亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

近年來,由于機器學習技術具有提高估計精度和系統魯棒性的潛力,因此將機器學習技術整合到導航系統中引起了極大的興趣。這篇博士論文研究了深度學習與饒黑化粒子濾波器的結合使用,以增強機載模擬任務中的地磁導航。

為便于評估所提議的導航系統,開發了一個仿真框架。該框架包括詳細的飛機模型、地球磁場的數學表示法以及從在線數據庫獲取的真實世界磁場數據。通過這種設置,可以準確評估擬議的 Geomagentic 架構在各種現實地磁場景中的性能和有效性。

這項研究成果證明了機器學習算法在提高地磁導航傳感器融合濾波器性能方面的潛力,并引入了一種新方法來提高現有地磁模型的分辨率,從而更好地描述這些模型中的磁場特征。這種融合使機載任務的慣性制導更加精確和穩健,從而為各種航空飛行器的先進、可靠導航系統鋪平了道路。

總之,本論文提供了一種將機器學習技術與傳統估算方法相結合的新方法,并采用一種新技術來獲取這些導航架構所需的更精確的地磁模型,從而為地磁導航研究的最新發展做出了貢獻。這項研究成果有望為民用和軍用航空應用開發先進的自適應導航系統。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

無人潛航器(UUV)為在水下領域實現目標提供了一種謹慎的手段,這在灰色區域行動中至關重要。然而,無人潛航器也面臨著巨大的操作挑戰,如電池壽命有限、有效載荷容量受限以及存在敵對威脅等。為解決這些問題,建議開發一種整合了線性規劃和在線優化的調度工具。該工具受論文 "灰色區域環境中的路由優化 "中路由優化方法的啟發,旨在為 UUV 安排后勤支持。該工具旨在通過考慮對手的最新位置來規避移動中的對手,同時還能根據對手的具體要求確定服務任務的優先級。通過利用一系列適應最新信息的路徑計算,工具確定最佳路線。根據該工具在模擬場景中提供可行解決方案的能力對其有效性進行了評估,在該模擬場景中,一艘后勤保障船在一個由隨機移動的敵方船只巡邏的區域內為一支 UUV 艦隊提供服務。此外,評估還包括該工具在不同 UUV 艦隊規模下的最優性能和計算復雜性。本文致力于在對手威脅下改進后勤路由,提高灰色區域環境中的軍事效率。

圖 3.1. 南海假想行動區地圖片段。

在和平與戰爭的傳統界限之間,存在著一個模糊不清的領域,國家行為體及其軍事力量經常利用國際法和國際準則中的漏洞。這些區域通常被稱為灰色地帶(GZs),這些實體在其中努力實現其目標,而不引起全面的軍事反應。灰色地帶的概念雖然并不新鮮,但近年來由于地緣政治格局的不斷變化而日益突出。無人自主飛行器的進步和廣泛使用大大增強了軍事部隊開展 GZ 行動的能力。與有人駕駛飛行器相比,無人駕駛飛行器沒有人類操作員,這有助于提高可信度,降低風險。在水下戰爭領域,無人潛航器已成為現代軍隊實現 GZ 目標的重要工具。

盡管無人潛航器技術不斷進步,但仍受到當前技術限制的制約。它們的電池容量有限、有效載荷能力受限、需要維護和修理,因此往往需要人工干預后勤工作,從而為表面上的無人系統引入了有人操作的一面。本論文旨在通過設計一種工具來改進 UUV 的物流路由,從而加強 UUV 服務的路由和調度。其目的是確定后勤保障船(LSV)進入 UUV 的最佳路徑和服務時間,同時應對隨機移動對手的挑戰,這是 GZ 地區普遍存在的問題。本論文借鑒 Chu(2023 年)開發的混合整數線性規劃(MILP)路由優化工具,結合在線優化(OO)原理,開發出一種可迭代更新其解決方案的工具,以適應對手的動態移動。這種能力有助于避免被發現,而這是避免 GZ 中潛在沖突的重要策略。

研究伊始,我們首先提出了 MILP 模型。在 MILP 框架內,我們的模型利用平均延遲作為主要指標,在整個網絡中有效生成最優調度建議。通過關注平均延遲時間的最小化,我們的模型旨在促進 UUV 的及時訪問以提供高效服務,同時規劃路線以規避對手。鑒于 UUV 可能有不同的服務時間要求和分配優先級,我們設計的模型在生成最佳路由和調度計劃時考慮了這些因素。在該模型中,用戶可以指定指定的服務時間窗口和持續時間,并根據以下四個不同級別分配服務優先級:(1) 電池更換;(2) 常規維護;(3) 存儲更換;(4) 關鍵維護。

