對智能高超音速武器(HW)的防御不僅減少了可用的戰術反應時間,而且還要求對戰略態勢進行更深入的思考,以改善對盟國基礎設施和移動資產的成功防御。現有的洲際彈道導彈(ICBM)防御方法可以在一定程度上解決來自高超音速武器的威脅。根據不同的情況,高能武器可以比洲際彈道導彈減少大約10%的飛行路徑長度和到達目標的時間。對于10000公里范圍內的目標,洲際彈道導彈可能需要約25至40分鐘來打擊,而高能武器可能需要22至36分鐘。一個具有挑戰性的方面是HW聲稱有能力躲避導彈防御系統。真正的游戲變化是當HW的發射平臺靠近預定目標時。發射平臺可以是潛艇、船舶或戰機。這種敵對力量的戰略可能會將飛行路線從10000公里減少到1000或100公里,將到達預定目標的時間縮短到約2至4分鐘,或最壞的情況下縮短到13至21秒,使目標/地區防御變得困難。戰略態勢需要盡可能地減少發射平臺過于接近潛在預定目標的可能性。因此,防御新的HW需要解決反對力量發射平臺移動的問題。戰術角度包括在很短的時間內制定行動方案的極端時間壓力,或壓縮傳感器到執行器的環路(StEL)。以前,我們發現,通過使用人工智能和基于認知網絡的增強功能,在這種反應過程中減少人類的干預,可以加速知識的獲取,共享態勢,并及時制定有效的CoAs,以達到預期的目標或最終狀態。我們將此確定為認知性StEL(CSTEL)。因此,為了擊敗HW攻擊,認知StELs可能被證明是一種合適的方法,因為它可以通過自動識別威脅來加速反應時間。
圖9:假設加拿大靜止目標的名義導彈彈道,A-D為遠程洲際彈道導彈或HW彈道,E-H為短程HW彈道
在未來的軍事行動中,通過協調多智能體系統(MAS)來實施戰略機動以獲得對對手的優勢,是一個很重要的途徑。最近探索MAS協作的工作主要集中在識別、分類、驗證、實施,以及通過多智能體強化學習(RL)來研究新興的協作方式。強化學習方法可以通過探索和利用選定行動來響應特定環境中的突發行為,這有可能抑制對抗性協作,反過來又可以為各種情報、監視、目標獲取和偵察任務提供機會窗口。本報告簡要介紹了RL領域的突出工作及其在自主戰略機動協作式MAS中的潛在應用。
美國陸軍現代化激增是由對手在多個領域(如陸地、海洋、空中、網絡、電磁和空間)對美國構成的威脅所推動的,這對美國利益的威脅超出了常規戰爭。預計未來的戰斗將在這些復雜的多領域環境中進行,人工智能(AI)將指導與人類士兵一起協同工作的機器人Agent的戰術、技術和過程(TTPs)。這些機器人將聚集在一起,形成智能多Agent團隊,與人類士兵有效協作,完成任務。
美國陸軍作戰能力發展司令部(DEVCOM)陸軍研究實驗室(ARL)的基本研究計劃(ERPs)構建了開發和實施智能多Agent系統(MAS)的具體計劃路徑。此類陸軍計劃為美國國防行動提供了關鍵研究問題的答案,這些問題匯聚在一起,指明陸軍未來司令部的現代化努力方向。人工智能用于自主機動性(AIMM)和新興超限技術(EOT)是ERP的例子,明確側重于使下一代戰車具有自主感知、學習、推理、規劃和機動能力。這些未來的自主系統將與人類智能體合作進行預測和規劃,并通過戰場上的自主機動(AIMM)和保護(EOT)向士兵提供支持。本報告重點關注需要進行的自主協作,以使多智能體系統(即人類、智能體或人類和智能體混合)在未來的軍事行動中取得成功。
集成和協調的MAS將需要技術的進步,重點是超越我們目前的能力,以有效地對付同等裝備的對手(同行或接近同行)的協作戰略機動性。一個直接的挑戰是開發能夠以良好協調方式自主和智能地工作的智能體團隊。這種能力要求智能體在執行關鍵任務時與士兵一起觀察、定位、決定和行動(OODA-Loop)。雖然新的努力促進了對多智能體范式中情報的一般理解,但目前對情報的解釋并不明確。最近的文獻表明,基于強化學習(RL)的方法可能為實現這種技術進步提供了一條可行的途徑,本文介紹的一系列工作就是證明。
在本報告中,介紹了RL領域的貢獻,以及它們在軍事環境中的潛在應用--特別是通過戰略編隊機動來抑制對手的協作,以實現戰場上的超越。最小化、限制或完全抑制對抗性多Agent行為中的協作是探索和執行在模擬情況下通過RL實驗得出戰略機動的一種手段。此外,協作的戰略機動可以通過各種RL方法學習,以告知防御部隊創造機會或優勢窗口的潛在途徑。
為了在模擬環境中通過戰略機動的RL方法實現MAS協作,我們首先介紹了近年來一些最突出的RL研究。最近在RL領域的進展(如alphago)促進了更復雜的多智能體強化學習(MARL)算法在現實世界應用。此外,近年來也有一些框架來實現多智能體協作。這些努力加在一起,可以為開發和實施多機器人協作提供一條道路,以便在為未來戰場設計的多機器人系統中實現戰略機動。
在下面的章節中,對近年來突出的RL方法進行了分類和概述,并表明這些方法與DEVCOM陸軍研究實驗室目前的研究和開發項目相一致。具體來說,本報告的重點是確定戰略機動的特定算法的優勢和劣勢。此外,對選定的RL方法類別進行了分類,以深入了解戰略機動的潛在實施,并考慮到情報、監視、目標獲取和偵察(ISTAR)任務。
簡單地說,戰略機動可以解釋為一組智能體協調他們的行動,通過戰勝對手來實現一個共同的目標。破壞,是戰略機動的一個特例,可以表示為對對手協作戰略機動的抑制。因此,戰略機動一詞的使用意味著至少存在兩個對立的或敵對的雙方,他們處于動態的斗爭中,通過限制、抑制或以其他方式破壞對手的協調或戰術,并強加自己的協作戰術來獲得對對方的優勢。
在本節中,提供了一個對抗性的交戰場景,其核心是使用選定的遠程資產,這些資產本質上破壞了友好部隊的交戰。圖1顯示了一個圖例,描述了與所述多域作戰(MDO)情景相關的選定資產和部隊的軍事符號學。根據MDO理論,在武裝沖突中,對手的遠程反介入和區域拒止(A2AD)火力系統可以被用來拒絕友軍在戰區的機動自由(見圖1)。這是通過將情報、監視和偵察(ISR)資產與致命性和非致命性火力相結合來實現的,以攻擊戰略和行動支持區的友軍指揮結構、維持能力和部隊編隊。這些地區是近距離地區作戰資產(如部隊和裝備)的傳統集結地(見圖2)。對手有能力在友軍后方深處識別和攻擊目標,導致這些實體在地理上與戰術支持區和近距離區分離,這有效地提高了友軍的損耗率,即所謂的對峙。鑒于前線部隊與戰略和作戰機動支援相分離,敵對勢力可以利用這種友軍孤立無援的情況,將其消滅。
圖1 友軍(BLUEFOR,左)和敵軍(OPFOR,右)部隊的資產和資源。在所描述的MDO情景中,假設BLUEFOR和OPFOR的所有資產都是自主化的編隊。
圖2 敵軍(OPFOR)使用遠程導彈和火箭炮干擾或破壞友軍(BLUEFOR)戰略支援區的維持行動,這使得友軍無法以有利的條件與近距離地區的敵軍機動部隊交戰。為了應對這一戰略,BLUEFOR執行反擊任務,以摧毀位于深火區的OPFOR遠程火力系統(藍色箭頭)。從深層機動區的BLUEFOR SOF發出的三叉箭頭代表了一種 "破壞 "戰術,它打破了對手的隊形和節奏。
圖3 壓制(S)或解除(N)敵方遠程火力系統和ISR資產,使友軍能夠穿透敵方的A2AD保護傘。這使友軍能夠在近距離地區擊敗敵人,并使機動指揮官有能力利用他們的成功,迅速將部隊轉移到深度機動區,摧毀(D)脆弱的敵方資產并追擊撤退的敵軍。F表示 "固定",可有效減緩敵軍的行動。粗箭頭代表部隊移動的方向。
MDO理論規定了擊敗對手A2AD能力的計劃(即對峙),以便戰略和作戰機動能夠使前沿部署的友軍以有利的條件與對手交戰(即穿透和瓦解A2AD系統以利用機動自由)。在這里,我們只關注友軍(BLUEFOR)野戰軍和軍團與敵方A2AD系統交戰時的滲透和瓦解部分,這可能需要在未來的戰斗中使用自主MAS。此外,據推測,圖1中友軍(BLUEFOR)和敵軍(OPFOR)的所有符號都將包含自主化的編隊(例如,機器人戰車、自動瞄準系統、地面和空中的機器人ISR資產)。圖2和圖3分別顯示了利用這種符號學與自主化編隊進行戰略機動的情景圖。
如圖2所示,敵對的A2AD火力系統通過攻擊戰略和作戰支持區來創造對峙局面。友軍火力和防空部隊從太空和高空監視(未顯示)接收有針對性的情報,在狹窄的時間窗口內打擊高價值目標(即多管火箭系統[MLRS]),以減少對手的位置調整。除了監視之外,還可以采用戰略刺激--打擊來穿透和瓦解對手的遠程火力系統。
