圖神經網絡(GNN)中缺乏各向異性核極大地限制了其表達能力,導致了一些眾所周知的問題,如過度平滑。為了克服這個限制,我們提出了第一個全局一致的各向異性核GNN,允許根據拓撲導出的方向流定義圖卷積。首先,通過在圖中定義矢量場,我們提出了一種方法應用方向導數和平滑投影節點特定的信息到場。然后,我們提出用拉普拉斯特征向量作為這種向量場。在Weisfeiler-Lehman 1-WL檢驗方面,我們證明了該方法可以在n維網格上泛化CNN,并證明比標準的GNN更有分辨力。我們在不同的標準基準上評估了我們的方法,發現在CIFAR10圖數據集上相對誤差減少了8%,在分子鋅數據集上相對誤差減少了11%到32%,在MolPCBA數據集上相對精度提高了1.6%。這項工作的重要成果是,它使圖網能夠以一種無監督的方式嵌入方向,從而能夠更好地表示不同物理或生物問題中的各向異性特征。
圖表示學習算法的歸納偏差通常被編碼在其嵌入空間的背景幾何中。在本文中,我們證明了一般有向圖可以有效地用一個包含三個成分的嵌入模型來表示: 一個偽黎曼度量結構,一個非平凡的全局拓撲,以及一個明確包含嵌入空間中首選方向的唯一似然函數。我們將該方法應用于自然語言應用和生物學中一系列合成的和真實的有向圖的鏈接預測任務,從而證明了該方法的表征能力。特別地,我們證明了低維柱面閔可夫斯基和反Sitter時空可以產生與高維彎曲黎曼流形相同或更好的圖表示。
我們提出了一種新的參數化方案來解決在大型神經網絡上運用差分私有SGD所面臨的挑戰,這些挑戰包括1) 存儲單個梯度的巨大存儲成本,2) 附加的噪聲嚴重依賴于維數。具體地說,我們用兩個小維的梯度載波矩陣和一個殘差權矩陣來重新參數化每個權矩陣。我們認為,這樣的重新參數化保持向前/向后過程不變,同時使我們能夠在不計算梯度本身的情況下計算投影梯度。為了學習差分隱私,我們設計了重參數梯度擾動(RGP),它擾亂梯度載體矩陣上的梯度,并從有噪聲的梯度中重建原始權重的更新。重要的是,我們使用歷史更新來尋找梯度載波矩陣,其最優性在線性回歸下得到嚴格證明,并通過深度學習任務得到經驗驗證。RGP顯著降低了內存成本并改進了實用程序。例如,我們首次能夠在BERT模型上應用差分隱私,并在e = 8的四個下游任務上實現了83.9%的平均精度,與非私有基準相比,損失在5%以內,但隱私泄漏風險要低得多。
圖結構數據的自監督學習最近引起了從無標記圖學習可泛化、可遷移移和魯棒表示的興趣。其中,圖對比學習(GraphCL)以良好的表征學習性能出現。不幸的是,與圖像數據不同的是,GraphCL的有效性依賴于特定的數據擴展,由于圖數據的多樣性,必須根據經驗或反復試驗的規則手動選擇每個數據集。這極大地限制了GraphCL更普遍的適用性。為了填補這一關鍵空白,本文提出了一個統一的雙層優化框架,在對特定圖形數據執行GraphCL時自動、自適應、動態地選擇數據增強。聯合增強優化(JOint Augmentation Optimization, JOAO)的通用框架被實例化為最小最大化優化。JOAO所做的增強的選擇通常與從手工調優中觀察到的以前的“最佳實踐”一致:但現在已經自動化,更加靈活和通用。此外,我們提出了一種新的增強感知投影頭機制,在每個訓練步驟中,通過選擇不同的投影頭對應不同的增強來路由輸出特征。大量實驗表明,JOAO在不同規模和類型的多個圖數據集上的性能與最先進的競爭對手(包括GraphCL)相當,有時甚至更好,而無需對增強選擇進行任何費力的數據集特定調優。我們在//github.com/ Shen-Lab/GraphCL_Automated發布了代碼。
本期小編挑選了幾篇ICML2021中關于GNN的論文(附論文下載地址)分享給大家~包括圖神經網絡規范化、圖表示能力增強、圖神經網絡的對抗攻擊能力、圖神經網絡與強化學習結合控制圖中動態傳播問題、分子圖卷積神經網絡 (GCNN) 的正則化方法~
論文清單
