由于消息傳遞—圖神經網絡(MPNN)應用在稀疏圖時相對于節點數量具有線性復雜性,因此它們已被廣泛使用, 不過它們的理論表達能力bounded by一階 Weisfeiler-Lehman 檢驗 (1-WL)。
在本文中,我們表明,如果自定義特征值相關的非線性函數設計圖卷積supports并使用任意大的感受野進行掩蔽,則 MPNN 在理論上比 1-WL 測試更強大。實驗表明該方法與3-WL 同樣強大,同時能夠保持空間局部化(spatially localized)。此外,通過設計自定義濾波器函數,輸出可以具有各種頻率分量,從而允許卷積過程學習給定輸入圖信號與其相關屬性的不同關系。
目前,最好的 3-WL 等效圖神經網絡的計算復雜度為 O(n^3 ),內存使用量為 O(n^2 ),考慮非局部更新機制,并且不提供輸出的頻譜。但是本文所提出的方法克服了所有上述問題,并在許多下游任務中達到了最先進的結果。
雖然許多現有的圖神經網絡(gnn)已被證明可以執行基于?2的圖平滑,從而增強全局平滑,但在本工作中,我們旨在通過基于?1的圖平滑進一步增強GNN的局部平滑自適應。在此基礎上,提出了一種基于?1和?2圖平滑的彈性GNN。特別地,我們提出了一種新的、通用的消息傳遞方案。該消息傳遞算法不僅有利于反向傳播訓練,而且在保證理論收斂的前提下達到了預期的平滑特性。在半監督學習任務上的實驗表明,所提出的彈性GNN在基準數據集上具有較好的自適應能力,對圖對抗攻擊具有顯著的魯棒性。
我們提出了一個嚴格的方法,使用一組任意相關的弱監督源,以解決多類分類任務時,只有一個非常小的標記數據集可用。我們的學習算法可證明收斂于一個模型,該模型對于一組未標記數據的可行標記的對抗性選擇具有最小的經驗風險,其中標記的可行性是通過對弱監督源的嚴格估計統計量定義的約束來計算的。我們為這種依賴于弱監督來源提供的信息的方法提供了理論保障。值得注意的是,該方法不要求弱監督源具有與多類分類任務相同的標注空間。我們通過實驗證明了我們的方法在各種圖像分類任務中的有效性。
本期小編挑選了幾篇ICML2021中關于GNN的論文(附論文下載地址)分享給大家~包括圖神經網絡規范化、圖表示能力增強、圖神經網絡的對抗攻擊能力、圖神經網絡與強化學習結合控制圖中動態傳播問題、分子圖卷積神經網絡 (GCNN) 的正則化方法~
論文清單
GraphNorm: A Principled Approach to Accelerating Graph Neural Network Training
Graph Convolution for Semi-Supervised Classification: Improved Linear Separability and Out-of-Distribution Generalization
A Collective Learning Framework to Boost GNN Expressiveness
How to Stop Epidemics: Controlling Graph Dynamics with Reinforcement Learning and Graph Neural Networks
Improving Molecular Graph Neural Network Explainability with Orthonormalization and Induced Sparsity
GraphNorm: A Principled Approach to Accelerating Graph Neural Network Training (論文下載地址://arxiv.org/abs/2009.03294)
Normalization有助于優化深度神經網絡。但不同的結構需要不同的規范化方法。在本文中,我們研究什么規范化方法對圖神經網絡 (GNN) 是有效的。首先,我們將現有的規范化方法應用到GNN中,并對其進行評估。與BatchNorm和LayerNorm相比,InstanceNorm的收斂速度更快。InstanceNorm 作為 GNN 的preconditioner,但由于圖數據集中的大量的批處理噪聲,BatchNorm 的這種預處理效果就顯得較弱。其次,我們證明了InstanceNorm中的shift操作會導致GNN對于高度正則圖的表達能力退化。我們提出了一種learnable shift的GraphNorm來解決這個問題。實驗表明,使用GraphNorm的GNN比使用其他規范化方法的GNN收斂更快。此外,GraphhNorm還改進了GNN的泛化能力,在圖分類中獲得了更好的性能。
A Collective Learning Framework to Boost GNN Expressiveness (論文下載地址:
