亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

自Goodfellow等人2014年開創性的工作以來,生成式對抗網(GAN)就受到了相當多的關注。這種關注導致了GANs的新思想、新技術和新應用的爆炸。為了更好地理解GANs,我們需要理解其背后的數學基礎。本文試圖從數學的角度對GANs進行概述。許多學數學的學生可能會發現關于GAN的論文更難以完全理解,因為大多數論文是從計算機科學和工程師的角度寫的。這篇論文的目的是用他們更熟悉的語言來介紹GANs。

付費5元查看完整內容

相關內容

有很多關于傅里葉變換的書; 然而,很少有面向多學科讀者的。為工程師寫一本關于代數概念的書是一個真正的挑戰,即使不是太難的事,也要比寫一本關于理論應用的代數書更有挑戰性。這就是本書試圖面對的挑戰。因此,每個讀者都能夠創建一個“按菜單”的程序,并從語句或計算機程序中提取特定元素,以建立他們在該領域的知識,或將其運用于更具體的問題。

本文敘述是非常詳細的。讀者可能偶爾需要一些關于有限組的高級概念,以及對組行為的熟悉程度。我強調了那些重要的定義和符號。例如,從多個角度(交換群、信號處理、非交換群)研究卷積的概念,每次都要放在它的背景知識中。因此,不同的段落,雖然遵循一個邏輯遞進,有一個真正的統一,但可以根據自己需要選取閱讀。

第一章用群論的語言來解釋主要概念,并解釋后面將用到的符號。第二章將所得結果應用于各種問題,并首次接觸快速算法(例如Walsh 變換)。第三章對離散傅里葉變換進行了闡述。第四章介紹了離散傅里葉變換的各種應用,并構成了對前一章的必要補充,以充分理解所涉及的機制以及在實際情況中使用。第五章圍繞傅里葉變換提出了更多新穎的思想和算法,產生了大量的應用。第六章需要一些更高級的知識,特別是對有限場理論的一些熟悉。它研究了有限域中的值變換,并給出了在校正碼中的應用。最后兩章(最困難的一章),具有更多的代數性質,并建議推廣已經在有限非交換群的情況下進行的構造。第七章揭示了線性表示的理論。第八章和最后一章將這一理論應用于理論(群的簡潔性研究)和實際(光譜分析)領域。

//mathematical-tours.github.io/daft/

付費5元查看完整內容

這是一本關于理論計算機科學的本科入門課程的教科書。這本書的教育目的是傳達以下信息:

? 這種計算出現在各種自然和人為系統中,而不僅僅是現代的硅基計算機中。 ? 類似地,除了作為一個極其重要的工具,計算也作為一個有用的鏡頭來描述自然,物理,數學,甚至社會概念。 ? 許多不同計算模型的普遍性概念,以及代碼和數據之間的二元性相關概念。 ? 一個人可以精確地定義一個計算的數學模型,然后用它來證明(有時只是猜測)下界和不可能的結果。 ? 現代理論計算機科學的一些令人驚訝的結果和發現,包括np完備性的流行、交互作用的力量、一方面的隨機性的力量和另一方面的去隨機化的可能性、在密碼學中“為好的”使用硬度的能力,以及量子計算的迷人可能性。

付費5元查看完整內容

《數據科學與機器學習概論》的創建目標是為尋求了解數據科學的初學者、數據愛好者和經驗豐富的數據專業人士提供從頭到尾對使用開源編程進行數據科學應用開發的深刻理解。這本書分為四個部分: 第一部分包含對這本書的介紹,第二部分涵蓋了數據科學、軟件開發和基于開源嵌入式硬件的領域; 第三部分包括算法,是數據科學應用的決策引擎; 最后一節匯集了前三節中共享的概念,并提供了幾個數據科學應用程序示例。

^

  1. Introductory Chapter: Clustering with Nature-Inspired Optimization Algorithms 在本章中,讀者將學習如何為聚類問題應用優化算法。

By Pakize Erdogmus and Fatih Kayaalp

  1. Best Practices in Accelerating the Data Science Process in Python

By Deanne Larson

數據科學和大數據項目的數量正在增長,當前的軟件開發方法受到了挑戰,以支持和促進這些項目的成功和頻率。關于如何使用數據科學算法以及大數據的好處已經有了很多研究,但是關于可以利用哪些最佳實踐來加速和有效地交付數據科學和大數據項目的研究卻很少。大數據的數量、種類、速度和準確性等特點使這些項目復雜化。數據科學家可利用的開源技術的激增也會使情況變得復雜。隨著數據科學和大數據項目的增加,組織正在努力成功交付。本文討論了數據科學和大數據項目過程,過程中的差距,最佳實踐,以及這些最佳實踐如何在Python中應用,Python是一種常見的數據科學開源編程語言。