在ISTAR任務中,MARL可以通過利用敵軍理論和敵軍行動中的局部觀察,戰略性地照亮和跟蹤敵軍目標的位置。此外,經過MARL訓練的具有自主能力的編隊,結合高度機動和分散的空中和地面火力,可以開始壓倒對手的遠程防空。友軍可以利用經過訓練的MARL方法來利用對手的TTP,進行防空和地面火力的戰略機動。這些具有自主能力的編隊根據從戰略空基刺激收集的監視數據選擇地理位置。隨著對手的遠程火力系統被消滅,戰略和作戰支援部隊能夠向前方的作戰部隊推進(機動)(見圖2)。
敵軍利用ISR資產識別作戰支援區的友軍資產,并從作戰縱深火力區用遠程火力系統(即多管火箭炮)攻擊友軍。這些敵方火力擾亂了友軍在該地區進行傳統支援行動的能力,這反過來又導致這些活動在離部隊前線更遠的地方進行。這通過擴大戰場和緊張的補給線而造成地理上的對峙。此外,這還允許敵方機動部隊以有利于敵方既成事實的條件與近距離地區的友軍作戰。根據MDO的理論,為了消除對峙,友軍的炮兵系統必須在敵軍的火力和ISR資產部署之前識別、交戰并摧毀它們。友軍SOF通過破壞補給和指揮與控制(C2)節點以及為聯合火力提供目標數據來協助這項工作。這在敵人的A2AD保護中創造了缺口,可以被機動指揮官所利用。在這種覆蓋下,友軍機動部隊穿透并利用近距離和深層機動區域的缺口。
在作戰區,近距離和縱深地區的聯合部隊的戰略編隊可能是自主啟用的編隊(即MAS),利用MARL訓練的策略來利用對手的TTP(來自理論)、本地觀察和ISR收集的信息。如圖2所示,聯合部隊將協調其ISR和遠程精確火力的能力,為前沿部署的BLUEFOR部隊提供支持。在戰略和作戰單位的支持下,擁有自主能力的前線部隊可以在近距離和縱深地區進行協調,以分離和擊敗敵方資產。這將促進消滅敵對的前沿機動部隊(OPFOR),使遠程火力系統容易受到地面攻擊(瓦解),如圖2所示。
聯合火力(即友軍或BLUEFOR)壓制或消滅對手的遠程火力系統,使友軍機動部隊能夠進入并擊敗近距離區域的作戰部隊(見圖3)。然后,友軍機動部隊利用這一優勢,在深度機動區(見圖3中的D區)摧毀敵方的助推器。這將導致剩余的敵對機動編隊從近距離區域撤出,并在深層機動區域建立一個新的戰線。這個過程不斷重復,直到達到戰略目標或打敗OPFOR。這些協調活動在理論上可以通過人類士兵和自主多智能體系統之間的合作來實現。此外,鑒于目前正在積極研究開發和部署這種自主系統,預計未來的戰場將需要考慮像這樣的場景來規劃戰略機動。
本節提供了一個可以應用MARL方法訓練自主化編隊的場景;然而,在這種復雜的MDO環境中執行的具體RL方法還沒有經過測試,或者可能還不存在。下一節闡明了與利用RL方法為未來的MDO交戰訓練MAS有關的一些挑戰。
在這項工作中,我們將重點聚焦到可以指導MAS克服與軍事防御MDO中戰略機動相關挑戰的RL方法。從技術上講,RL是機器學習(ML)的一個分支,它超越了從數據中建立精確的預測,通過在環境中產生行動來展示學習。這種學習的展示可以被認為是一種決策形式,但更準確的描述是通過狀態空間探索進行戰略行動選擇。
RL智能體在獎勵函數的基礎上進行學習(或訓練),最終確定在當前情況下(即該智能體在環境中的狀態),哪一個是智能體要選擇的最佳行動。例如,RL智能體可以與環境互動,產生與獎勵掛鉤的經驗,這將形成學習的策略(即一系列的狀態-行動對)。然而,在后面的章節中強調,目前的RL方法可能還不夠成熟,無法克服與人類類似的適應性相關的挑戰,以便在新情況或環境中進行智能決策。盡管RL算法有其缺點,但它們似乎是在軍事防御MDO中實現協調的MAS執行戰略機動的最有希望的途徑之一。
在多智能體任務中,協作通常是定義不清的,而且經常被用來表示一組智能體在某些合作任務領域中成功地執行了任務。在以前的工作中,開發并采用了各種新方法來測量執行合作任務時智能體行動之間的相互依賴性,以確認這些智能體事實上已經學會了協作。對協作的確認是確定MAS有能力與其伙伴合作的先決條件,而不是簡單地采取導致某種程度的優化行動。雖然在某些情況下,最佳行為可能是可取的,但如果任務以某種不可預見的方式發生了變化,一個簡單的最佳行為的智能體可能會在戰場上導致災難性的損失。因此,未來防御行動的MAS必須具有明確協作的能力。
在本節的其余部分,描述了與開發戰略機動MAS有關的一些挑戰,其中時間尺度、能力和局部目標可能有很大的不同(例如,MDO),但需要某種程度的協作。此外,假設更大程度的靈活協作可以促進任務執行的改進(例如,更快、更少的損失、非直觀的策略、有效處理不斷變化的能力/團隊組成)。
隨著環境在動態戰場上的變化,敵對雙方(至少)可能需要重復規劃和預測,以便1)跟上,或2)領先于對手的規劃和預測。經過RL訓練的MAS能夠學習這種動態的規劃和預測循環。另外,如果學習智能體建立了一個關于對手協作行動的適當模型,然后采取行動破壞這種協作,也可以實現這一目標。
在一個理想的情況下,一個被選來指導MAS行為的算法將學會處理環境、對手戰術和能力、自身能力(獲得新的能力或失去以前的能力)、團隊組成(例如,改變合作者)和局部目標的變化。然而,大多數最先進的(sota)方法受到經驗的限制(正如許多RL方法的情況一樣)。此外,在大多數模擬中,團隊的能力和組成通常是固定的,不能為算法提供足夠的數據來操作和處理任何上述的特征變化。因此,在選擇一種算法來指導旨在產生戰略機動的MAS的行為時,必須考慮新的或動態的事件、行為、資產和實體。
總之,目前的算法方法在復雜的軍事防御MDO環境中沒有達到所需的能力。目前的缺點可以分為三類。1)數據要求,由于情況的新穎性,數據是有限的,數據集不足以產生準確的預測,或者數據以某種方式被污染(例如,嘈雜、臟亂或對手的改變),2)有限的計算資源,以及3)算法不能泛化到訓練期間遇到的情況之外(例如,不同的目標、改變的能力或修改的團隊組成),導致狹隘或脆弱的MAS解決方案。
在下一節中,我們將更詳細地討論RL的缺點,以闡明如何克服這些問題,為軍事防御MDO環境提供解決方案。為此,我們介紹了現有的RL算法的分類法。這一努力應提供對有前途的RL技術更好的洞察力,這可能有助于確定最終應用于美國國防MDO的可行途徑。
學習算法的可擴展性是MDO中軍事任務的主要關注點之一,特別是因為這種任務可能需要大量的智能體來完成一個目標。此外,軍事任務可能涉及多個子任務,每個子任務都有自己的子目標,從而進一步復雜化了場景。在MDO中,預計一個子目標由無數復雜的戰略演習組成,這需要MAS的快速計算,以及使用最小計算資源(如在戰術邊緣計算)的最佳(或至少足夠)戰略。因此,一個可擴展的RL算法必須考慮到:1)環境和任務的復雜性;2)智能體(伙伴和對手)的數量,以便每個智能體能夠在通過RL學習過程中收集經驗時正確選擇行動。
環境復雜性(即智能體的狀態和行動空間的大小)可以指環境的狀態空間中可用的狀態數量,以及該環境中智能體可用的行動方案數量。RL算法的可擴展性是指在足夠復雜的狀態和行動空間中,在合理的時間和計算能力內計算最優策略的能力。環境的復雜性還包括納入額外的智能體(例如,擴展到MAS),其中狀態空間被放大以考慮到額外的智能體,而行動空間的大小被乘以該之智能體的數量。
通過使用狀態-動作對的表格來解決RL的可擴展性問題是不實際的,因為連續的領域會使表格無法維持,而且在合理的時間內同時更新所有智能體的表格條目是不可行的。即使有足夠大的計算資源(如過多的計算機內存)來包含所有的狀態,在每個狀態-動作對之間的學習也會太慢。與利用表格跟蹤狀態-動作對相反,一個解決方案是使用非參數函數近似器(例如,權重為參數的深度神經網絡)來近似整個狀態空間的值。然而,函數近似器必須是可微分的,這樣就可以計算出一個梯度,以提供參數調整的方向。
有兩種方法來訓練值函數近似器:1)增量方法和2)批量方法。增量方法使用隨機梯度,在梯度方向上調整近似器的參數,使估計值和目標值之間的誤差最小。然而,增量方法的樣本效率不高,因此不具備可擴展性。相比之下,批量處理方法從一組經驗中保存數據,并使用它們來計算函數近似值估計和目標值之間的誤差。批量方法與傳統的監督學習有共同之處,即結果是已知的(例如,數據被標記),計算近似值的估計值和實際結果值之間的誤差。這種類型的批量學習通常被稱為經驗重放。重復這個過程將導致最小平方誤差的解決方案。最近一個成功的經驗重放的例子是用深度Q網絡(DQN)玩雅達利游戲演示的。盡管函數近似法在復雜的環境中顯示出了成功,但如果不考慮額外智能體的加入(即非平穩性或部分可觀察性),單靠這種方法不太可能足以訓練出MDO場景的MAS。
