亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

本講座的大部分內容將致力于兩篇論文,它們試圖做到這一點:通過使用概率和基于信息理論的度量,公平地比較生成模型的表現。第一篇論文詳細介紹了如何通過總比特來評價(單語)開放詞匯語言模型,第二篇論文思考了“信息”的意義以及如何使用它來比較機器翻譯模型。

付費5元查看完整內容

相關內容

深度學習在語音識別、計算機視覺等許多領域得到了廣泛的應用和突破。其中涉及的深度神經網絡結構和計算問題已經在機器學習中得到了很好的研究。但對于理解深度學習模型在網絡架構中的建模、逼近或泛化能力,缺乏理論基礎。在這里,我們對具有卷積結構的深度卷積神經網絡(CNNs)很感興趣。convolutional architecture使得deep CNNs和fully connected deep neural networks有本質的區別,而30年前發展起來的關于fully connected networks的經典理論并不適用。本講座介紹了深度神經網絡的數學理論與整流線性單元(ReLU)激活函數。特別是,我們首次證明了深度CNN的普遍性,即當神經網絡的深度足夠大時,深度CNN可以用來逼近任意的連續函數,達到任意的精度。我們還給出了顯式的逼近率,并表明對于一般函數,深度神經網絡的逼近能力至少與全連接多層神經網絡一樣好,對于徑向函數更好。我們的定量估計嚴格按照待計算的自由參數的數量給出,驗證了深度網絡神經網絡處理大數據的效率。

付費5元查看完整內容

原型驅動的文本生成使用非參數模型,該模型首先從句子庫中選擇“原型”,然后修改原型生成輸出文本。這些方法雖然有效,但測試時效率低下,因為需要對整個訓練語料庫進行存儲和索引。此外,現有的方法通常需要啟發式來確定在訓練時引用哪個原型。在本文中,我們提出了一種新的生成模型,它可以自動學習稀疏原型支持集,同時也可以獲得較強的語言建模性能。通過(1)在原型選擇分布上施加稀疏誘導先驗,(2)利用平攤變分推理學習原型檢索函數來實現。在實驗中,我們的模型優于以前的原型驅動的語言模型,同時實現了高達1000倍的內存減少,以及測試時1000倍的加速。更有趣的是,當我們改變原型選擇的稀疏性時,我們展示了學習的原型能夠在不同的粒度捕獲語義和語法,并且可以通過指定生成的原型來控制某些句子屬性。

//arxiv.org/abs/2006.16336

付費5元查看完整內容

EMNLP(Conference on Empirical Methods in Natural Language Processing)是計算語言學和自然語言處理領域的頂級國際會議,由ACL旗下SIGDAT組織,每年舉辦一次,Google Scholar計算語言學刊物指標中排名第二,是CCF-B類推薦會議。今年EMNLP 2020將于2020年11月16日至20日以在線會議的形式舉辦。本篇為大家帶來EMNLP2020在線Tutorial《Interpreting Predictions of NLP Models》教程,系統性講解了自然語言處理模型可解釋性預測,不可錯過!

雖然神經NLP模型具有高度的表示學習能力和良好性能,但它們也會以違反直覺的方式系統性失敗,并且在決策過程中不透明。本教程將提供可解釋技術的背景知識,即可解釋NLP模型預測的方法。我們將首先將具體實例的解釋置于理解模型的其他方法的上下文中(例如,探測,數據集分析)。接下來,我們將全面研究具體例子的解釋,包括顯著性映射、輸入擾動(例如LIME、輸入減少)、對抗性攻擊和影響函數。除了這些描述之外,我們還將介紹為各種NLP任務創建和可視化解釋的源代碼。最后,我們將討論該領域的開放問題,如評價、擴展和改進解釋方法。

//github.com/Eric-Wallace/interpretability-tutorial-emnlp2020/

付費5元查看完整內容

生成式模型是以圖模型和概率編程語言中的概率推理的重要范式。神經網絡對這些模型的參數化和基于梯度的隨機優化技術的進步使得高維數據的可擴展建模成為可能。

本教程的前半部分將全面回顧深度生成模型的主要家族,包括生成對抗網絡、變分自編碼器、標準化流和自回歸模型。對于每一個模型,我們將討論概率公式,學習算法,以及與其他模型的關系。本教程的后半部分將演示在科學發現中使用深度生成模型的方法,例如材料和藥物發現、壓縮感知等等。最后,我們將討論該領域目前的挑戰和未來研究的前景。

//dl4sci-school.lbl.gov/agenda

付費5元查看完整內容

【導讀】慕尼黑大學開設的《高級深度學習》技術課程,重點介紹計算機視覺的前沿深度學習技術。最新一期介紹了《生成式對抗網絡》進展,講述了GAN的知識體系,值得關注。

付費5元查看完整內容

人類的視覺系統證明,用極少的樣本就可以學習新的類別;人類不需要一百萬個樣本就能學會區分野外的有毒蘑菇和可食用蘑菇。可以說,這種能力來自于看到了數百萬個其他類別,并將學習到的表現形式轉化為新的類別。本報告將正式介紹機器學習與熱力學之間的聯系,以描述遷移學習中學習表征的質量。我們將討論諸如速率、畸變和分類損失等信息理論泛函如何位于一個凸的,所謂的平衡曲面上。我們規定了在約束條件下穿越該表面的動態過程,例如,一個調制速率和失真以保持分類損失不變的等分類過程。我們將演示這些過程如何完全控制從源數據集到目標數據集的傳輸,并保證最終模型的性能。

付費5元查看完整內容
北京阿比特科技有限公司