  1. Software Design for Success By Laura M. Castro

正如人們所期望的那樣,技術書籍的大部分時間都集中在技術方面。然而,這造成了一種錯覺,即技術在某種程度上是沒有偏見的,總是中性的,因此適合每個人。后來,當產品已經存在時,現實會證明我們不是這樣的。包含和表示在設計和建模階段是至關重要的。在本章中,我們將從架構的角度分析,哪些非功能性需求是最敏感的,以及如何開始討論它們以最大限度地提高我們的軟件產品成功的可能性。

  1. Embedded Systems Based on Open Source Platforms By Zlatko Bundalo and Dusanka Bundalo

  2. The K-Means Algorithm Evolution By Joaquín Pérez-Ortega, Nelva Nely Almanza-Ortega, Andrea Vega-Villalobos, Rodolfo Pazos-Rangel, Crispín Zavala-Díaz and Alicia Martínez-Rebollar

  3. “Set of Strings” Framework for Big Data Modeling By Igor Sheremet

  4. Investigation of Fuzzy Inductive Modeling Method in Forecasting Problems By Yu. Zaychenko and Helen Zaychenko

  5. Segmenting Images Using Hybridization of K-Means and Fuzzy C-Means Algorithms By Raja Kishor Duggirala

  6. The Software to the Soft Target Assessment By Lucia Mrazkova Duricova, Martin Hromada and Jan Mrazek

  7. The Methodological Standard to the Assessment of the Traffic Simulation in Real Time By Jan Mrazek, Martin Hromada and Lucia Duricova Mrazkova

  8. Augmented Post Systems: Syntax, Semantics, and Applications By Igor Sheremet

  9. Serialization in Object-Oriented Programming Languages By Konrad Grochowski, Micha? Breiter and Robert Nowak

本章描述了將對象狀態轉換為一種格式的過程,這種格式可以在當前使用的面向對象編程語言中傳輸或存儲。這個過程稱為序列化(封送處理);相反的稱為反序列化(反編組)進程。它是一種低級技術,應該考慮一些技術問題,如內存表示的大小、數字表示、對象引用、遞歸對象連接等。在本章中,我們將討論這些問題并給出解決辦法。我們還簡要回顧了當前使用的工具,并指出滿足所有需求是不可能的。最后,我們提供了一個新的支持向前兼容性的c++庫。

付費5元查看完整內容

在計算機視覺領域,對抗網絡(GANs)在生成逼真圖像方面取得了巨大的成功。最近,基于GAN的技術在基于時空的應用如軌跡預測、事件生成和時間序列數據估算中顯示出了良好的前景。雖然在計算機視覺中對GANs提出了一些評論,但沒有人考慮解決與時空數據相關的實際應用和挑戰。在這篇文章中,我們對GANs在時空數據方面的最新發展進行了全面的回顧。我們總結了在時空數據中流行的GAN架構,以及用GANs評估時空應用程序性能的常見做法。最后,提出了未來的研究方向,希望能對相關研究者有所幫助。

//arxiv.org/abs/2008.08903

概述:

時空屬性在交通運輸(shao2017travel)、社會科學(kupilik2018spatio)、犯罪學(rumi2019crime)等各個領域都很常見,其中,傳感器和大數據的激增迅速改變了時空屬性。大量的時空(ST)數據需要適當的處理技術來建立有效的應用。通常,處理表格數據或圖形數據的傳統方法在應用于時空數據集時表現不佳。原因主要有三層(wang2019deep): (1) ST數據通常是連續空間,而表或圖數據往往是離散的; (2) ST數據通常同時具有空間和時間屬性,其中數據相關性較復雜,傳統技術難以捕捉; (3) ST數據具有高度的自相關性,通常不像傳統數據那樣獨立生成數據樣本。

隨著深度學習的普及,許多神經網絡(如卷積神經網絡(CNN) (krizhevsky2012imagenet),遞歸神經網絡(RNN) (mikolov2010recurrent), Autoencoder (AE) (hinton2006 reduce),圖卷積網絡 (GCN) (kipf2016gcn))被提出并在ST數據建模方面取得了顯著的成功。ST數據的深度學習之所以被廣泛采用,是因為它在層次特征工程能力方面顯示出了潛力。在本次調研中,我們關注的是深度學習領域最有趣的突破之一——生成對抗網絡(GANs) (goodfellow2014generate)及其在ST數據方面的潛在應用。