與價值函數近似法相比,策略學習方法依靠策略梯度(PG)的計算來明確優化策略,而不是間接依靠價值函數。與函數近似方法相比,PG具有更好的收斂特性。PG方法比價值近似方法更受歡迎的主要原因是它們能夠在高維和連續的行動空間中有效(即在復雜環境中可擴展)。在蒙特卡洛(MC)策略梯度(例如REINFORCE算法)中,實際回報(選擇行動)與一個分數函數相乘,以計算梯度。該梯度被用于策略調整(通過改變參數值)以找到最大的回報行動。MC策略梯度具有高方差,收斂速度慢,因為它使用智能體的狀態-行動對在不同時間的整個軌跡來獲得一個返回值。另一種可能超越傳統函數近似方法缺點的解決方案是利用 "演員評論"方法。
在演員-評論家方法中,PG方程被修改為使用價值函數的近似值,而不是使用真實的行動-價值函數乘以分數(如REINFORCE算法)。這表明行為者按照評論者所指向的方向調整策略,以便使總的累積獎勵能夠達到最大。評論者的這一策略評估步驟可以通過使用組合值近似方法(即MC、時差-TD(0)和TD(λ))來完成。為了減少策略梯度的差異,可以使用一個優勢函數。優勢函數告訴我們,與一般的狀態值函數相比,一個行動比另一個行動(Q值)好多少。這意味著評論者必須估計Q值。一個有效的方法是使用TD-error,它是優勢函數的無偏樣本,評論者對一組參數進行近似。TD(λ)資格跟蹤也可用于評論者估計不同時間步長的值。有趣的是,MC(高方差)和TD方法可以與行為人一起使用,隨著時間的推移(即收集的經驗)修改策略。
由于MDO涉及軍事任務,RL算法必須有能力與許多其他智能體協調,以實現最佳的戰略機動,因此MAS的算法必須能夠與大量的智能體和異質資產一起擴展。算法的另一個重要能力是處理復雜狀態空間(即許多智能體)和多領域環境的大量觀察能力。在接下來的章節中,我們將討論在MDO中使用不同種類的RL算法對戰略機動的影響。
無模型算法可分為非策略性和策略性算法,其中狀態行動空間可以是連續的或離散的。在這一節中,討論了無模型算法的優勢和劣勢,以及它們如何與戰略機動相一致,從而實現MDO的目標。這一分析的目的是為尋找在MDO環境中實現戰略機動性的潛在算法方法提供方向。
深度Q網絡(DQN)是一種單一的RL智能體算法,它被訓練用來玩行動空間離散、狀態空間連續的Atari 2600游戲。DQN使用一個用Q-learning訓練的卷積神經網絡,從高維輸入(連續圖像)中學習。
DQN算法是一種有效的樣本方法,因為它利用所有收集到的經驗來提取盡可能多的信息。DQN足夠強大,可以使用相同的超參數進行訓練,玩六種不同的Atari游戲,其中智能體在其中三個游戲中的表現比人類專家更好。
然而,DQN的一個缺點是,在理論上不能保證訓練好的神經網絡實現穩定的Q值預測(即在不同的獨立模型中,訓練好的策略可能會有很大的差異)。
鑒于DQN本質上是一個單一的RL智能體模型,它應該不足以在MDO中進行戰略機動。在MDO中,多智能體RL算法可能更適合,因為智能體在執行時間內典型的分散化,允許智能體彼此獨立運作。此外,DQN的原始實現只利用了四個觀察序列來學習Q值,這對于MDO中的戰略機動來說是不夠的。多個資產的戰略機動通常不能在如此短的時間間隔內被捕獲。事實上,這是DQN在評估的三個Atari游戲(即Q*bert、Seaquest和Space Invaders)中與人類相比表現不好的主要原因。然而,存在一些DQN的變體來解決這個問題和其他弱點。
Bootstrap DQN就是這樣一個變體,它學習了一個Q網絡的集合,以提高采樣效率,并克服了傳統DQN的不足之處。行動消除是另一種與DQN一起使用的方法,以解決大的行動空間。帶有記憶類型的DQN(即循環神經網絡)也可以用來處理部分可觀察性。如果一個智能體需要為完成任務而導航環境,這種方法就特別有用。另外,分布式DQN返回一個分布信息,可用于評估策略風險和減少最佳解決方案周圍的方差或噪音。
盡管DQN及其修改后的變體在處理比簡單的Atari游戲更復雜的任務方面很有前途,但DQN方法本質上缺乏一個多智能體預測機制來進行協作戰術,而這是MDO中戰略機動的需要。此外,DQN在大多數情況下計算量太大,無法用于軍事相關環境。最后,DQN算法方法對未見過的例子(例如,伙伴的新行為或環境中出現的實體/障礙)缺乏足夠的適應性。
在現實世界中,大多數常規任務涉及連續狀態和行動空間。然而,DQN只考慮離散的狀態空間和低維的行動空間。處理連續狀態和行動空間的DQN的另一種方法是深度確定型策略梯度(DDPG)方法。DDPG通過結合價值函數近似和確定性策略梯度(DPG),推進了DQN方法的進展。DDPG利用行為批判的方法,可以克服連續空間的復雜性。這種無模式、非策略預測和控制算法可以執行物理控制任務(如車桿、靈巧的操縱、腿部運動或汽車駕駛)。
另一種使用深度神經網絡的方法是信任區域策略優化(TRPO)。這種方法直接構建一個隨機策略,而不需要演員-評論者模型(不要與環境模型混淆,這將使其成為一種基于模型的方法)。與TRPO類似,引導式策略搜索(GPS)不需要角色評論模型,而是使用軌跡引導的監督式策略學習以及一些額外的技術(例如,減少視覺特征的維度,在網絡的第一層增加機器人配置動態的信息)。因此,GPS的數據效率很高,如果需要的話,可以改編成DDPG。另一方面,PILCO首先學習一個概率模型,然后找到一個最佳策略。PILCO在某些問題領域具有很高的數據效率;然而,它的計算量很大。此外,D4PG對DDPG算法提出了一些改進:分布式評論者更新、分布式并行演員、N步返回和經驗重放的優先級,以實現對不同類別任務的更穩定和更好的解決方案。
從戰略機動的角度來看,DDPG算法的主要缺點是它被設計成一個完全分散的單一智能體算法(即獨立學習者)。因此,DDPG算法不便于在多智能體場景中進行協作。因此,使用DDPG所產生的戰略機動將不會產生協作的團隊行為。此外,DDPG不具備處理基于角色的多目標任務的能力,而這是軍事行動中戰略機動的要求。
RL智能體互動對于戰略機動的人工智能系統至關重要,不同的智能體可能需要組成團隊來抑制對手的戰略合作或抑制對手的協調。Q-Learning和PG方法分別受到非平穩性和高方差的影響。為了克服這些問題,多智能體深度確定性策略梯度(MADDPG)算法擴展了一個演員評論家方法,這使得它可以通過集中智能體訓練而對多智能體系統發揮作用。MADDPG框架采用集中式評論家家進行訓練,并在測試期間部署分散的演員。一個評論者(每個智能體都有一個)接收每個智能體的策略,這允許開發具有潛在不同獎勵功能的依賴性策略(例如,MADDPG允許訓練具有相反獎勵功能的對抗性團隊)。相反,演員(即策略網絡)在訓練和測試期間只擁有本地知識。演員(通過訓練)在與評論者評價一致的方向上反復改進策略。
MADDPG的一個主要弱點是,對Q函數的輸入隨著環境中智能體數量的增加而增加(不可擴展)。這給MDO中的戰略機動性帶來了問題。如果智能體需要被替換、添加、修改或移除,可能需要進行再訓練。在戰略機動中,智能體可能需要定期轉換角色或改變能力,這對MADDPG適應軍事領域構成了重大挑戰。此外,頻繁的再訓練將使快速戰略機動變得不可能。縮短訓練時間將減少邊緣的計算負荷,使快速戰略機動成為可能。MADDPG不能適應這種極端情況。對于軍事應用,希望有一個強大的對手或智能體模型,以便使作戰時間最大化(即有足夠的時間來執行戰略機動)。
為解決其可擴展性問題,對MADDPG的一個潛在修改是形成智能體集群,為集群而不是每個智能體單獨學習一個策略。在發生新事件的情況下,可以推遲重新訓練的需要,因為從理論上講,一個智能體集群將有一套處理動態情況的可變能力。此外,這將避免隨著智能體的修改或新智能體的引入而增加Q函數的輸入空間。然而,問題來了。我們怎樣才能將一個任務分解成部分獨立的子任務,并使最優分組策略的退化程度最小?
