亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

在不依賴下游任務的情況下評估學習表征的質量仍然是表示學習的挑戰之一。在這項工作中,我們提出幾何成分分析(GeomCA)算法,評估表示空間的幾何和拓撲性質。GeomCA可以應用于任何維度的表示,獨立于生成它們的模型。我們通過分析從各種場景中獲得的表征來證明其適用性,如對比學習模型、生成模型和監督學習模型。

//www.zhuanzhi.ai/paper/efa6de0f034d485bbb30b2a45947ea18

付費5元查看完整內容

相關內容

表示學習是通過利用訓練數據來學習得到向量表示,這可以克服人工方法的局限性。 表示學習通常可分為兩大類,無監督和有監督表示學習。大多數無監督表示學習方法利用自動編碼器(如去噪自動編碼器和稀疏自動編碼器等)中的隱變量作為表示。 目前出現的變分自動編碼器能夠更好的容忍噪聲和異常值。 然而,推斷給定數據的潛在結構幾乎是不可能的。 目前有一些近似推斷的策略。 此外,一些無監督表示學習方法旨在近似某種特定的相似性度量。提出了一種無監督的相似性保持表示學習框架,該框架使用矩陣分解來保持成對的DTW相似性。 通過學習保持DTW的shaplets,即在轉換后的空間中的歐式距離近似原始數據的真實DTW距離。有監督表示學習方法可以利用數據的標簽信息,更好地捕獲數據的語義結構。 孿生網絡和三元組網絡是目前兩種比較流行的模型,它們的目標是最大化類別之間的距離并最小化了類別內部的距離。

用反向傳播方法訓練深度殘差神經網絡(ResNets)的記憶成本隨網絡深度的增加而線性增加。規避這個問題的一種方法是使用可逆的架構。本文提出通過增加動量項來改變ResNet的正向規則。所得到的網絡,動量剩余神經網絡(動量ResNets)是可逆的。與以前的可逆架構不同,它們可以作為任何現有的ResNet塊的替代。我們證明動量ResNets可以被解釋為二階常微分方程(ode),并準確地描述了如何逐步增加動量增加動量ResNets的表示能力。我們的分析顯示,Momentum ResNets可以學習任何線性映射到一個倍增因子,而ResNets不能。在優化設置的學習中,需要收斂到一個不動點,我們從理論上和經驗上證明了我們的方法成功,而現有的可逆架構失敗。我們在CIFAR和ImageNet上展示了Momentum ResNets與ResNets具有相同的精度,但占用的內存要小得多,并展示了預訓練的Momentum ResNets對模型的微調是有前途的。

//www.zhuanzhi.ai/paper/867b3834167694dab97cf812135dc273

付費5元查看完整內容

雖然許多現有的圖神經網絡(gnn)已被證明可以執行基于?2的圖平滑,從而增強全局平滑,但在本工作中,我們旨在通過基于?1的圖平滑進一步增強GNN的局部平滑自適應。在此基礎上,提出了一種基于?1和?2圖平滑的彈性GNN。特別地,我們提出了一種新的、通用的消息傳遞方案。該消息傳遞算法不僅有利于反向傳播訓練,而且在保證理論收斂的前提下達到了預期的平滑特性。在半監督學習任務上的實驗表明,所提出的彈性GNN在基準數據集上具有較好的自適應能力,對圖對抗攻擊具有顯著的魯棒性。

//www.zhuanzhi.ai/paper/09bea7a76036948cbbba30e86af56ef8

付費5元查看完整內容

本文介紹了核持續學習,這是一種簡單但有效的持續學習變體,利用核方法的非參數特性來處理災難性遺忘。我們使用情景記憶單元來存儲每個任務的樣本子集,以學習基于核嶺回歸的任務分類器。這并不需要記憶重放,并且系統地避免了分類器中的任務干擾。我們進一步引入變分隨機特征來學習每個任務的數據驅動內核。為此,我們將核持續學習表述為一個變分推理問題,其中隨機傅里葉基被合并為潛在變量。從每個任務的核心推斷出隨機傅立葉基上的后驗分布。通過這種方式,我們能夠針對每個任務生成更多的信息內核,更重要的是,coreset的大小可以減少,以實現更緊湊的記憶,從而在情景記憶的基礎上實現更有效的持續學習。對四個基準的廣泛評估證明了內核對持續學習的有效性和前景。