為了實現 OO,我們采用了 Marler(2022 年)提出的決策過程,將敵方移動下的后勤路由概念化為以下五個步驟:

步驟 1. 獲取最新戰術信息。

步驟 2. 生成路由計劃。

步驟 3. 前往推薦的 UUV。

步驟 4. 執行服務任務。

步驟 5. 重復上述步驟,直至達到終止標準。

通過時間索引,模型可以在每個時間步驟中利用對手位置的最新數據和上一步驟的模型狀態進行重新優化。這種方法有效地實現了五步決策過程,從而體現了 OO 的原則。

為了改善用戶體驗,我們設計的工具將所有輸出整合到統一的瀏覽器界面中,并通過交互式地圖進一步加強用戶控制和參與。為了證明該工具的計算可行性和功能性,我們進行了一次概念驗證模擬,讓一艘 LSV 在 120 x 120 海里(nm)的作戰區域內,為由 10 艘 UUV 組成的艦隊提供服務,并與三個對手進行對抗。當 LSV 穿過模型時,我們的算法會動態生成對手的隨機移動。因此,LSV 必須戰略性地避開這些對手,通過最短路徑到達 UUV。我們展示了模擬結果,以證明我們工具的功能,并通過分析相關的最優性差距和計算復雜性深入研究其性能。

盡管本文中開發的仿真模型和原型工具還不適合立即應用于軍事作戰規劃,但它們為未來的進步建立了一個基本框架。這項工作為在該領域設計更復雜、更實用的解決方案奠定了基礎。提出了未來研究的幾個方向。其中包括擴展模型,以適應在 UUV 網絡中運行的多個 LSV(可能通過同步協調或分散優化)。還建議通過納入多目標優化來擴大服務優先級和復雜性的范圍,加強在線更新的因素范圍,并改進參數以更準確地反映真實世界的操作條件。此外,探索實施欺騙性路由計劃等策略以增強路由能力是未來另一個值得研究的領域。

付費5元查看完整內容

由于水下聲學的復雜性,水下模擬器并不常見。模擬是快速測試自主飛行器的有效工具,是測試和評估過程的補充。本論文的目標是為機器人應用提出一種計算效率高的前視聲納仿真模型。本論文使用點散射模型開發了單聲納波束模型,并應用了傅立葉合成和波束形成修正。將單個聲納波束連接起來,模擬前視聲納系統的視場。結果是一個聲納模擬模型,可用于已建立的 ROS Gazebo 機器人框架,作為有效測試自主水下航行器的工具。聲納模型聲學方面的未來改進包括增加混響、多路徑傳播和干擾。

付費5元查看完整內容

在未知和不確定的環境中開辟安全路徑是領導者-追隨者編隊控制的一項挑戰。在這種結構中,領導者通過采取最佳行動向目標前進,追隨者也應在保持理想隊形的同時避開障礙物。該領域的大多數研究都將編隊控制和障礙物規避分開考察。本研究提出了一種基于深度強化學習(DRL)的新方法,用于欠驅動自主水下航行器(AUV)的端到端運動規劃和控制。其目的是為 AUV 的編隊運動規劃設計基于行動者批判結構的最優自適應分布式控制器。這是通過控制 AUV 的速度和航向來實現的。在避障方面,采用了兩種方法。第一種方法的目標是為領導者和跟隨者設計控制策略,使每個領導者和跟隨者都能學習自己的無碰撞路徑。此外,跟隨者遵守整體編隊維護策略。在第二種方法中,領跑者只學習控制策略,并安全地帶領整個團隊向目標前進。在這里,跟隨者的控制策略是保持預定的距離和角度。在存在洋流、通信延遲和傳感誤差的情況下,展示了所提出方法在現實擾動環境下的魯棒性。通過大量基于計算機的模擬,對算法的效率進行了評估和認可。