雖然MADDPG可以形成一組異質的多智能體策略,能夠完成不同的任務,但這種方法不能很好地擴展到十幾個智能體。隨著智能體數量的增加,策略梯度的方差會呈指數級增長。因此,這種方法不太適合MDO中的戰略機動,在這種情況下,必須考慮到40多個異質智能體的對抗情況。克服這一可擴展性問題的方法是均值場多智能體RL算法,該算法計算鄰近智能體Q值的均值估計,當智能體之間的鄰近互動變得復雜時,可能導致高誤差率。此外,進化種群課程算法的設計是為了通過將遺傳算法方法與RL相結合,使MADDPG具有可擴展性。隨著MADDPG的進步和該方法所顯示的成功,可以想象這些算法的進步會導致在模擬實驗中對MDO內的戰略機動性進行強有力的演示。
與MADDPG不同的是,反事實多智能體(COMA)方法對所有智能體使用一個集中的評論家,但被設計用于離散的行動空間。COMA比MADDPG更具可擴展性,但它可能導致一套同質的策略,在智能體能力充分不同、局部目標不同或獎勵函數不同的情況下可能失敗。與MADDPG類似,Minmax多智能體DDPG(M3DDPG)比MADDPG的原始版本增加了一項改進,允許智能體制定更穩健的策略來對抗對手(即具有對立獎勵結構的競爭游戲)。然而,M3DDPG仍然無法處理異質智能體被引入系統的情況。
在具有連續狀態和行動空間的環境中實施算法,有時需要利用常見的技術來操作輸入或輸出,如離散化狀態和行動空間或將離散的策略輸出轉換為連續輸出。轉換策略輸出的一個例子是OpenAI多智能體粒子環境中MADDPG的實現。在這個例子中,離散的策略組件被用來計算連續的行動。從另一個角度來看,多智能體轉化器軟雙Q學習算法將連續行動空間離散為一組速度和角速度控制,然后可以在運動模型中使用。盡管這些技術允許在連續環境中使用這種算法,但這些算法方法沒有用連續信息進行訓練,這可能會限制它們在物理環境中進行戰略機動的功效。
最近的一個基于價值的MARL算法系列在非常復雜的《星際爭霸2》模擬環境中被證明是相當成功的,其中根據智能體的本地Qa值學習了一個集中的聯合行動值Qtot。然后通過線性argmax算子從Qa中提取一個分散的策略。這種非常簡單而有效的分解方法避免了學習聯合行動值,而聯合行動值的規模并不大。如果增加新的智能體或用新的能力替換智能體,仍需進行再訓練。然而,與MADDPG相比,它更具有可擴展性,因為單個Q值僅從局部觀察中學習,避免了通過學習因子化的Qtot來學習聯合行動值。但是,當有超過40個智能體時,這個系列的算法的可擴展性可能會受到挑戰。為了使其更具可擴展性,已經提出了基于角色的算法RODE,其中智能體的角色是根據他們對環境的影響對他們的行動進行聚類來確定。該算法對于大量的智能體顯示了非常有希望的結果。
對于戰略機動,RODE算法是非常有前途的,因為各組智能體可以被分配到不同的角色,其中角色可以基于他們的行動和對環境的影響或任何其他固定的行為(對于盟友或甚至敵人)。然后,該算法可用于不同群體的戰略角色轉換。由于不同角色的行動空間受到限制,該算法收斂得非常快。這種算法也適合于基于角色的技術的戰略使用,這可能會在未來的工作中進行研究。即使RODE是非常可擴展的,我們也不清楚當新的智能體將被添加到環境中時如何調整它;需要學習一個集中的策略以實現最佳協作。
與RODE算法相比,一種可擴展的多智能體強化學習方法部署了一種熵-規則化的非策略方法來學習隨機價值函數策略,實驗表明它能夠擴展到1000多個智能體。如前所述,可擴展的RL算法關注環境的復雜性--系統或團隊中的智能體越多,狀態空間越大。RODE是有限的,因為它使用一個集中的策略,當更多的智能體被引入到環境中時必須重新訓練。多智能體轉化器軟雙Q學習算法是一種集中訓練的非策略學習算法(即共享一個中央經驗重放緩沖器),其執行是分布式的(即每個智能體根據其本地觀察做出自己的控制決定),而不是來自中央控制器。由于這種分布式的方案,當智能體被添加或從系統中移除時,團隊不受影響,繼續執行他們的策略。
在可擴展性方面,訓練大型MAS(即許多智能體)是很困難的,而且已經表明,即使是最先進的算法也不能為復雜的MARL任務學習到高性能的策略。多智能體變換器軟雙Q學習通過在訓練期間利用啟發式方法緩解了這一可擴展性問題,該方法允許在較小的智能體集合上訓練策略(例如,在目標追蹤場景中,四個智能體追蹤四個目標),并且該策略已被證明可以在執行中與更多的智能體一起工作而不需要任何調整(即用1000個智能體測試和評估)。訓練和執行過程中使用的啟發式方法使算法能夠解決智能體數量的巨大分布變化:它基本上將測試時的大型復雜觀察空間縮減為接近智能體策略最初訓練的內容。從軍事角度看,這種提法是戰略機動的理想選擇,因為現場的智能體可能會在原地丟失或獲得,可能要考慮額外的戰略信息。一個靈活和可擴展的算法提供了MDO中所需要的能力。
由于一些因素,包括科技進步,美國的對手正在變得更加先進。在未來的MAS自主戰爭中,協作的戰略機動可以為國防軍帶來某些優勢。在這篇文章中,我們討論了一些最突出的RL算法,以發現訓練MAS的可行候選策略,這些MAS可以有效地進行戰略機動,從而在未來潛在的軍事行動中打開機會之窗。本文描述了RL方法的分類法,并對最突出的RL算法進行了概述。研究發現,由于訓練和測試因素的不同,大多數RL算法缺乏處理與未來潛在沖突相關的復雜性的能力。
DEVCOM ARL ERPs為開發和實施智能MAS提供了一個規劃性的路徑。鑒于陸軍研究項目為美國國防行動提供了關鍵研究問題的答案,AIMM和EOT ERPs特別促成了研究,可以為協作的自主MAS提供一個路徑,可以克服與1)環境,2)對手戰術和能力,3)自身能力(即,獲得新的能力,失去以前的能力,或能力被改變),4)團隊組成(例如,增加、刪除或交換隊友),5)戰略團隊定位、進入、導航(機動)以支持部隊并壓倒對手,以及6)任務目標。最近,AIMM和EOT ERP在這一領域的工作闡明了衡量MAS協調性的方法,并允許開發一個框架來訓練和測試執行各種任務的MAS的協調性,此外還評估了利用一系列集中訓練技術的新算法方法。
此外,還需要進行更多的調查,以闡明有利于在ISTAR任務和其他交戰場景中利用MAS的軍事戰略。在淺顯的情況下,將完全自主的MAS送入高風險情況(即預期因果率高的情況)是可取的;然而,由于目前的技術限制,僅僅期望MAS能夠在沒有人類監督或干預的情況下完成任務是不夠的。因此,在未來的工作中,將進行研究以確定一套強有力的交戰方案。最后,這項工作將導致自主MAS的最終整合,以便在未來的軍事行動中盡可能地協調戰略機動。
?在日益復雜的軍事行動環境中,下一代兵棋推演平臺可以減少風險,降低作戰成本,并改善整體結果。基于具有多模態交互和可視化能力軟件平臺的新型人工智能(AI)兵棋推演方法,對于提供滿足當前和新興戰爭現實所需的決策靈活性和適應性至關重要。我們強調了未來作戰人-機器交互的三個發展領域:由人工智能引導的決策指導,高計算力下的決策過程,以及決策空間的真實呈現。這些領域的進展將使有效的人機協作決策得以發展,以滿足當今戰斗空間日益增長的規模和復雜性。
關鍵詞:決策、交互、兵棋推演、人工智能、增強/混合現實、可視化