GAN是一種對抗學習生成真實數據的生成模型。它由兩個組件(goodfellow2014)組成:generator G和discriminator D。G捕獲數據分布并從潛在變量z生成真實數據,D估計來自真實數據空間的數據概率。GAN采用了零和非合作博弈的概念,其中G和D被訓練為相互競爭,直到達到納什均衡。GAN在各領域獲得了相當大的關注,包括圖像(例如,圖像翻譯(isola2017image)超分辨率(ledig2017photo),聯合圖像生成(liu2016coupled),對象檢測(ehsani2018segan),改變面部屬性(donahue2017semantically))、視頻(例如,視頻一代(vondrick2016generating)),自然語言處理(例如,文本生成(lin2017adversarial),文本圖像(zhang2017stackgan))。

然而,直接使用圖像或視頻生成并不適用于ST數據的建模,如交通流、區域降雨和行人軌跡。一方面,圖像生成通常考慮輸入和輸出圖像之間的外觀,不能充分處理空間變化。另一方面,視頻生成考慮了圖像間的空間動態,但是,當對下一幅圖像的預測高度依賴于前一幅圖像時,時間變化沒有得到充分考慮(saxena2019d)。因此,將GANs成功應用于ST數據需要探索新的方法。

最近,GANs開始應用于ST數據。GANs在ST數據上的應用主要包括生成去識別的時空事件(saxena2019d);jin2019crime),時間序列歸責(luo2018multivariate;,軌跡預測(gupta2018;kosaraju2019), 圖表示 (wang2018;bojchevski2018)等。盡管GANs在計算機視覺領域取得了成功,但將GANs應用于ST數據預測具有挑戰性(saxena2019d)。例如,利用額外的信息,如景點(PoI),天氣信息在以前的研究中仍然是未觸及的。此外,與研究者可以依靠對生成的實例進行可視化檢查的圖像不同,GANs對ST數據的評估仍然是一個未解決的問題。在ST數據上采用傳統的GAN評價指標(saxena2019d;esteban2017real)。

一些研究回顧了最近關于ST數據或GAN在不同領域的應用問題的文獻。與從傳統關系數據挖掘模式相比,建模ST數據特別具有挑戰性,因為除了實際測量之外,它還具有空間和時間屬性。Atluri等人(atluri2018spatio)回顧了ST數據建模的流行問題和方法。提供了不同類型ST數據的分類、定義和描述數據實例的方法,以確定實際應用程序中任何類型ST數據的相關問題。他們還列出了通常研究的ST問題,并回顧了處理不同ST類型的獨特屬性的問題。Want等人(wang2019deep)回顧了將深度學習應用于ST數據挖掘任務的最新進展,并提出了一個利用深度學習模型解決ST數據建模問題的流程。Hong等人(hong2019生成)從不同的角度解釋了GANs,并列舉了常用的用于多任務的GAN變體。在(pan2019recent)中討論了GANs的最新進展,Wang et al. (wang2019生)提出了一種用于計算機視覺領域的GANs分類。特別是,Yi等人(yi2019生)回顧了GANs在醫學成像中的最新進展。

然而,上述工作回顧了ST數據建模問題或GANs在計算機視覺領域的最新進展。盡管許多研究者(saxena2019d;esteban2017real;gupta2018social;luo20192;已經用GANs對ST數據進行建模,在這個領域還沒有相關的調查來解決在ST數據應用中使用GANs的潛力。本文第一次全面概述了ST數據中的GANs,描述了GANs有希望的應用,并確定了在不同ST相關任務中成功應用尚需解決的一些挑戰。

付費5元查看完整內容

這本書的第五版繼續講述如何運用概率論來深入了解真實日常的統計問題。這本書是為工程、計算機科學、數學、統計和自然科學的學生編寫的統計學、概率論和統計的入門課程。因此,它假定有基本的微積分知識。

第一章介紹了統計學的簡要介紹,介紹了它的兩個分支:描述統計學和推理統計學,以及這門學科的簡短歷史和一些人,他們的早期工作為今天的工作提供了基礎。

第二章將討論描述性統計的主題。本章展示了描述數據集的圖表和表格,以及用于總結數據集某些關鍵屬性的數量。

為了能夠從數據中得出結論,有必要了解數據的來源。例如,人們常常假定這些數據是來自某個總體的“隨機樣本”。為了確切地理解這意味著什么,以及它的結果對于將樣本數據的性質與整個總體的性質聯系起來有什么意義,有必要對概率有一些了解,這就是第三章的主題。本章介紹了概率實驗的思想,解釋了事件概率的概念,并給出了概率的公理。