//arxiv.org/abs/2107.05757

付費5元查看完整內容

最近的對比表示學習方法依賴于估計一個上下文的多個視圖之間的互信息。例如,我們可以通過應用數據增強獲得給定圖像的多個視圖,或者我們可以將序列分割成包含序列中某個步驟的過去和未來的視圖。MI的下界比較容易優化,但當評估大量的MI有強烈的低估偏見。我們提出將完整的MI估計問題分解為一個較小的估計問題。這個表達式包含一個無條件和條件MI項的和,每個測量總的MI的適度塊,這有助于通過對比界近似。為了使和最大化,我們給出了條件MI的一個比較下界,它可以有效地逼近。我們將我們的一般方法稱為互信息分解估計(DEMI)。我們證明了DEMI可以捕獲比標準的非分解對比界在綜合設置更大數量的MI,并在視覺域的對話生成學習更好的表示。

//www.zhuanzhi.ai/paper/8843e06299bf34535700e85e6c684c37

付費5元查看完整內容

圖表示學習算法的歸納偏差通常被編碼在其嵌入空間的背景幾何中。在本文中,我們證明了一般有向圖可以有效地用一個包含三個成分的嵌入模型來表示: 一個偽黎曼度量結構,一個非平凡的全局拓撲,以及一個明確包含嵌入空間中首選方向的唯一似然函數。我們將該方法應用于自然語言應用和生物學中一系列合成的和真實的有向圖的鏈接預測任務,從而證明了該方法的表征能力。特別地,我們證明了低維柱面閔可夫斯基和反Sitter時空可以產生與高維彎曲黎曼流形相同或更好的圖表示。

//www.zhuanzhi.ai/paper/3582fcbd7b41d17b32f87c148733df66

付費5元查看完整內容

多任務學習(Multi-task learning, MTL)旨在通過對多個相關任務的聯合學習來提高任務的泛化能力。作為對比,除了聯合訓練方案,現代元學習允許在測試階段進行一些不可見的、標簽有限的任務,希望能夠快速適應它們。盡管MTL和元學習在問題表述上存在細微的差異,但兩種學習范式都認為,現有訓練任務之間的共享結構可以導致更好的泛化和適應性。本文通過理論分析和實證調查,進一步了解了這兩種學習模式之間的密切聯系。理論上,我們首先證明了MTL與一類基于梯度的元學習(GBML)算法具有相同的優化公式。然后我們證明了對于具有足夠深度的過參數化神經網絡,MTL和GBML學習到的預測函數是接近的。特別是,這一結果表明,這兩個模型給出的預測是相似的,在相同的看不見的任務。通過實證,我們證實了我們的理論發現,通過適當的實現,MTL可以在一組少樣本分類基準上與先進的GBML算法相媲美。由于現有的GBML算法經常涉及代價高昂的二階兩級優化,我們的一階MTL方法在大型數據集(如微型imagenet)上快了一個數量級。我們相信,這項工作可以幫助彌合這兩種學習模式之間的差距,并提供一個計算效率高的替代GBML,也支持快速任務適應。

//www.zhuanzhi.ai/paper/5d6fac14a84a1a6163d80eb46284b0af

付費5元查看完整內容

無監督多對象表示學習依賴于歸納偏差來指導發現以對象為中心的表示。然而,我們觀察到,學習這些表征的方法要么是不切實際的,因為長時間的訓練和大量的記憶消耗,要么是放棄了關鍵的歸納偏見。在這項工作中,我們引入了EfficientMORL,一個有效的無監督學習框架的對象中心表示。我們證明了同時要求對稱性和解纏性所帶來的優化挑戰實際上可以通過高成本的迭代攤銷推理來解決,通過設計框架來最小化對它的依賴。我們采用兩階段的方法進行推理:首先,分層變分自編碼器通過自底向上的推理提取對稱的解纏表示,其次,輕量級網絡使用自頂向下的反饋來改進表示。在訓練過程中所采取的細化步驟的數量根據課程減少,因此在測試時零步驟的模型達到了99.1%的細化分解性能。我們在標準多目標基準上演示了強大的對象分解和解纏,同時實現了比以前最先進的模型快一個數量級的訓練和測試時間推斷。