在傳統的兵棋推演中,指揮官利用一個共同的基于地圖的作戰地形,并在軍事決策過程(MDMP,方框1)中模擬各種因素的組合如何產生行動方案(COA)、可能的反擊行動、資源使用估計和預測結果(美國陸軍,1997年,2014年,2015年)。在幾天或幾周的時間里,MDMP過程導致了一套精煉的COAs,它對作戰環境做出了一定的假設,包括地形、天氣以及戰區資產的可用性和能力(即塑造支持主要作戰行動的活動)。
方框1. 軍事決策過程(MDMP) | |
---|---|
MDMP是美國陸軍解決問題的理論方法,從接到任務開始,到生成作戰命令結束。MDMP被用作一種工具,幫助指揮人員審查眾多的友軍和敵軍的作戰行動。MDMP的7個步驟在規劃新任務、擴展行動和執行訓練演習所需的決策過程中灌輸徹底、清晰、合理的判斷、邏輯和專業知識(美陸軍,1997年,2015年)。 | |
指揮官在接到任務后啟動了MDMP。在MDMP的第1步中,所有的工作人員和關鍵的任務參與者都被告知任務和待定的規劃要求,包括進行MDMP的可用時間量。確定進行任務分析所需的工具,并收集與任務和作戰區有關的文件。步驟2,執行任務分析,建立對任務的全面理解,包括關鍵的事實和假設,形成擬議的任務說明和任務分析簡報,為制定COA做準備。 | |
MDMP的第3至第6步著重于制定COA以進行分析和比較。這些步驟包括:第3步,制定COA;第4步,COA分析(兵棋推演);第5步,COA比較;第6步,COA批準。COA是對一個已確定的問題的潛在解決方案。每個COA都要使用篩選標準來檢查其有效性,如在既定的時間框架、空間和資源限制內完成任務。COA的選擇過程通常涉及到兵棋推演,它試圖在考慮到友軍力量和敵人能力的情況下,將行動的順序流程可視化,同時考慮到行動區域內平民的影響和要求(美陸軍,2014)。戰術模擬(兵棋推演)方法的好處是突出了作戰行動的優勢和劣勢。這往往是一個反復的過程,對作戰行動方案進行評估,然后根據需要進行修改,直到出現一個或多個具有最高成功概率的作戰行動方案來完成任務目標。 | |
在一個具體的行動方案得到指揮部的批準后,MDMP的最后一步是制作行動指令,這是一份給下屬和鄰近單位的指令,旨在協調所有參與任務的組織的活動。這一步驟涉及到所有受命令傳播影響的組織之間的積極合作,并建立起對局勢的共同理解。 |
盡管MDMP幫助指揮官了解作戰環境和考慮作戰方法,但這個過程有很多局限性,如時間密集、假設僵化、跨場景訓練的機會有限,以及將人工智能(AI)指導納入決策過程的機會很少。傳統上,一項任務的成功與指揮部執行MDMP的能力直接相關。然而,鑒于當今多域作戰(MDO)的復雜性增加(Feickert,2021年),有大量的任務指揮系統和流程,與行動相關的所有活動的整合和同步變得越來越困難,甚至到了人為無法完成的地步。由于MDMP的缺陷而導致的規劃專業知識的缺乏,可能會導致不同步和不協調的行動,從而最終導致士兵的生命損失。
MDMP中沒有具體描述戰斗空間的可視化能力,但它顯然在決策過程中發揮著重要作用。最近,集成了先進可視化能力的新系統和新技術已經被開發出來,它們可以提高態勢感知,從而增強決策過程。美陸軍的例子包括Nett Warrior(Gilmore,2015),它使下馬戰士能夠直觀地看到附近的友軍和敵軍,同時根據當地的地形協同規劃戰術任務。盡管這項技術將無線電和數字地圖擴展到了下馬戰士,但它缺乏一個底層的人工智能引擎來提供決策幫助。戰斗空間可視化和交互平臺(BVI,前身為增強現實沙盤,ARES)是陸軍技術的另一個例子,它能夠為任務規劃提供分布式協作,具有從任意視角和廣泛選擇設備的共同作戰畫面的二維和三維可視化能力(Su等人,2021)。BVI架構的制定是為了拉入外部計算服務,如分析管道、模型和人工智能引擎。美陸軍研究實驗室正在努力將這些類型的服務納入BVI,包括用于加強決策支持的人工智能。
目前,MDMP并沒有將人工智能指導納入整體任務規劃方法中。美陸軍的自動規劃框架(APF)(Bailey,2017)開始通過將自主技術插入MDMP工作流程來解決人工智能輔助決策問題。指揮人員可以通過APF的數字規劃呈現、規劃創建和規劃監控工具,在任務規劃和COA開發期間獲得背景援助。任務執行和估計能力通過監測任務的規劃和實際進展,為改進決策跟蹤和支持活動提供自動協助。盡管APF為MDMP引入了基本的自動化水平,但它缺乏Nett Warrior和BVI所提供的先進的可視化和用戶互動能力。
提供地面部隊自動化和用戶可視化能力的是美陸軍最知名的兵棋推演平臺--半自動化部隊(OneSAF),為計算機生成的地面部隊提供建模和模擬能力(PEO_STRI, 2022)。OneSAF提供了半自動和全自動的軍事實體(即士兵、坦克、直升機和綜合單位)的建模,在類似真實世界的戰斗空間中以不同的保真度來支持特定的應用和場景。OneSAF主要用于訓練,并與目前的任務指揮系統具有互操作性。它可以使用多分辨率的地形和詳細的實體相關數據庫來模擬廣泛的作戰環境。然而,OneSAF對地形和實體系統的高保真建模的優勢使得它的設置和運行成本很高。它受到老化系統的限制,而且眾所周知,士兵需要大量的培訓來學習如何操作模擬,使用起來很困難(Ballanco,2019)。OneSAF的復雜功能并不適合開發人工智能能力,以實現快速和敏捷的戰士-機器決策。
除了MDMP和上面提到的陸軍平臺外,最近將人工智能納入決策過程的工作包括一些方法(Goecks等人,2021a),在模擬人類決策過程方面取得了一些成功。一般來說,人工智能在決策變量有限的問題上取得了一些成功,如資源分配(Surdu等人,1999)、飛行模擬器(Drubin,2020)和更簡單的場景。正在進行的挑戰包括需要提高人工智能的能力,以解決有多個行為者、不完整和可能沖突的信息、不斷變化的單位行動和環境屬性的復雜決策,以及需要將這些決策的后果在許多空間和時間尺度和領域內可視化。
以下各節描述了對MDMP的潛在改進。"未來軍事決策過程所需的進步"一節概述了支持MDO決策的三個研究領域,并以圖表形式描述了這些研究領域與軍事理論決策方法之間的關系。"未來軍事決策過程所需的進步 "一節中的小節對每個研究領域進行了更深入的討論。"展望推進人-人工智能團隊決策的交互技術 "一節概述了未來的作戰人員-機器接口(WMI)的發展方向,重點是與決策有關的人-人工智能團隊的跨學科研究。
軍事決策過程在支持MDO復雜決策方面的局限性,突出了在三個研究領域的改進需要。首先,有必要將人工智能產生的指導和輔助決策支持納入MDMP。這既包括進一步開發和整合人工智能到戰斗空間決策規劃,也包括進一步改善人工智能決策過程的可解釋性和透明度(Chen等人,2018)。第二,有必要在戰略層面以及戰術邊緣,盡可能地將決策分析與高性能計算(HPC)的力量結合起來。這將能夠利用HPC系統的力量來支持建模、分析和計算時間,同時整合和同步來自所有戰區領域的信息。最后,有必要利用先進的可視化技術,如混合現實技術,對決策空間進行更準確和互動表述。不是簡單地在一個固定的時間尺度上顯示地形的二維渲染,而是需要可視化不同領域的決策是如何相互作用的,并利用混合現實技術來提高理解的吞吐量,并產生平面顯示不可能的洞察力。