圖神經網絡 (GNN) 最近已成功用于節點和圖分類任務。但 GNN 建模的是相鄰節點的屬性之間的依賴關系,而不是觀察到的節點標簽之間的依賴關系。在本文中,我們考慮在監督和半監督下考慮到標簽依賴性,使用 GNN 進行inductive node classification。當前的 GNN 不是通用的(即最具表現力的)圖表示模型,我們提出了一種通用的collective learning方法,增強現有 GNN 的表示能力。我們的模型將collective classification的思想與自監督學習相結合,并使用蒙特卡羅方法對embeddings進行采樣,以進行圖之間的歸納學習。我們評估了模型在五個真實網絡數據集上的性能,結果證明了模型可以顯著提高節點分類的準確度。
Information Obfuscation of Graph Neural Networks (論文下載地址:
圖神經網絡 (GNN) 的出現極大地改進了許多應用中的節點和圖表示學習能力,但鄰域聚合方法向試圖提取敏感屬性node-level信息的對手暴露了額外的漏洞。在本文中,我們研究了在使用圖結構數據進行學習時,利用信息混淆來保護敏感屬性的問題。我們提出了一個基于total variation和 Wasserstein 距離的對抗性訓練框架,用于局部過濾掉預先確定的敏感屬性。該方法可以對推理攻擊形成了強大的防御。理論上,我們分析了該框架對抗最壞情況的有效性,并描述了最大化預測準確性和最小化信息泄漏之間的內在權衡。在來自推薦系統、知識圖譜和量子化學的多個數據集上進行實驗,實驗表明,該方法在為下游任務生成 GNN 編碼器的同時,可以為各種圖結構和任務提供強大的防御能力。
How to Stop Epidemics: Controlling Graph Dynamics with Reinforcement Learning and Graph Neural Networks
(論文下載地址:
我們考慮控制圖中partially-observed的動態傳播過程的問題。例如,在安排病毒測試或選擇應該被隔離的節點以遏制流行病蔓延;手動檢查發布的文章來檢測在線網絡上傳播的虛假新聞;鼓勵產品的傳播而進行的有針對性的營銷,在這些情況下,都會遇到這個問題。當只能測試或隔離一小部分人口時,遏制傳播并限制感染人群的比例變得具有挑戰性。
為了應對這一挑戰,我們將此問題建模為圖上的順序決策問題。面對指數級狀態空間、組合動作空間和部分可觀察性,我們提出了 RLGN,這是一種新穎的易處理強化學習 (RL) 方法,用于確定節點是否需要測試,并使用圖神經網絡 (GNN) 對圖節點進行排序。我們在三種類型的社交網絡中評估這種方法:社區結構、優先連接依賴preferential attachment 和 基于真實 cellular tracking的統計數據。實驗表明,RLGN始終優于所有基線方法。與使用相同資源的非學習方法相比,在時間圖上使用RL進行優先測試可以使健康人群的數量增加25%,控制疫情的頻率比監督方法高30%,比非學習基線高2.5倍。
Improving Molecular Graph Neural Network Explainability with Orthonormalization and Induced Sparsity (論文下載地址:
對分子的哪些部分驅動了分子圖卷積神經網絡 (GCNN) 的預測進行合理解釋是很困難。針對這個問題,論文提出了兩種正則化方法,用于訓練GCNN。Batch Representation Orthonormalization (BRO) 和 Gini regularization。受molecular orbital theory的啟發,BRO鼓勵用圖卷積運算生成正交節點嵌入。Gini regularization應用于輸出層的權重,并約束模型可用于進行預測的維數。Gini 和 BRO 正則化方法可以提高GCNN 歸因方法在人工基準數據集上的準確性。在現實世界中,我們證明了藥物化學家更傾向于從正則化模型中提取解釋。雖然論文只在 GCNN 中研究這兩種正則化方法,但Gini 和 BRO 正則化方法都可以應用于其他類型的神經網絡中。
我們提出了GNNAutoScale (GAS),一個擴展任意消息傳遞GNN到大型圖的框架。GAS通過利用之前的訓練迭代的歷史嵌入來修剪計算圖的整個子樹,從而在不丟失任何數據的情況下,使輸入節點大小的GPU內存消耗保持不變。雖然現有的解決方案由于邊緣的子采樣或不可訓練的傳播而削弱了消息傳遞的表達能力,但我們的方法被證明能夠保持原始GNN的表達能力。我們通過提供歷史嵌入的近似誤差邊界來實現這一點,并展示了如何在實踐中加強它們。經驗表明,我們的框架PyGAS (PYTORCH geometry 的一個易于使用的擴展)的實際實現是既快速又內存效率高的,學習表現性節點表示,其性能與非擴展對應的性能非常相似,并在大規模圖上達到了最先進的性能。
論文題目:Graph Neural Networks Inspired by Classical Iterative Algorithms
作者:Yongyi Yang,Tang Liu,Yangkun Wang,Jinjing Zhou,Quan Gan,魏哲巍,Zheng Zhang,Zengfeng Huang,David Wipf