付費5元查看完整內容

本論文探討了支持分布式海上作戰(DMO)的兩種不同通信架構的選項。這兩種架構分別是星形網絡和無線網狀網絡。為本研究開發場景模型的目的是幫助讀者更好地理解緊密結合的數據類型、數據速率和所需網絡功能對網絡設計的影響。本研究針對需要視頻、語音和數據鏈路組合的場景中的各種資產,對每種架構進行了評估。它深入分析了每種設計所固有的信息傳遞延遲,并評估了每種網絡的可靠性。研究發現,利用機載路由功能的低地球軌道衛星星形和網狀網絡可提供最低的定時延遲。研究還發現,通過專用通道提供視頻饋送時,網絡抖動最小。最后,網狀網絡的可靠性略高于傳統的星形網絡,這是因為數據鏈路具有冗余性,而且缺少一個可能易受攻擊的中心樞紐。因此,利用特設無線網狀通信網絡將支持在分布式海上作戰進行有限的進攻性聯合火力打擊期間部署自適應部隊包。

圖 1. 星形網絡拓撲(左)和全網狀拓撲(右)。

在任何戰斗環境中,良好的通信都是取得勝利的關鍵。即使是在擁有堅實通信基礎設施的地理位置,如果戰地指揮官不能及時收到來自戰地資產的正確信息報告,也會造成混亂。在海戰中,尤其是在近海,通信基礎設施充其量也是微乎其微。

為響應美國防部長關于改進聯合火力(JF)行動的號召,本畢業設計探討了支持分布式海上行動(DMO)的兩種不同通信架構的選項。這兩種架構分別是星形網絡和無線網狀網絡。

為本研究開發情景模式的目的是幫助讀者更好地理解緊密耦合的數據類型、數據速率和所需網絡功能對網絡設計的影響。這有助于突出已實施網絡的設計限制。模擬結果用于定義基準參考和可追溯數據要求,以支持為 JF DMO 設計的戰術網絡。

A. 戰術通信網絡拓撲結構

網絡設置通常用拓撲結構來描述,拓撲結構是網絡內節點排列和通信的物理方式(美國陸軍工程部,1984 年,7)。本研究評估了圖 1 左側所示的傳統星形網絡和圖 1 右側所示的多層網狀通信網絡,并量化了這些鏈路的排列可能對操作產生的影響。

1.星形網絡

最廣泛使用的無線網絡拓撲結構是星形幾何模式。星形拓撲結構包括一個中心節點,所有信息都通過該節點流動。在星形格式中,所有信息都必須從每個參與資產發送和接收,并通過中心樞紐路由。這種配置中的中心節點是單點故障。如果中央節點離線,整個網絡就會癱瘓。

2.無線網狀網絡

多層戰術無線網狀網絡是指在網絡內共享信息的過程。網狀網絡描述了一種配置,其中每個節點都具有通信能力,可以相互發送和接收信息。在網狀網絡中,節點是自組織的,可根據需要通過路由算法自動建立(Shillington 和 Tong,2011 年)。

B. 結論

本研究的設計要求側重于網絡配置、對信息定時延遲的影響、網絡抖動和可靠性。研究發現,使用具有機載路由功能的低地球軌道(LEO)衛星的星形和網狀網絡可提供最低的定時延遲。研究還發現,在提供視頻饋送專用通道時,網絡抖動最小。最后,網狀網絡的可靠性略高于傳統的星形網絡,這是因為數據鏈路具有冗余性,而且沒有潛在的易受攻擊的中心樞紐。因此,在分布式海上行動的有限進攻性聯合火力打擊中,利用特設無線網狀通信網絡將支持部署自適應部隊包。

付費5元查看完整內容

本文通過機器學習方法提出了一種雷達任務選擇的主動方法,并將其設計在雷達調度流程之前,以提高雷達資源管理過程中的性能和效率。該方法由兩個過程組成:任務選擇過程和任務調度過程,其中任務選擇過程利用強化學習能力來探索和確定每個雷達任務的隱藏重要性。在雷達任務不堪重負的情況下(即雷達調度器超負荷工作),將主動選擇重要性較高的任務,直到任務執行的時間窗口被占滿,剩余的任務將被放棄。這樣就能保證保留潛在的最重要任務,從而有效減少后續調度過程中的總時間消耗,同時使任務調度的全局成本最小化。本文對所提出的方法進行了數值評估,并將任務丟棄率和調度成本分別與單獨使用最早開始時間(EST)、最早截止時間(ED)和隨機偏移開始時間EST(RSST-EST)調度算法進行了比較。結果表明,與EST、ED和RSST-EST相比,本科學報告中提出的方法分別將任務丟棄率降低了7.9%、6.9%和4.2%,還將調度成本降低了7.8倍(EST為7.8倍)、7.5倍(ED為7.5倍)和2.6倍(RSST-EST為2.6倍)。使用我們的計算環境,即使在超負荷的情況下,擬議方法所消耗的時間也小于 25 毫秒。因此,它被認為是提高雷達資源管理性能的一種高效實用的解決方案。