除了MDMP之外,其他更廣泛適用的支持戰斗性問題解決的軍事理論包括:DOTMLPF[例如,學說、組織、訓練、物資、領導、人員和設施;(美陸軍,2018年)],這是一個確定差距并為當前和未來作戰要求提出設計解決方案的框架;以及METT-TC[例如,任務、敵人、地形和天氣、部隊、可用時間和民事考慮;(美陸軍,2019年)],這是一個結構化框架,用于捕捉任務相關因素的狀態,以便在軍事行動期間進行共享評估。這些理論定義了MDO戰場的信息背景,構成了應用于上述三個研究領域的軍事決策的核心基礎。如圖1所示,在為人類和人工智能指揮開發復雜軍事決策空間的新表述時,研究進展和MDO相關理論相互借鑒、相互啟發、相互加強(美陸軍,2010)。
圖1. 新型作戰人員-機器交互(WMIs)和人工智能輔助決策所需的三個研究發展領域,以支持和加強基本的MDO理論[右下圖來源:Lebsack(2021)]。
需要新的人工智能支持的WMI,以利用人工智能決策方面正在取得的進展,并為復雜的適應性決策的人工智能學習作出貢獻。在簡化的戰斗空間中測試人工智能決策輔助工具是開發過程中重要的第一步,也是將人工智能納入更成熟的戰斗空間平臺(即BVI、OneSAF)的前奏。開發用于決策輔助實驗的人工智能測試平臺可以在MDO中產生能力越來越強的潛在COA建議。圖2顯示了陸軍開發的兩個人工智能測試平臺的例子。
圖2. 兩個ARL人工智能測試平臺的例子。左邊:ARL Battlespace(Hare等人,2021)( //github.com/USArmyResearchLab/ARL_Battlespace )。右邊:ARL的Simple Yeho測試平臺。圖片由C. Hung制作。
人工智能測試平臺能夠開發出匯集所有領域信息的AI,并計算出人類和AI智能體的風險和預期回報。圖2的左側顯示了ARL戰斗空間測試平臺(Hare等人,2021年),它是從頭開始開發復雜決策的新型人工智能的理想場所。它對戰斗空間的抽象強調了軍隊相關場景下的核心推理原則,在這種情況下,用蜜罐進行網絡欺騙。較小的網格空間使人工智能的學習和發展能夠集中在不確定性下的復雜推理,有多個友好和敵對的agent。圖2的右側顯示了ARL的Simple Yeho測試平臺,它提供了將人工智能開發與更多真實世界場景中的默契推理結合起來的能力,有多個基于地形的海拔高度、視線范圍、障礙物、樹葉(隱蔽)、道路和城市區域。紅色陰影和黑色線條表示任務的起點和終點、左右邊界以及人工智能建議的路線。這種額外的真實性使其能夠與MDO理論相結合,包括DOTMLPF和METT-TC,并使人工智能與自然的、機會主義的士兵行為共同發展。這兩個人工智能測試平臺都可以擴展為傳統和沉浸式混合現實WMI開發平臺。
使用漸進式和可擴展的人工智能測試平臺,可以調查現有人工智能的幾個基本限制,特別是對于具有不確定性的復雜和適應性決策,以及人類和AI智能體的協作和對抗。對多智能體的協作和對抗性決策進行建模可能特別復雜,因為其遞歸性質,其他智能體是模型的一部分(Goldman,1973;Grüning和Krueger,2021),需要對決策特征、個性化的價值、風險規避、記憶和注意力進行動態和不斷發展的估計。這些具有高度不確定性、復雜性和動態性的情況是人類擅長的領域,適當設計的交互界面和人工智能測試平臺的人機協作可以提供加速和更有效的決策。對于有效的團隊合作,新穎的WMI應該幫助作戰人員篩選復雜的信息,并幫助人工智能發現決策的隱含規則。下面,我們提供了關于人機協作如何有效的案例。
多域兵棋推演中需要的復雜決策是開發有效人工智能決策輔助工具的直接挑戰。最近人工智能在圍棋、國際象棋、Minecraft和大富翁等游戲中的成功(Silver等人,2017;Goecks等人,2021b;Haliem等人,2021)是基于對世界現有狀態有完整了解的游戲(即 "開放 "游戲),而兵棋推演平臺通常包括關于作戰環境的不完整(如星際爭霸)、不確定或欺騙性信息(Vinyals等人,2019)。不確定性也可能來自變化的物理學或其他環境規則,正如在《憤怒的小鳥》中所探索的那樣(Gamage等人,2021)。由于世界狀態、不同行動者的狀態以及所采取的行動不確定性,知識的缺乏使得人工智能agent難以計算未來行動的風險回報情況(Cassenti和Kaplan,2021)。不確定性也限制了人工智能估計其他行為者的風險回報概況的能力,而這是計算有效的博弈論策略所需要的。人工智能被可能的最優和近似最優選擇的廣度所淹沒(Lavine,2019),即由于信息有限而選擇錯誤的選項,這種情況并不罕見,因為人類在制定有效探索隱藏信息的策略時,采用啟發式方法進行有效的選擇和預測(Gardner,2019)。為了幫助發展人工智能的隱性知識和探索能力,新型的WMI需要有效地解釋和展示決策景觀,以使作戰人員能夠快速和自然地瀏覽可能的選擇,同時使人工智能能夠在不施加認知負擔的情況下從人類的決策中機會主義地學習(Lance等人,2020)。這種機會主義學習可以包括:例如,凝視跟蹤,以捕捉吸引人類興趣和意圖的視覺區域和未標記的目標。它們還可以包括建立在自然的士兵選擇行為基礎上的行動者批評方法,以改善人工智能對人類專家在不確定、不完全信息和欺騙的情況下如何優先考慮某些選擇的學習,這取決于任務相關的背景。
開發人工智能的WMI的另一個基本挑戰是如何有效地整合和顯示MDO中所有五個領域的信息,特別是空間和網絡,因為這些領域的信息具有不同的時空尺度(Gil等人,2018)。對于網絡,決策的規模和速度可能比人類處理和理解的能力更快,需要人類的輸入來指導半自動化的決策,以及實施進攻和防御性欺騙策略的人工智能。WMI需要能夠以這樣的方式顯示決策圖景,即可以解釋一小部分最優和接近最優的決策策略(例如,圖3中的決策樹)。這應該包括對關鍵agent在不確定情況下的未來狀態和風險回報情況的估計(Hare等人,2020),以使有效的博弈論決策能夠被共同開發和相互理解。
圖3. 在頂部,是BVI網絡戰術規劃器應用程序中友軍與敵軍戰爭場景的三維視圖。三維視圖提供了一個比二維視圖更真實的決策視角,例如,顯示友軍(藍色)和敵軍(紅色)機載預警系統(AEWs)和周圍地形的海拔。這使得快速審查可能的視線和相對于周圍地形的感應。下面是人工智能的導航決策樹,為人工智能計算的幾個關鍵選擇的風險/回報概況以及它們如何映射到地形上提供透明度。這種抽象的決策空間還可以整合非空間決策,例如網絡欺騙。虛線表示與友方AEW的通信聯系和對敵方AEW的可能干擾。圖片由C. Hung制作。
這些挑戰為有效的WMIs設計提供了參考。也就是說,我們需要有能力從不同的來源(包括從其他國家的決策輔助工具)提取信息,以及一個能夠承載整合這些信息的計算能力的架構,同時還要處理基礎的人工智能計算(用于學習和部署)。我們還需要共同開發一個界面和算法設計,以適時地利用人類和人工智能agent的優勢并減少其局限性。
在復雜的決策過程中,需要大量的計算能力來處理和記錄所有組件、實體和狀態空間。從積累的動態狀態空間的數據集中建立過去、現在和預測模型,需要利用HPC資源來產生分析性的見解,并在決策背景下創建有用的表述。