我們在第四章繼續研究概率,它處理隨機變量和期望的重要概念,在第五章,考慮一些在應用中經常發生的特殊類型的隨機變量。給出了二項式、泊松、超幾何、正規、均勻、伽瑪、卡方、t和F等隨機變量。

付費5元查看完整內容

當前關于機器學習方面的資料非常豐富:Andrew NG在Coursera上的機器學習教程、Bishop的《機器學習與模式識別》 和周志華老師的《機器學習》都是非常好的基礎教材;Goodfellow等人的《深度學習》是學習深度學習技術的首選資料;MIT、斯坦福等名校的公開課也非常有價值;一些主要會議的Tutorial、keynote也都可以在網上搜索到。然而,在對學生們進行培訓的過程中, 我深感這些資料專業性很強,但入門不易。一方面可能是由于語言障礙,另一個主要原因在于機器學習覆蓋 面廣,研究方向眾多,各種新方法層出不窮,初學者往往在各種復雜的名詞,無窮無盡的 算法面前產生畏難情緒,導致半途而廢。

本書的主體內容是基于該研討班形成的總結性資料。基于作者的研究背景,這本書很難說 是機器學習領域的專業著作,而是一本學習筆記,是從一個機器學習 技術使用者角度對機器學習知識的一次總結,并加入我們在本領域研究中的一些經驗和發現。與其說是一本教材,不如說是一本科普讀物, 用輕松活潑的語言和深入淺出的描述為初學者打開機器學習這扇充滿魔力的大門。打開大門以后,我們會發現這是個多么讓人激動人心的 領域,每天都有新的知識、新的思路、新的方法產生,每天都有令人振奮的成果。我們希望這本書 可以讓更多學生、工程師和相關領域的研究者對機器學習產生興趣,在這片異彩紛呈的海域上找到 屬于自己的那顆貝殼。

強烈推薦給所有初學機器學習的人,里面有: 書籍的pdf 課堂視頻 課堂slides 各種延伸閱讀 MIT等世界名校的slides 學生的學習筆記等

付費5元查看完整內容

【導讀】來自加州大學圣地亞哥分校《計算機視覺中的領域自適應》中生成式對抗網絡GAN介紹

付費5元查看完整內容

【導讀】慕尼黑大學開設的《高級深度學習》技術課程,重點介紹計算機視覺的前沿深度學習技術。最新一期介紹了《生成式對抗網絡》進展,講述了GAN的知識體系,值得關注。

付費5元查看完整內容

生成對抗網絡(GANs)是近年來受到廣泛關注的一類新型的深度生成模型。GANs通過圖像、音頻和數據隱式地學習復雜的高維分布。然而,在GANs的訓練中存在著主要的挑戰。由于網絡結構設計不當,使用目標函數和選擇優化算法,導致模式崩潰,不收斂和不穩定。最近,為了解決這些挑戰,一些更好地設計和優化GANs的解決方案已經被研究,基于重新設計的網絡結構、新的目標函數和替代優化算法的技術。據我們所知,目前還沒有一項綜述特別側重于這些解決辦法的廣泛和系統的發展。在這項研究中,我們進行了一個全面的綜述,在GANs的設計和優化解決方案提出,以處理GANs的挑戰。我們首先確定每個設計和優化技術中的關鍵研究問題,然后根據關鍵研究問題提出新的分類結構解決方案。根據分類,我們將詳細討論每個解決方案中提出的不同GANs變體及其關系。最后,在已有研究成果的基礎上,提出了這一快速發展領域的研究方向。

//arxiv.org/abs/2005.00065

概述

深度生成模型(DGMs),如受限玻爾茲曼機(RBMs)、深度信念網絡(DBNs)、深度玻爾茲曼機(DBMs)、去噪自編碼器(DAE)和生成隨機網絡(GSN),最近因捕獲音頻、圖像或視頻等豐富的底層分布和合成新樣本而引起了廣泛關注。這些深度生成模型采用基于馬爾科夫鏈蒙特卡羅(MCMC)的[1][2]算法進行建模。基于MCMC的方法計算訓練過程中梯度消失的對數似然梯度。這是由馬爾科夫鏈產生的樣本生成慢的主要原因,因為它不能足夠快地在模式間混合。另一個生成模型,變分自動編碼器(VAE),使用帶有統計推理的深度學習來表示潛在空間[3]中的一個數據點,并在難以處理的概率計算的近似過程中體驗復雜性。此外,這些生成模型是通過最大化訓練數據可能性來訓練的,其中基于概率的方法在許多數據集(如圖像、視頻)中經歷了維數的詛咒。此外,在高維空間中,從馬爾可夫鏈進行的采樣是模糊的,計算速度慢且不準確。