雷達資源管理(RRM)對于優化作為飛機、艦船和陸地平臺主要傳感器的現代相控陣雷達的性能至關重要。報告》討論了雷達資源管理,包括任務選擇和任務調度。該課題對國防科技(S&T)非常重要,因為它與現代相控陣雷達的大多數應用相關。它對當前的海軍雷達項目尤為重要,該項目探索了雷達波束控制的人工智能(AI)/機器學習(ML)方法。所提出的算法有可能升級未來的艦船雷達,從而做出更好的決策并提高性能。

付費5元查看完整內容

受赭石藻啟發的微電子機械系統(MEMS)傳感器可按一定配置排列,以探測入射聲波的到達方向(DoA)。先前的研究結果表明,可以確定方位角 360 度范圍內的明確到達方向。迄今為止,一直使用實驗室儀器進行模擬讀數。本研究的目標是開發、構建和測試一種電路配置,包括 MEMS 傳感器的外殼和電源,以及設計一種圖形用戶界面(GUI),以便從傳感器陣列中讀取 DoA,并利用 GPS 定位數據對多旋翼小型無人機的位置進行三角測量。測試場使用兩個節點的配置來探測小型旋翼無人機。操作場景顯示在地圖上。這種新配置可以探測到來自任何可探測來源的聲音,并提供聲音來源的坐標。

付費5元查看完整內容

目前的自動空中加油(AAR)工作利用機器視覺算法來估計接收飛機的姿勢。然而,這些算法取決于幾個條件,如精確的三維飛機模型的可用性;在沒有事先給出高質量信息的情況下,管道的準確性明顯下降。本文提出了一個深度學習架構,該架構基于立體圖像來估計物體的三維位置。研究了使用機器學習技術和神經網絡來直接回歸接收飛機的三維位置。提出了一個新的位置估計框架,該框架基于兩個立體圖像之間的差異,而不依賴于立體塊匹配算法。分析了其預測的速度和準確性,并證明了該架構在緩解各種視覺遮擋方面的有效性。

圖3:利用的坐標系統。紅軸代表X軸,綠軸代表Y軸,藍軸代表Z軸。所有顯示的箭頭表示該軸上的正方向。

付費5元查看完整內容

本報告是在 FA9453-19-1-0078 資助下編寫的。首先,提出了兩種數值方法來解決通信和導航中產生的非線性優化問題。其次,開發了兩個關于機器學習模型的解決方案質量和安全性的結果。

該研究項目的目標是開發高效的大規模非線性優化算法,以解決通信和導航方面的數據分析問題。這些問題被公認為在數學上具有挑戰性,并與空軍的利益直接相關。

在資助期間,我們成功研究了兩個研究方向。首先,我們設計了大規模非線性優化問題的最佳一階方法。在這個方向上,我們提出了兩個一階方法,可以對決策變量進行近似梯度更新。這兩種方法都可以解決分散通信的多Agent優化所產生的非線性優化問題。通過將多代理優化重新表述為約束性問題,我們開發的方法可以以最佳梯度/操作者評估復雜度來解決問題。我們開發的方法也可用于解決圖像重建問題。

第二,我們分析了機器學習模型中的解決方案質量和安全問題。在這個方向上,我們完成了兩個研究結果。我們的第一個成果是關于在多集群環境下,從二元結果的條件邏輯回歸模型中計算出來的估計值的屬性。我們表明,當每個單獨的數據點被無限次復制時,來自該模型的條件最大似然估計值漸進地接近最大似然估計值。我們的第二個結果是關于安全的矩陣乘法問題,我們設計了一種準確和安全地進行分布式矩陣乘法的方法。我們的安全協議可以確保在進行這種矩陣乘法的通信過程中沒有任何信息被泄露。

付費5元查看完整內容

在有環境因素的城市區域內安全有效地使用四旋翼飛行器,對美國軍事和民用部門具有巨大的重要性。本技術報告探討了一個高度適應性的模擬設置,其中有一個包含學習元素的非線性控制器。其他模型因素--如無人機的幾何形狀、權重和風的力量--在所提出的框架內很容易被修改。用虛幻引擎進行的模擬,可以結合現實世界的城市數據、現實的風和現有的開源軟件。

