最近利用圖神經網絡來處理圖匹配任務的研究已經顯示出了良好的結果。離散分布學習的最新進展為學習圖匹配模型提供了新的機會。在此工作中,我們提出了一個新的模型,隨機迭代圖匹配(SIGMA),以解決圖匹配問題。我們的模型定義了一個圖對匹配的分布,因此模型可以探索更廣泛的可能的匹配。我們進一步介紹了一種新的多步匹配方法,該方法學習如何逐步地改進圖對的匹配結果。該模型還包括虛擬節點,因此模型不必為沒有對應關系的節點尋找匹配。我們通過可擴展的隨機優化方法將該模型與數據擬合。我們在合成圖形數據集以及生物化學和計算機視覺應用中進行了廣泛的實驗。在所有任務中,我們的結果表明,與最先進的模型相比,SIGMA可以產生顯著改善的圖匹配結果。消融實驗研究證實,我們的每個組件(隨機訓練、迭代匹配和虛擬節點)提供了顯著的改進。
雖然許多現有的圖神經網絡(gnn)已被證明可以執行基于?2的圖平滑,從而增強全局平滑,但在本工作中,我們旨在通過基于?1的圖平滑進一步增強GNN的局部平滑自適應。在此基礎上,提出了一種基于?1和?2圖平滑的彈性GNN。特別地,我們提出了一種新的、通用的消息傳遞方案。該消息傳遞算法不僅有利于反向傳播訓練,而且在保證理論收斂的前提下達到了預期的平滑特性。在半監督學習任務上的實驗表明,所提出的彈性GNN在基準數據集上具有較好的自適應能力,對圖對抗攻擊具有顯著的魯棒性。
我們提出了圖神經擴散(GRAND),它將圖的深度學習視為一個連續的擴散過程,并將圖神經網絡(GNN)視為一個潛在的PDE的離散化。在我們的模型中,層結構和拓撲對應于時間和空間算子的離散化選擇。我們的方法允許有原則地開發一大類新的GNN,這些GNN能夠解決圖學習模型的常見困境,如深度、過平滑和瓶頸。我們的模型成功的關鍵是相對于數據攝動的穩定性,這在隱式和顯式離散化方案中都得到了解決。我們開發了線性和非線性版本的GRAND,在許多標準圖基準上實現了有競爭性的結果。
//proceedings.mlr.press/v139/chamberlain21a/chamberlain21a.pdf
圖表示學習算法的歸納偏差通常被編碼在其嵌入空間的背景幾何中。在本文中,我們證明了一般有向圖可以有效地用一個包含三個成分的嵌入模型來表示: 一個偽黎曼度量結構,一個非平凡的全局拓撲,以及一個明確包含嵌入空間中首選方向的唯一似然函數。我們將該方法應用于自然語言應用和生物學中一系列合成的和真實的有向圖的鏈接預測任務,從而證明了該方法的表征能力。特別地,我們證明了低維柱面閔可夫斯基和反Sitter時空可以產生與高維彎曲黎曼流形相同或更好的圖表示。
基于注意力的神經網絡已經在許多任務上取得了最先進的成果。這類模型大多采用確定性注意力,而隨機注意力由于優化困難或模型設計復雜,研究較少。本文介紹了貝葉斯注意力信念網絡,該網絡通過將非歸一化的注意力權值建立在伽馬分布的層次上來構造解碼器網絡,通過將具有確定性-向上-隨機-向下結構的Weibull分布疊加來近似后變分布來構造編碼器網絡。所得到的自編碼網絡可以以一種變分下界的可微方式進行優化。任何具有確定性注意力的模型,包括預訓練過的模型,都可以簡單地轉換為所提出的貝葉斯注意力信念網絡。在各種語言理解任務中,我們證明了我們的方法在準確性、不確定性估計、跨域泛化和對抗攻擊的魯棒性方面優于確定性注意和最新的隨機注意力。我們進一步證明了該方法在神經機器翻譯和視覺問答方面的普遍適用性,顯示了將該方法整合到各種注意力相關任務中的巨大潛力。
由于消息傳遞—圖神經網絡(MPNN)應用在稀疏圖時相對于節點數量具有線性復雜性,因此它們已被廣泛使用, 不過它們的理論表達能力bounded by一階 Weisfeiler-Lehman 檢驗 (1-WL)。
在本文中,我們表明,如果自定義特征值相關的非線性函數設計圖卷積supports并使用任意大的感受野進行掩蔽,則 MPNN 在理論上比 1-WL 測試更強大。實驗表明該方法與3-WL 同樣強大,同時能夠保持空間局部化(spatially localized)。此外,通過設計自定義濾波器函數,輸出可以具有各種頻率分量,從而允許卷積過程學習給定輸入圖信號與其相關屬性的不同關系。