實施HPC分析工作流程的一種方法是使用持久性服務框架(PSF)。PSF是一個最近可用的分布式虛擬化解決方案,它可以通過一個基于網絡的前端實現對HPC服務的非傳統訪問,而不像傳統的HPC環境,計算節點在特定的時間段內以批處理模式分配給用戶。此外,PSF提供對數據、數據庫、容器化工具集和其他托管平臺的分布式連續訪問(Su等人,2021)。
在一個PSF方法的例子中,一個模擬引擎連接到PSF,用于記錄人類和人工智能做出的所有決定。這允許分析在任務規劃和COA開發過程中發生的決策行為,以及識別決策模式和戰略,以開發競爭性和現實的兵棋推演場景。一個戰斗空間可視化平臺可以托管在PSF上,并使用消息傳遞協議來更新所有連接的設備接口。來自模擬引擎的狀態信息可用于生成戰斗空間和參與作戰單位的圖形表示。
使用PSF方法并利用HPC資源,可以實施人工智能輔助決策機制,利用大數據攝取和分析,同時可供地理分布的用戶用于協作決策工作和 "永遠在線 "的個性化培訓和紅色團隊。連接到PSF托管服務器的各種混合現實顯示模式可以支持一系列作戰場景,從戰略層面的指揮和控制到作戰邊緣的更多移動戰術使用。
用圖形表示各級行動的軍事決策戰略需要新的可視化方法,這些方法可以應用于以規則變化、認知狀態、不確定性以及個人偏見和啟發式方法為特征的動態環境(Dennison等人,2020;Hung等人,2020;Raglin等人,2020)。戰斗空間的視覺表現應該在技術上盡可能準確和逼真,但又保持在人類可以理解和解釋的認知水平(Kase等人,2020;Larkin等人,2020;Hung等人,2021)。融合了混合現實技術的先進可視化方法有可能更好地表現多領域戰爭的變化特征及其不斷變化的威脅和動態環境。隨著最近混合現實可視化設備的技術進步,成本降低,硬件的可靠性和實用性顯著提高,混合二維和三維可視化方法現在已經成為可能。
由多個二維顯示器組成的混合現實方法增強了更先進的三維可視化能力,可以為指揮人員提供理解復雜的兵棋推演狀態空間所需的洞察力(Su等人,2021)。當需要一個共享的戰斗空間表示時,可以通過在不同的可視化模式上實現多個協調的視圖來實現協作的戰略規劃模式,以根據分布式指揮人員的輸入進行互動更新。
BVI(Garneau等人,2018)平臺表示地理空間地形信息和地圖圖像,允許指揮人員建立和修改戰術任務規劃和COA。作為一個數據服務器,BVI將地形和作戰數據分發給支持多種可視化模式的客戶端應用程序,包括頭戴式顯示器設備、基于網絡的界面、移動安卓平板設備和混合現實設備(例如,HoloLens 2、Oculus Quest)。
例如,圖3(頂部)顯示了位于加利福尼亞州圣貝納迪諾縣歐文堡國家訓練中心的高分辨率地形上的友軍與敵軍的兵棋推演場景(Wikipedia, 2021)。與MDMP期間經常使用的傳統2D地圖顯示相比,戰斗空間的3D視圖可以從多個觀察角度提供更豐富的用戶體驗。三維視圖,在BVI的網絡戰術計劃器(WTP)中,將地形和人工特征的空間信息以及由MIL-STD 2525C符號描繪的單位位置可視化(美國防部,2014)。可以想象,地理空間視角,如BVI提供的視角,支持決策者對動態戰斗空間環境的理解。與可導航的人工智能增強的決策空間(圖3,底部)搭配,組合的視角可以使人們更好地理解視覺空間依賴性、影響和因果關系、估計的風險和價值、不確定性以及復雜決策的欺騙性。將這種以地理空間和決策為中心的視角與人工智能相結合,可以提供必要的廣度,以協調物理行動與網絡和其他非空間領域的行動,跨越多個時間尺度,并具有快速適應變化的任務目標的靈活性。
人工智能和人-人工智能團隊的快速發展需要WMI同步發展。隨著新型人工智能對有價值的COA產生更好的預測,并能更好地處理復雜的決策,它們也必須利用人類的專業知識,學習如何處理具有高度不確定性、欺騙、隱性知識和博弈論的決策。相反,人工智能的推理必須既抽象又能與兵棋推演環境相聯系,以實現透明和信任,同時又不造成過度的認知負擔。基于三維混合現實的WMI可以利用和增強人類固有的三維認知和預測能力(Welchman等人,2005;Kamitani和Tong,2006;Kim等人,2014;Boyce等人,2019;Krokos等人,2019),如果設計得當,其交互將感覺自然,同時擴大顯示多個領域的信息的能力,同時使AI能夠適時地從用戶的決策中學習。
我們強調了三個關鍵的發展領域,即人工智能引導的決策指導,支持這種指導的計算基礎設施,以及決策透明度的混合現實表現的發展。這些領域的進步需要跨越許多不同學科的專業知識。新的人工智能發展需要融合神經科學、心理學和數學的思想,以克服復雜決策中長期存在的問題的瓶頸。這包括跨時間尺度的學習和變化環境下的災難性遺忘,以及更具體的兵棋推演問題,如具有不確定性、欺騙和博弈論的多Agent決策。計算基礎設施也需要發展,因為計算能力和數據框架對于在戰術邊緣產生人-人工智能團隊的共同操作圖來說都是必不可少的。為了有效地開發,應該通過一個共同的框架來抽象出專有的限制和軟件的依賴性,并為使用和故障排除提供清晰的文檔,以使學術界、政府和工業界更好地專注于解決人與人工智能的合作問題。這個通用框架應該包括有效的信息傳遞,同時提供靈活性和適應性,以滿足人工智能開發和人類用戶在訓練和實際使用環境中的需求。最后,交互技術的開發本身需要跨學科的協同專業技術。一個基礎性的問題是如何壓縮信息使之被用戶有效地理解,以及如何最好地利用用戶的互動來進行機會主義學習。人類的大腦并不處理所有的感官信息,而是對世界進行預測和假設,以便在信息不完整的環境下節約計算。一個有效的WMI應該同時預測潛在的決策結果以及個人用戶的期望和假設。此外,人工智能決策輔助工具必須估計用戶的默契,使其能夠提供最相關的信息和最有希望的選擇,這些信息來自整個作戰領域。
信息作戰和指揮與控制(C2)是美國陸軍可以向盟友和伙伴提供的兩種能力。在未來的作戰環境中,不僅要為動能作戰做準備,而且要為混合作戰和以信息為重點的戰爭做準備。這需要在復雜和默契推理的人工智能能力方面取得進展,在能夠提供持續訓練、分布式混合決策和大數據分析系統方面取得進展,以及在人與人工智能協作決策和機會主義學習方面取得進展,以實現人工智能的持續進步和人與人工智能的共同適應。這些進展中的每一項都需要跨學科的計劃性努力,以克服復雜的技術挑戰,創造新的決策原則、理論和理論方法,包括持續開發綜合測試平臺和技術,以實現政府、學術界和工業界的合作和協同發展。
美國防部官網3月17日報道,2022年3月15日,美國防部副部長凱瑟琳·希克斯博士簽署了“聯合全域指揮與控制(JADC2)實施計劃”(2021年9月提交),同一天國防部官網公開了“聯合全域指揮與控制(JADC2)戰略概要”(2021年5月美國防部長簽署發布JADC2戰略,戰略全文為秘密級)。由于JADC2戰略和實施計劃的保密性,從此次放出的“戰略”摘要可看出其實施計劃的大致輪廓。
在當前的全球安全環境中,美國軍隊面臨著敏捷的對手,他們越來越多地試圖通過阻礙,并在可能的情況下拒絕我們(美軍)的指揮和控制(C2)能力來破壞戰略和行動優勢。美國軍隊重新獲得并保持信息和決策優勢的能力是國防部的首要任務之一。
美國國防部 (DOD)聯合全域指揮與控制 (JADC2) 戰略描述了迫切需要集中力量推動部門行動,以增強其的聯合部隊指揮官在所有作戰領域和整個電磁頻譜范圍內指揮聯合部隊所需的能力,以威懾、并在必要時在全球任何時間、任何地點擊敗任何對手。