GraphNorm: A Principled Approach to Accelerating Graph Neural Network Training
Graph Convolution for Semi-Supervised Classification: Improved Linear Separability and Out-of-Distribution Generalization
A Collective Learning Framework to Boost GNN Expressiveness
How to Stop Epidemics: Controlling Graph Dynamics with Reinforcement Learning and Graph Neural Networks
Improving Molecular Graph Neural Network Explainability with Orthonormalization and Induced Sparsity
GraphNorm: A Principled Approach to Accelerating Graph Neural Network Training (論文下載地址://arxiv.org/abs/2009.03294)
Normalization有助于優化深度神經網絡。但不同的結構需要不同的規范化方法。在本文中,我們研究什么規范化方法對圖神經網絡 (GNN) 是有效的。首先,我們將現有的規范化方法應用到GNN中,并對其進行評估。與BatchNorm和LayerNorm相比,InstanceNorm的收斂速度更快。InstanceNorm 作為 GNN 的preconditioner,但由于圖數據集中的大量的批處理噪聲,BatchNorm 的這種預處理效果就顯得較弱。其次,我們證明了InstanceNorm中的shift操作會導致GNN對于高度正則圖的表達能力退化。我們提出了一種learnable shift的GraphNorm來解決這個問題。實驗表明,使用GraphNorm的GNN比使用其他規范化方法的GNN收斂更快。此外,GraphhNorm還改進了GNN的泛化能力,在圖分類中獲得了更好的性能。
A Collective Learning Framework to Boost GNN Expressiveness (論文下載地址:
圖神經網絡 (GNN) 最近已成功用于節點和圖分類任務。但 GNN 建模的是相鄰節點的屬性之間的依賴關系,而不是觀察到的節點標簽之間的依賴關系。在本文中,我們考慮在監督和半監督下考慮到標簽依賴性,使用 GNN 進行inductive node classification。當前的 GNN 不是通用的(即最具表現力的)圖表示模型,我們提出了一種通用的collective learning方法,增強現有 GNN 的表示能力。我們的模型將collective classification的思想與自監督學習相結合,并使用蒙特卡羅方法對embeddings進行采樣,以進行圖之間的歸納學習。我們評估了模型在五個真實網絡數據集上的性能,結果證明了模型可以顯著提高節點分類的準確度。
Information Obfuscation of Graph Neural Networks (論文下載地址:
圖神經網絡 (GNN) 的出現極大地改進了許多應用中的節點和圖表示學習能力,但鄰域聚合方法向試圖提取敏感屬性node-level信息的對手暴露了額外的漏洞。在本文中,我們研究了在使用圖結構數據進行學習時,利用信息混淆來保護敏感屬性的問題。我們提出了一個基于total variation和 Wasserstein 距離的對抗性訓練框架,用于局部過濾掉預先確定的敏感屬性。該方法可以對推理攻擊形成了強大的防御。理論上,我們分析了該框架對抗最壞情況的有效性,并描述了最大化預測準確性和最小化信息泄漏之間的內在權衡。在來自推薦系統、知識圖譜和量子化學的多個數據集上進行實驗,實驗表明,該方法在為下游任務生成 GNN 編碼器的同時,可以為各種圖結構和任務提供強大的防御能力。