目前,最好的 3-WL 等效圖神經網絡的計算復雜度為 O(n^3 ),內存使用量為 O(n^2 ),考慮非局部更新機制,并且不提供輸出的頻譜。但是本文所提出的方法克服了所有上述問題,并在許多下游任務中達到了最先進的結果。
無監督多對象表示學習依賴于歸納偏差來指導發現以對象為中心的表示。然而,我們觀察到,學習這些表征的方法要么是不切實際的,因為長時間的訓練和大量的記憶消耗,要么是放棄了關鍵的歸納偏見。在這項工作中,我們引入了EfficientMORL,一個有效的無監督學習框架的對象中心表示。我們證明了同時要求對稱性和解纏性所帶來的優化挑戰實際上可以通過高成本的迭代攤銷推理來解決,通過設計框架來最小化對它的依賴。我們采用兩階段的方法進行推理:首先,分層變分自編碼器通過自底向上的推理提取對稱的解纏表示,其次,輕量級網絡使用自頂向下的反饋來改進表示。在訓練過程中所采取的細化步驟的數量根據課程減少,因此在測試時零步驟的模型達到了99.1%的細化分解性能。我們在標準多目標基準上演示了強大的對象分解和解纏,同時實現了比以前最先進的模型快一個數量級的訓練和測試時間推斷。
在不依賴下游任務的情況下評估學習表征的質量仍然是表示學習的挑戰之一。在這項工作中,我們提出幾何成分分析(GeomCA)算法,評估表示空間的幾何和拓撲性質。GeomCA可以應用于任何維度的表示,獨立于生成它們的模型。我們通過分析從各種場景中獲得的表征來證明其適用性,如對比學習模型、生成模型和監督學習模型。
我們研究計算化學中的一個基本問題,即分子構象生成,試圖從二維分子圖中預測穩定的三維結構。現有的機器學習方法通常首先預測原子之間的距離,然后生成滿足這些距離的3D結構,而在3D坐標生成過程中,預測距離中的噪聲可能會導致額外的誤差。本文受傳統分子動力學力場模擬方法的啟發,提出了一種直接估算原子坐標對數密度梯度場的新方法ConfGF。估計的梯度場允許通過朗之萬動力學直接生成穩定的構象。然而,由于梯度場是旋轉平移等變的,因此該問題非常具有挑戰性。我們注意到估計原子坐標的梯度場可以轉化為估計原子間距離的梯度場,因此開發了一種基于最近的基于分數的生成模型的新算法來有效地估計這些梯度。跨多個任務的實驗結果表明,ConfGF顯著優于以前的最先進基線。
論文題目:Graph Neural Networks Inspired by Classical Iterative Algorithms
作者:Yongyi Yang,Tang Liu,Yangkun Wang,Jinjing Zhou,Quan Gan,魏哲巍,Zheng Zhang,Zengfeng Huang,David Wipf
論文概述:圖神經網絡(GNN)作為建模實體間關系的代表性方法,已被成功應用于多個領域。然而現有方法仍存在一些局限性,例如過平滑問題、長距離依賴性問題等。本篇論文基于兩種經典迭代算法提出了首個unfolding視角的GNN集成框架TWIRLS,首先通過模仿近似梯度下降設計了一個可擴展的基礎GNN架構,能夠允許任意的傳播步驟以捕捉長距離依賴關系同時有效避免過平滑問題。在此基礎上,結合迭代加權最小二乘法的更新規則提出了新的注意力機制系列,無需引入額外參數或設計啟發式方法而對邊的不確定性表現魯棒。同時,本篇論文進行了大量實驗旨在評估不同情況下算法的性能,實驗結果表明,即使與特定任務SOTA模型相比,本篇論文所提算法均取得具有競爭力或更高的節點分類精度。
圖神經網絡(GNN)中缺乏各向異性核極大地限制了其表達能力,導致了一些眾所周知的問題,如過度平滑。為了克服這個限制,我們提出了第一個全局一致的各向異性核GNN,允許根據拓撲導出的方向流定義圖卷積。首先,通過在圖中定義矢量場,我們提出了一種方法應用方向導數和平滑投影節點特定的信息到場。然后,我們提出用拉普拉斯特征向量作為這種向量場。在Weisfeiler-Lehman 1-WL檢驗方面,我們證明了該方法可以在n維網格上泛化CNN,并證明比標準的GNN更有分辨力。我們在不同的標準基準上評估了我們的方法,發現在CIFAR10圖數據集上相對誤差減少了8%,在分子鋅數據集上相對誤差減少了11%到32%,在MolPCBA數據集上相對精度提高了1.6%。這項工作的重要成果是,它使圖網能夠以一種無監督的方式嵌入方向,從而能夠更好地表示不同物理或生物問題中的各向異性特征。