論文概述:圖神經網絡(GNN)作為建模實體間關系的代表性方法,已被成功應用于多個領域。然而現有方法仍存在一些局限性,例如過平滑問題、長距離依賴性問題等。本篇論文基于兩種經典迭代算法提出了首個unfolding視角的GNN集成框架TWIRLS,首先通過模仿近似梯度下降設計了一個可擴展的基礎GNN架構,能夠允許任意的傳播步驟以捕捉長距離依賴關系同時有效避免過平滑問題。在此基礎上,結合迭代加權最小二乘法的更新規則提出了新的注意力機制系列,無需引入額外參數或設計啟發式方法而對邊的不確定性表現魯棒。同時,本篇論文進行了大量實驗旨在評估不同情況下算法的性能,實驗結果表明,即使與特定任務SOTA模型相比,本篇論文所提算法均取得具有競爭力或更高的節點分類精度。
本文提出了一種基于框架小波變換(framelet transforms)的圖神經網絡。這種方法為結構化的圖數據提供了多尺度表示。我們利用這種變換方式把圖數據特征分解到低通和高通頻率(low-pass and high-pass frequency)空間上,并利用這些頻率信息定義相應的框架小波圖卷積層(graph framelet convolutional layer)。此外,圖上的特征通過框架小波分解,聚合出了低通和高通光譜(spectra)的信息。我們利用這一特征,進一步提出了相應的圖池化(graph pooling)方法。這種池化方法同時考慮了圖數據的特征信息(feature information)和幾何信息(topology information)。
我們在多種節點預測和圖預測任務上對本文提出的框架小波卷積和池化方法的圖神經網絡進行了測試。實驗結果表明,我們的方法在多種應用下都可以達到SOTA的表現。
圖神經網絡(GNN)中缺乏各向異性核極大地限制了其表達能力,導致了一些眾所周知的問題,如過度平滑。為了克服這個限制,我們提出了第一個全局一致的各向異性核GNN,允許根據拓撲導出的方向流定義圖卷積。首先,通過在圖中定義矢量場,我們提出了一種方法應用方向導數和平滑投影節點特定的信息到場。然后,我們提出用拉普拉斯特征向量作為這種向量場。在Weisfeiler-Lehman 1-WL檢驗方面,我們證明了該方法可以在n維網格上泛化CNN,并證明比標準的GNN更有分辨力。我們在不同的標準基準上評估了我們的方法,發現在CIFAR10圖數據集上相對誤差減少了8%,在分子鋅數據集上相對誤差減少了11%到32%,在MolPCBA數據集上相對精度提高了1.6%。這項工作的重要成果是,它使圖網能夠以一種無監督的方式嵌入方向,從而能夠更好地表示不同物理或生物問題中的各向異性特征。
題目: 圖神經網絡的無冗余計算 會議: KDD2020 論文地址: //dl.acm.org/doi/abs/10.1145/3394486.3403142 推薦理由: 對于圖神經網絡中重復信息的聚合,這篇文章提出了一種簡單有效的層次化聚合的方法(HAG),用于層次化管理中間結果并減少圖神經網絡在訓練和推斷過程中重復計算。HAG 能夠保證在計算層次化聚合的過程中,可以使用更少的時間用于訓練并且得到的結果和傳統的圖神經網絡模型一致。
GNN在單層中基于遞歸鄰域聚合方案,每個節點聚合其鄰居的特征,并使用聚合值更新其自身的特征。這樣遞歸地傳播多次(多層),最后,GNN中的每個節點都會從其k階網絡鄰居中的其他節點收集信息。最后GNN層的激活然后被用于下游預測任務,例如節點分類、圖分類或鏈路預測。然而,如何設計一個能夠有效處理大規模圖數據集的GNN仍然是一個挑戰。特別的是,許多當前的工作是使用整張圖的拉普拉斯矩陣,這樣即便是對于中等規模的圖,也會面臨存儲空間的問題。GraphSAGE首次提出使用對每個獨立節點執行小圖鄰域采樣,然后再聚合這些節點的鄰域信息,但是對于單個節點進行鄰域采樣是一個高復雜度的事情,因此許多手工調整的啟發式算法被用來限制采樣復雜性并選擇鄰域圖并通過優化圖的采樣步驟來提高GNN的效率。
圖神經網絡(GNNs)是圖信號支持的信息處理體系結構。它們在這里作為卷積神經網絡(CNNs)的推廣提出,其中每個層包含圖卷積濾波器,而不是經典卷積濾波器。濾波器由點態非線性組成并分層堆疊。結果表明,GNN結構對排列的方差相等,對圖形變形的穩定性較好。這些特性提供了一個解釋的措施,可以觀察到的良好性能的GNNs經驗。如果圖收斂于一個極限對象,圖形,GNN收斂于一個相應的極限對象,圖神經網絡。這種收斂證明了GNN在不同節點數量的網絡之間的可遷移性。
消息傳遞被證明是一種設計圖神經網絡的有效方法,因為它能夠利用排列等方差和對學習局部結構的歸納偏差來實現良好的泛化。然而,當前的消息傳遞體系結構的表達能力有限,無法學習圖的基本拓撲性質。我們解決了這個問題,并提出了一個新的消息傳遞框架,它是強大的同時保持置換等方差。具體來說,我們以單熱點編碼的形式傳播惟一的節點標識符,以便了解每個節點的本地上下文。我們證明了我們的模型在極限情況下是通用的,同時也是等變的。通過實驗,我們發現我們的模型在預測各種圖的拓撲性質方面具有優勢,為新型的、功能強大的等變和計算效率的結構開辟了道路。