引言及與美國陸軍的相關性

無人系統和無人駕駛航空系統(UAS)的使用在全世界的軍隊中激增,在通信、監視、偵察和戰斗中都有應用(Nacouzi等人,2018)。在敵對地區,無人機系統將受到多種威脅,包括網絡和物理威脅,以及環境危害。生存和任務的成功往往取決于以最小的通信或依賴全球導航衛星系統(GNSS)的能力,如GPS(Guvenc等人,2018;Sathyamoorthy等人,2020;Fan等人,2022)。例如,無人機系統的通信可用于檢測和獲得無人機系統的位置,而基于衛星的導航很容易被欺騙或干擾,因為信號非常弱。其他傳感器也經常被用來增強GNSS的位置分析,并可以用來取代它,如光學系統--包括照相機、雷達、光探測和測距(LiDAR)系統和慣性測量單元(IMU)(Angelino等人,2012)。這些都提出了自己的挑戰。慣性測量單元是標準設備,但只能檢測線性和角加速度,同時通過檢測地球的局部磁場來確定方向(共9個自由度)。因此,位置誤差,即測量的加速度的第二個時間積分,會隨著時間的推移而累積。在使用IMU進行UAS導航時,其他令人擔憂的來源包括環境影響(即風或降水)。 UAS結構的物理變化,如增加一個傳感器或武器包,包括武器發射后的變化,使工作進一步復雜化。這種質量和質量分布的變化改變了UAS的質量中心和慣性張量。光學傳感器、雷達和LiDAR系統增加了重量,并經常發射射頻或光,使它們更容易被探測到和/或需要處理資源。增加的重量和/或處理可能對電池壽命產生不利影響,從而影響運行時間和整體可靠性。

為了解決這些問題,我們正在研究在大風環境中使用控制算法,以了解IMU信號如何在控制中被用來考慮(和/或改變)UAS的位置計算。再加上不確定性措施,這些最終可用于檢測UAS飛行性能的變化,或對GNSS信號的欺騙。

城市環境是安全和可靠的無人機系統運行的第二個關注領域(Watkins 2020)。它們被認為是國防部行動的一個挑戰領域,也是政府和商業服務的一個巨大的技術增長領域。在這份報告中,我們展示了一個模擬空間,我們正在建立專門用于模擬城市環境中的無人機系統,以解決自主和半自主控制的問題,重點是環境的相互作用,包括風和靜態碰撞威脅。物理學和控制的關鍵部分直接用C++實現。除此之外,在可能的情況下,我們正在利用當前的免費和開源資源(即軟件、軟件框架和數據),但要注意的是,我們包括使用一些在產品商業化成功后需要付費的工具。我們采取了一種模塊化的方法,隨著其他軟件框架和系統的成熟,將能夠靈活地過渡到其他軟件框架和系統。我們目前的系統已經基于用于小型無人機系統的PX4控制器庫和實時發布-訂閱(RTPS)數據傳輸協議。RTPS應能使我們的發展在其他工具成熟時過渡到其他工具,并使用通用的應用編程接口(即API)過渡到其他工具和數據,如計算的風數據。對于圖形和用戶界面,我們使用虛幻引擎(UE)(Matej 2016),這是一個游戲引擎,提供最先進的圖形功能和我們的模型中使用的一些物理學--最重要的是無人機系統和其環境之間的碰撞檢測。

第2-4節詳細介紹了整個模擬的主要計算部分:納入現實世界的城市數據,生成現實的風模型,無人機的幾何和物理建模,以及線性和非線性控制。我們對整體模擬的這些主要部分中的每一個都依賴開源軟件,如UE、OpenStreetMap(OSM)(Anderson等人,2019年)、Mapbox和AirSim(Shah等人,2017年),并根據需要詳細說明(見圖1;例如,真實城市的模型導入游戲引擎中)。第5節和第6節提供了樣本結果和結語。

圖1 將城市數據納入UE進行大規模模擬的兩個例子。伊利諾伊州的芝加哥(上);弗吉尼亞州的水晶城(下)。這兩張圖片都是使用開源工具創建的,將開源的Mapbox城市數據導入UE中。

付費5元查看完整內容
北京阿比特科技有限公司