//www.zhuanzhi.ai/paper/f29b88ee56208601f787cc791e3c7414

付費5元查看完整內容

本文提出了一種基于框架小波變換(framelet transforms)的圖神經網絡。這種方法為結構化的圖數據提供了多尺度表示。我們利用這種變換方式把圖數據特征分解到低通和高通頻率(low-pass and high-pass frequency)空間上,并利用這些頻率信息定義相應的框架小波圖卷積層(graph framelet convolutional layer)。此外,圖上的特征通過框架小波分解,聚合出了低通和高通光譜(spectra)的信息。我們利用這一特征,進一步提出了相應的圖池化(graph pooling)方法。這種池化方法同時考慮了圖數據的特征信息(feature information)和幾何信息(topology information)。

我們在多種節點預測和圖預測任務上對本文提出的框架小波卷積和池化方法的圖神經網絡進行了測試。實驗結果表明,我們的方法在多種應用下都可以達到SOTA的表現。

//www.zhuanzhi.ai/paper/87ac4a31c20270d43bebe5279aca9ca2

付費5元查看完整內容

圖神經網絡(GNN)中缺乏各向異性核極大地限制了其表達能力,導致了一些眾所周知的問題,如過度平滑。為了克服這個限制,我們提出了第一個全局一致的各向異性核GNN,允許根據拓撲導出的方向流定義圖卷積。首先,通過在圖中定義矢量場,我們提出了一種方法應用方向導數和平滑投影節點特定的信息到場。然后,我們提出用拉普拉斯特征向量作為這種向量場。在Weisfeiler-Lehman 1-WL檢驗方面,我們證明了該方法可以在n維網格上泛化CNN,并證明比標準的GNN更有分辨力。我們在不同的標準基準上評估了我們的方法,發現在CIFAR10圖數據集上相對誤差減少了8%,在分子鋅數據集上相對誤差減少了11%到32%,在MolPCBA數據集上相對精度提高了1.6%。這項工作的重要成果是,它使圖網能夠以一種無監督的方式嵌入方向,從而能夠更好地表示不同物理或生物問題中的各向異性特征。

//www.zhuanzhi.ai/paper/f415f74f0c50433285945af702223eaf

付費5元查看完整內容

在監督模式下訓練的深度模型在各種任務上都取得了顯著的成功。在標記樣本有限的情況下,自監督學習(self-supervised learning, SSL)成為利用大量未標記樣本的新范式。SSL在自然語言和圖像學習任務中已經取得了很好的效果。最近,利用圖神經網絡(GNNs)將這種成功擴展到圖數據的趨勢。

在本綜述論文中,我們提供了使用SSL訓練GNN的不同方法的統一回顧。具體來說,我們將SSL方法分為對比模型和預測模型。

在這兩類中,我們都為方法提供了一個統一的框架,以及這些方法在框架下的每個組件中的不同之處。我們對GNNs SSL方法的統一處理揭示了各種方法的異同,為開發新的方法和算法奠定了基礎。我們還總結了不同的SSL設置和每個設置中使用的相應數據集。為了促進方法開發和實證比較,我們為GNNs中的SSL開發了一個標準化測試床,包括通用基線方法、數據集和評估指標的實現。

//www.zhuanzhi.ai/paper/794d1d27363c4987efd37c67ec710a18

引言

深度模型以一些數據作為輸入,并訓練輸出期望的預測。訓練深度模型的一種常用方法是使用有監督的模式,在這種模式中有足夠的輸入數據和標簽對。

然而,由于需要大量的標簽,監督訓練在許多現實場景中變得不適用,標簽是昂貴的,有限的,甚至是不可用的。

在這種情況下,自監督學習(SSL)支持在未標記數據上訓練深度模型,消除了對過多注釋標簽的需要。當沒有標記數據可用時,SSL可以作為一種從未標記數據本身學習表示的方法。當可用的標記數據數量有限時,來自未標記數據的SSL可以用作預訓練過程,在此過程之后,標記數據被用來為下游任務微調預訓練的深度模型,或者作為輔助訓練任務,有助于任務的執行。