為了解決上述問題,Goodfellow等人提出了生成對抗網(GANs),這是生成模型的另一種訓練方法。GANs是一種新穎的深度生成模型,它利用反向傳播來進行訓練,以規避與MCMC訓練相關的問題。GANs訓練是生成模型和判別模型之間的極小極大零和博弈。GANs最近在生成逼真圖像方面得到了廣泛的關注,因為它避免了與最大似然學習[5]相關的困難。圖1顯示了GANs能力從2014年到2018年的一個進展示例。

GANs是一種結構化的概率模型,它由兩個對立的模型組成:生成模型(Generator (G))用于捕獲數據分布; 判別模型(Discriminator (D))用于估計生成數據的概率,以確定生成的數據是來自真實的數據分布,還是來自G的分布。D和G使用基于梯度的優化技術(同時梯度下降)玩一個兩人極小極大對策,直到納什均衡。G可以從真實分布中生成采樣后的圖像,而D無法區分這兩組圖像。為了更新G和D,由D通過計算兩個分布之間的差異而產生的損失來接收梯度信號。我們可以說,GANs設計和優化的三個主要組成部分如下:(i) 網絡結構,(ii) 目標(損失)函數,(iii)優化算法。

對多模態數據建模的任務,一個特定的輸入可以與幾個不同的正確和可接受的答案相關聯。圖2顯示了具有多個自然圖像流形(紅色)的插圖,結果由使用均方誤差(MSE)的基本機器學習模型實現,該模型在像素空間(即,導致圖像模糊)和GANs所獲得的結果,從而驅動重構向自然圖像流形方向發展。由于GANs的這一優勢,它在許多領域得到了廣泛的關注和應用。

GANs在一些實際任務中表現良好,例如圖像生成[8][9]、視頻生成[11]、域自適應[12]和圖像超分辨率[10]等。傳統的GANs雖然在很多方面都取得了成功,但是由于D和G訓練的不平衡,使得GANs在訓練中非常不穩定。D利用迅速飽和的邏輯損失。另外,如果D可以很容易的區分出真假圖像,那么D的梯度就會消失,當D不能提供梯度時,G就會停止更新。近年來,對于模式崩潰問題的處理有了許多改進,因為G產生的樣本基于少數模式,而不是整個數據空間。另一方面,引入了幾個目標(損失)函數來最小化與傳統GANs公式的差異。最后,提出了幾種穩定訓練的方法。

近年來,GANs在自然圖像的制作方面取得了突出的成績。然而,在GANs的訓練中存在著主要的挑戰。由于網絡結構設計不當,使用目標函數和選擇優化算法,導致模式崩潰,不收斂和不穩定。最近,為了解決這些挑戰,一些更好地設計和優化GANs的解決方案已經被研究,基于重新設計的網絡結構、新的目標函數和替代優化算法的技術。為了研究以連續一致的方式處理GANs挑戰的GANs設計和優化解決方案,本綜述提出了不同GANs解決方案的新分類。我們定義了分類法和子類尋址來構造當前最有前途的GANs研究領域的工作。通過將提出的GANs設計和優化方案分類,我們對其進行了系統的分析和討論。我們還概述了可供研究人員進一步研究的主要未決問題。

本文貢獻:

  • GAN新分類法。在本研究中,我們確定了每個設計和優化技術中的關鍵研究問題,并提出了一種新的分類法,根據關鍵研究問題來構造解決方案。我們提出的分類將有助于研究人員增強對當前處理GANs挑戰的發展和未來研究方向的理解。

  • GAN全面的調研。根據分類法,我們提供了對各種解決方案的全面審查,以解決GANs面臨的主要挑戰。對于每一種類型的解決方案,我們都提供了GANs變體及其關系的詳細描述和系統分析。但是,由于廣泛的GANs應用,不同的GANs變體以不同的方式被制定、訓練和評估,并且這些GANs之間的直接比較是復雜的。為此,我們進行了必要的比較,總結了相應的方法。他們提出了解決GANs挑戰的新方案。這個調查可以作為了解、使用和開發各種實際應用程序的不同GANs方法的指南。

付費5元查看完整內容
北京阿比特科技有限公司