How to Stop Epidemics: Controlling Graph Dynamics with Reinforcement Learning and Graph Neural Networks
(論文下載地址:
我們考慮控制圖中partially-observed的動態傳播過程的問題。例如,在安排病毒測試或選擇應該被隔離的節點以遏制流行病蔓延;手動檢查發布的文章來檢測在線網絡上傳播的虛假新聞;鼓勵產品的傳播而進行的有針對性的營銷,在這些情況下,都會遇到這個問題。當只能測試或隔離一小部分人口時,遏制傳播并限制感染人群的比例變得具有挑戰性。
為了應對這一挑戰,我們將此問題建模為圖上的順序決策問題。面對指數級狀態空間、組合動作空間和部分可觀察性,我們提出了 RLGN,這是一種新穎的易處理強化學習 (RL) 方法,用于確定節點是否需要測試,并使用圖神經網絡 (GNN) 對圖節點進行排序。我們在三種類型的社交網絡中評估這種方法:社區結構、優先連接依賴preferential attachment 和 基于真實 cellular tracking的統計數據。實驗表明,RLGN始終優于所有基線方法。與使用相同資源的非學習方法相比,在時間圖上使用RL進行優先測試可以使健康人群的數量增加25%,控制疫情的頻率比監督方法高30%,比非學習基線高2.5倍。
Improving Molecular Graph Neural Network Explainability with Orthonormalization and Induced Sparsity (論文下載地址:
對分子的哪些部分驅動了分子圖卷積神經網絡 (GCNN) 的預測進行合理解釋是很困難。針對這個問題,論文提出了兩種正則化方法,用于訓練GCNN。Batch Representation Orthonormalization (BRO) 和 Gini regularization。受molecular orbital theory的啟發,BRO鼓勵用圖卷積運算生成正交節點嵌入。Gini regularization應用于輸出層的權重,并約束模型可用于進行預測的維數。Gini 和 BRO 正則化方法可以提高GCNN 歸因方法在人工基準數據集上的準確性。在現實世界中,我們證明了藥物化學家更傾向于從正則化模型中提取解釋。雖然論文只在 GCNN 中研究這兩種正則化方法,但Gini 和 BRO 正則化方法都可以應用于其他類型的神經網絡中。
由于消息傳遞—圖神經網絡(MPNN)應用在稀疏圖時相對于節點數量具有線性復雜性,因此它們已被廣泛使用, 不過它們的理論表達能力bounded by一階 Weisfeiler-Lehman 檢驗 (1-WL)。
在本文中,我們表明,如果自定義特征值相關的非線性函數設計圖卷積supports并使用任意大的感受野進行掩蔽,則 MPNN 在理論上比 1-WL 測試更強大。實驗表明該方法與3-WL 同樣強大,同時能夠保持空間局部化(spatially localized)。此外,通過設計自定義濾波器函數,輸出可以具有各種頻率分量,從而允許卷積過程學習給定輸入圖信號與其相關屬性的不同關系。
目前,最好的 3-WL 等效圖神經網絡的計算復雜度為 O(n^3 ),內存使用量為 O(n^2 ),考慮非局部更新機制,并且不提供輸出的頻譜。但是本文所提出的方法克服了所有上述問題,并在許多下游任務中達到了最先進的結果。