最近,SSL在數據恢復任務中表現出了良好的性能,如圖像超分辨率[1]、圖像去噪[2,3,4]和單細胞分析[5]。它在語言序列[6,7,8]、圖像[9,10,11,12]、帶有序列模型的圖[13,14]等不同數據類型的表示學習方面也取得了顯著進展。這些方法的核心思想是定義前置訓練任務,以捕獲和利用輸入數據的不同維度之間的依賴關系,如空間維度、時間維度或通道維度,具有魯棒性和平滑性。Doersch等人以圖像域為例,Noroozi和Favaro[16],以及[17]等人設計了不同的前置任務來訓練卷積神經網絡(CNNs)從一幅圖像中捕捉不同作物之間的關系。Chen等人的[10]和Grill等人的[18]訓練CNN捕捉圖像的不同增強之間的依賴關系。

根據訓練任務的設計,SSL方法可以分為兩類;即對比模型和預測模型。這兩個類別之間的主要區別是對比模型需要數據-數據對來進行訓練,而預測模型需要數據-標簽對,其中標簽是自生成的,如圖1所示。對比模型通常利用自監督來學習數據表示或對下游任務進行預訓練。有了這些數據-數據對,對比模型就能區分出正面對和負面對。另一方面,預測模型是在監督的方式下訓練的,其中標簽是根據輸入數據的某些屬性或選擇數據的某些部分生成的。預測模型通常由一個編碼器和一個或多個預測頭組成。當應用于表示學習或預訓練方法時,預測模型的預測頭在下游任務中被刪除。

在圖數據分析中,SSL可能非常重要,它可以利用大量未標記的圖,如分子圖[19,20]。隨著圖神經網絡的快速發展[21,22,23,24,25,26,27],圖神經網絡的基本組成[28,29,30,31,32,33]等相關領域[34,35]得到了深入的研究,并取得了長足的進展。相比之下,在GNNs上應用SSL仍然是一個新興領域。由于數據結構的相似性,很多GNN的SSL方法都受到了圖像領域方法的啟發,如DGI[36]和圖自動編碼器[37]。然而,由于圖結構數據的唯一性,在GNN上應用SSL時存在幾個關鍵的挑戰。為了獲得良好的圖表示并進行有效的預訓練,自監督模型可以從圖的節點屬性和結構拓撲中獲取必要的信息。對于對比模型來說,由于自監督學習的GPU內存問題并不是圖形的主要關注點,關鍵的挑戰在于如何獲得良好的圖形視圖以及針對不同模型和數據集的圖形編碼器的選擇。對于預測模型,至關重要的是應該生成什么標簽,以便了解非平凡的表示,以捕獲節點屬性和圖結構中的信息。

為了促進方法論的發展和促進實證比較,我們回顧GNN的SSL方法,并為對比和預測方法提供了統一的觀點。我們對這一問題的統一處理,可以揭示現有方法的異同,啟發新的方法。我們還提供了一個標準化的測試,作為一個方便和靈活的開源平臺,用于進行實證比較。我們將本次綜述論文總結如下:

  • 我們提供關于圖神經網絡SSL方法的徹底和最新的回顧。據我們所知,我們的綜述查首次回顧了關于圖數據的SSL。

  • 我們將GNN現有的對比學習方法與一般框架統一起來。具體來說,我們從互信息的角度統一對比目標。從這個新的觀點來看,不同的對比學習方式可以看作是進行三種轉換來獲得觀點。我們回顧了理論和實證研究,并提供見解來指導框架中每個組成部分的選擇。

  • 我們將SSL方法與自生成標簽進行分類和統一,作為預測學習方法,并通過不同的標簽獲取方式來闡明它們之間的聯系和區別。

  • 我們總結了常用的SSL任務設置以及不同設置下常用的各類數據集,為未來方法的發展奠定了基礎。

  • 我們開發了一個用于在GNN上應用SSL的標準化測試平臺,包括通用基準方法和基準的實現,為未來的方法提供了方便和靈活的定制。

付費5元查看完整內容
北京阿比特科技有限公司