讀】2020新年伊始,多倫多大學Amir-massoud Farahmand和Emad A. M. Andrews博士開設了機器學習導論課程,介紹了機器學習的主要概念和思想,并概述了許多常用的機器學習算法。它還可以作為更高級的ML課程的基礎。

課程地址:

//amfarahmand.github.io/csc311/

機器學習(ML)是一組技術,它允許計算機從數據和經驗中學習,而不需要人工指定所需的行為。ML在人工智能作為一個學術領域和工業領域都變得越來越重要。本課程介紹了機器學習的主要概念和思想,并概述了許多常用的機器學習算法。它還可以作為更高級的ML課程的基礎。

本課程結束時,學生將學習(大致分類)

  • 機器學習問題:監督(回歸和分類),非監督(聚類,降維),強化學習

  • 模型:線性和非線性(基擴展和神經網絡)

  • 損失函數:平方損失、交叉熵、鉸鏈、指數等。

  • Regularizers: l1和l2

  • 概率觀點:最大似然估計,最大后驗,貝葉斯推理

  • 偏差和方差的權衡

  • 集成方法:Bagging 和 Boosting

  • ML中的優化技術: 梯度下降法和隨機梯度下降法

課程目錄:

參考資料:

(ESL) Trevor Hastie, Robert Tibshirani, and Jerome Friedman, The Elements of Statistical Learning, 2009.

(PRML) Christopher M. Bishop, Pattern Recognition and Machine Learning, 2006.

(RL) Richard S. Sutton and Andrew G. Barto Reinforcement Learning: An Introduction, 2018.

(DL) Ian Goodfellow, Yoshua Bengio and Aaron Courville (2016), Deep Learning

(MLPP) Kevin P. Murphy, Machine Learning: A Probabilistic Perspective, 2013.

(ISL) Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani, Introduction to Statistical Learning, 2017.

() Shai Shalev-Shwartz and Shai Ben-David Understanding Machine Learning: From Theory to Algorithms, 2014.

(ITIL) David MacKay, Information Theory, Inference, and Learning Algorithms, 2003.

付費5元查看完整內容

本課程涵蓋了機器學習和統計建模方面的廣泛主題。 雖然將涵蓋數學方法和理論方面,但主要目標是為學生提供解決實際中發現的數據科學問題所需的工具和原理。 本課程還可以作為基礎,以提供更多專業課程和進一步的獨立學習。 本課程是數據科學中心數據科學碩士學位課程核心課程的一部分。 此類旨在作為DS-GA-1001數據科學概論的延續,其中涵蓋了一些重要的基礎數據科學主題,而這些主題可能未在此DS-GA類中明確涵蓋。

課程大綱

  • Week 1:統計學習理論框架
  • Week 2:隨機梯度下降
  • Week 3:正則化,Lasso, 和 Elastic網,次梯度方法
  • Week 4:損失函數,SVM,代表定理
  • Week 5:核方法
  • Week 6:最大似然,條件概率
  • Week 7:期中
  • Week 8:貝葉斯方法
  • Week 9:貝葉斯條件概率,多分類
  • Week 10:分類和回歸樹
  • Week 11:bagging和隨機森林,梯度提升
  • Week 12:K-Means,高斯混合模型
  • Week 13:EM算法
  • Week 14:神經網絡,反向傳播
付費5元查看完整內容

主題: Introduction to Machine Learning

課程簡介: 機器學習是指通過經驗自動提高性能的計算機程序(例如,學習識別人臉、推薦音樂和電影以及驅動自主機器人的程序)。本課程從不同的角度介紹機器學習的理論和實用算法。主題包括貝葉斯網絡、決策樹學習、支持向量機、統計學習方法、無監督學習和強化學習。本課程涵蓋理論概念,例如歸納偏差、PAC學習框架、貝葉斯學習方法、基于邊際的學習和Occam的剃刀。編程作業包括各種學習算法的實際操作實驗。這門課程的目的是讓一個研究生在方法論,技術,數學和算法方面有一個徹底的基礎,目前需要的人誰做的機器學習的研究。

邀請嘉賓: Hal Daumé III,紐約市微軟研究院的研究員,是機器學習小組的一員;他也是馬里蘭大學的副教授。他主要從事自然語言處理和機器學習。

Matt Gormley,卡內基梅隆大學計算機科學學院機器學習部(ML)助教。

Roni Rosenfeld,卡內基梅隆大學計算機學院機器學習系教授兼主任,個人主頁://www.cs.cmu.edu/~roni/。等

付費5元查看完整內容
北京阿比特科技有限公司