最近利用圖神經網絡來處理圖匹配任務的研究已經顯示出了良好的結果。離散分布學習的最新進展為學習圖匹配模型提供了新的機會。在此工作中,我們提出了一個新的模型,隨機迭代圖匹配(SIGMA),以解決圖匹配問題。我們的模型定義了一個圖對匹配的分布,因此模型可以探索更廣泛的可能的匹配。我們進一步介紹了一種新的多步匹配方法,該方法學習如何逐步地改進圖對的匹配結果。該模型還包括虛擬節點,因此模型不必為沒有對應關系的節點尋找匹配。我們通過可擴展的隨機優化方法將該模型與數據擬合。我們在合成圖形數據集以及生物化學和計算機視覺應用中進行了廣泛的實驗。在所有任務中,我們的結果表明,與最先進的模型相比,SIGMA可以產生顯著改善的圖匹配結果。消融實驗研究證實,我們的每個組件(隨機訓練、迭代匹配和虛擬節點)提供了顯著的改進。
在不依賴下游任務的情況下評估學習表征的質量仍然是表示學習的挑戰之一。在這項工作中,我們提出幾何成分分析(GeomCA)算法,評估表示空間的幾何和拓撲性質。GeomCA可以應用于任何維度的表示,獨立于生成它們的模型。我們通過分析從各種場景中獲得的表征來證明其適用性,如對比學習模型、生成模型和監督學習模型。
題目: Lorentzian Graph Convolutional Networks 會議: WWW 2021
圖卷積神經網絡(GCN)最近受到了大量研究者的關注。大多數GCN使用歐幾里得幾何學習節點的特征表示,但是對于具有無標度或層次結構的圖,歐幾里得幾何可能會產生較高的失真。近來,一些GCN使用非歐幾里得幾何,例如雙曲幾何,解決以上問題。盡管雙曲GCN展示了其性能,但是現有的雙曲圖操作實際上不能嚴格遵循雙曲幾何,這可能會限制雙曲幾何的能力,從而損害雙曲GCN的性能。 在本文中,我們提出了一種新穎的洛倫茲圖卷積網絡(LGCN),它在雙曲空間的雙曲面模型上設計了統一的圖操作框架。從該框架派生出嚴格的雙曲圖操作,包括特征變換和非線性激活,以確保變換后的節點特征遵循雙曲幾何。此外,基于洛倫茲距離的質心,我們提出了一種優雅的雙曲鄰居聚合方式,以確保被聚合的節點特征滿足數學意義。并且,我們從理論上證明了一些提出的操作等同于在另一類雙曲幾何中的定義,表明所提出的方法填補了雙曲面模型缺乏嚴謹的圖操作的空白。
論文題目:Graph Neural Networks Inspired by Classical Iterative Algorithms
作者:Yongyi Yang,Tang Liu,Yangkun Wang,Jinjing Zhou,Quan Gan,魏哲巍,Zheng Zhang,Zengfeng Huang,David Wipf
論文概述:圖神經網絡(GNN)作為建模實體間關系的代表性方法,已被成功應用于多個領域。然而現有方法仍存在一些局限性,例如過平滑問題、長距離依賴性問題等。本篇論文基于兩種經典迭代算法提出了首個unfolding視角的GNN集成框架TWIRLS,首先通過模仿近似梯度下降設計了一個可擴展的基礎GNN架構,能夠允許任意的傳播步驟以捕捉長距離依賴關系同時有效避免過平滑問題。在此基礎上,結合迭代加權最小二乘法的更新規則提出了新的注意力機制系列,無需引入額外參數或設計啟發式方法而對邊的不確定性表現魯棒。同時,本篇論文進行了大量實驗旨在評估不同情況下算法的性能,實驗結果表明,即使與特定任務SOTA模型相比,本篇論文所提算法均取得具有競爭力或更高的節點分類精度。
GNN的表示能力和泛化能力得到了廣泛的研究。但是,它們的優化其實研究的很少。通過研究GNN的梯度動力學,我們邁出分析GNN訓練的第一步。具體來說,首先,我們分析線性化(linearized)的GNN,并證明了:盡管它的訓練不具有凸性,但在我們通過真實圖驗證的溫和假設下,可以保證以線性速率收斂到全局最小值。其次,我們研究什么會影響GNN的訓練速度。我們的結果表明,通過跳過(skip)連接,更深的深度和/或良好的標簽分布,可以隱式地加速GNN的訓練。實驗結果證實,我們針對線性GNN的理論結果與非線性GNN的訓練行為一致。我們的結果在優化方面為具有跳過連接的GNN的成功提供了第一個理論支持,并表明具有跳過連接的深層GNN在實踐中將很有希望。