JADC2 戰略為識別、組織和提供改進的聯合部隊指揮和控制 (C2) 能力提供了愿景和方法,并說明了對手已經關閉了其賴以取得作戰成功的許多能力和方法優勢。作為一種方法,JADC2 支持使用創新技術開發物資和非物資解決方案選項,同時愿意修改現有政策、權力、組織結構和作戰程序,從而為聯合部隊指揮官提供信息和決策優勢。
全球安全環境的快速變化給美國軍隊和聯合部隊抓住、保持和保護我們對對手的信息和決策優勢的能力帶來了新的重大挑戰。此外,我們必須預見到未來的軍事行動將在退化和有爭議的電磁頻譜環境中進行。這些挑戰要求部門作出一致和集中的努力,使我們開發、實施和管理C2能力的方式現代化,以便在所有作戰領域、跨梯隊和與我們的任務伙伴一起取得勝利。
JADC2為塑造未來聯合部隊的C2能力提供了一個連貫的方法,旨在在戰爭各個層次和階段、在各個領域以及與合作伙伴一起,產生感知、理解和行動的作戰能力,以便以相關的速度提供信息優勢。作為一種方法,JADC2超越了任何單一的能力、平臺或系統;它提供了一個機會來加速實施聯合部隊進行C2的方式中所需要的技術進步和理論變革。JADC2將使聯合部隊能夠使用越來越多的數據,采用自動化和人工智能,依靠安全和彈性的基礎設施,并在對手的決策周期內采取行動。
這一戰略的成功實施需要整個國防部(DoD)的明確決心。為此,JADC2戰略闡明了 "感知"、"理解 "和 "行動 "這三項指導性的C2功能,以及另外五條持久的努力方向(LOEs),以組織和指導提供JADC2的物資和非物資能力。這些工作重點包括 (1)建立JADC2數據企業;(2)建立JADC2人力企業;(3)建立JADC2技術企業;(4)將核C2和通信(NC2/NC3)與JADC2相結合;以及(5)使任務伙伴信息共享現代化。
這一戰略得到了JADC2戰略實施計劃的支持,該計劃確定了JADC2的最終狀態、關鍵目標和任務,并通過既定的部門授權、論壇和程序來同步和簡化工作,以確定JADC2能力的優先次序、資源、開發、交付和維持。現有的軍種和機構的開發和采購過程通常會產生特定領域的能力,無法滿足全領域C2的作戰需求。JADC2的方法將覆蓋這些現有的程序,目的是促進跨領域、聯合能力的發展。
該戰略提供了六項指導原則,以促進整個DoD在提供物資和非物資JADC2改進方面工作的一致性。這些原則是 (1) 信息共享能力的改進是在企業層面上設計和擴展的;(2) 聯合部隊C2的改進采用分層安全特性;(3) JADC2數據結構由高效、可發展和廣泛適用的通用數據標準和架構組成;(4) 聯合部隊C2必須在退化和有爭議的電磁環境中具有彈性;(5) 部門開發和實施過程必須統一,以提供更有效的跨域能力選擇;以及,(6) 部門開發和實施過程必須以更快速度執行。
JADC2戰略的結論是,迫切需要使用一個全企業的整體方法來實施物資和非物資的C2能力,以確保聯合部隊指揮官在整個競爭過程中獲得并保持對全球對手的信息和決策優勢。
JADC2戰略闡明了國防部為支持美國國家安全利益而推進聯合部隊C2能力的方法。國防戰略指示聯合部隊 "獲得并保持信息優勢,特別是在網絡空間、太空和電磁波譜方面"。將JADC2從指導聯合/整合能力發展的概念變為現實的巨大任務需要一個清晰的愿景、有效的戰略和靈活的流程。JADC2的成功實施將產生更好的聯合部隊C2能力,并需要加速應用技術解決方案來發展C2能力,以及調整管理政策和作戰程序。
圖1 JADC2邏輯圖
JADC2提供了一種方法來開發作戰能力,以在所有領域和合作伙伴的各個層面和階段感知、理解和行動,以相關的速度提供信息優勢。
圖1描述了實現全域C2的復雜性:聯合部隊指揮官依靠多年能力開發和實施的指導、技術、程序和能力,以便在行現實世界任務中使用有效的C2任務。
JADC2尋求優化信息的可用性和使用,以確保指揮官的信息和決策周期相對于對手的能力運行得更快。這種整體觀點將聯合部隊指揮官確定為軍種和機構C2能力發展工作的主要受益者,并將部門C2能力發展成果集中在提供聯合、全域操作C2性能和熟練程度。為實現這一目標,JADC2將覆蓋現有的基于軍種和機構的C2能力開發計劃框架,這些計劃目前向聯合部隊提供以領域為中心且經常重復的信息和決策管理能力。
這種“疊加”方法是一種協作方法,其中所有C2能力開發利益相關者都支持JADC2作為優化開發資源和優先級以及最大化作戰成果的統一方法。
JADC2戰略通過(1)聯合部隊指揮官在作戰環境中“感知”、“理解”和“行動”的需要,以及(2)使用五個職能領域來組織其改進聯合部隊C2的方法重點或LOE,以指導改進的C2聯合部隊能力的開發和實施。在這種方法中,JADC2整合了現有的部門、軍種、機構和運營需求和能力開發流程,以塑造未來物資和非物資C2能力的交付。
該戰略的實施由JADC2跨職能團隊(CFT)監督,該團隊是國防部副部長特許機構,由來自作戰司令部、軍種、國防機構、聯合工作人員和OSD工作人員。識別和實施優先C2改進的主要方法是執行JADC2實施計劃。
“感知和集成”是發現、收集、關聯、聚合、處理和利用來自全域(友好的、敵對的和中立的)數據的能力,并將信息作為理解和決策的基礎進行共享。JADC2通過使用聯合數據架構的各種情報傳感和信息共享網絡,支持聯合部隊和任務伙伴共享創新數據,利用遠程傳感器、情報設備和開放資源感知、集成全域內外信息,使聯合部隊指揮官能夠獲得信息和決策優勢。
“理解”指的是分析信息,以便更好地理解和預測作戰環境、對手的行動和意圖、以及自身和友軍的行動。JADC2將利用人工智能和機器學習幫助指揮官快速決策,其將直接從傳感基礎設施中提取、合并和處理大量數據和信息,以保證對作戰環境的可靠、持續、實時了解,并在整個聯合部隊和任務伙伴之間共享。這將要求聯合部隊調整和更新現有的戰略、戰役、戰術級的指控流程和能力,同時這些規程和技術的進步將大大增強聯合部隊在降級環境中的作戰能力。
“行動”指的是向聯合部隊及其任務伙伴做出決策并分發的過程。JADC2將使用規劃和決策支持工具,并依托先進、彈性和可靠的通信系統、無障礙和全面的信息基礎設施以及靈活的數據格式,確保快速、準確和安全地傳遞決策。同時,JADC2將使用任務式指揮的方法,下屬指揮官通過了解高級指揮官的行動意圖,可按照原則被授權自主采取行動,同時保留在通信中斷時或行動緊急情況下采取行動的能力。
JADC2戰略圍繞五個LOE組織,以指導部門在提供JADC2能力方面的行動,如下所示:1)數據體系;2)人力資源體系;3)技術體系;4)與核C2和C3集成;5)使任務伙伴信息共享現代化。每個LOE都由一個主要責任辦公室指導,該辦公室由高級標志/SES人員代表,他們有權通過其聯合能力委員會提出問題并與聯合需求監督委員會互動并提供支持。JADC2戰略實施計劃中描述了其他JADC2治理細節。
數據是一種戰略資產,必須由聯合部隊有效管理,使其能夠抓住、維護、并保護信息和決策優勢。為了加快決策速度,聯合部隊和我們的任務合作伙伴必須能夠發現和訪問來自所有作戰領域的任何數據和信息。以下關鍵數據標準化目標將直接影響聯合部隊指揮官管理和使用數據的能力:
作戰環境中不斷增加的數據和信息可用性有可能使聯合部隊收集和匯總此類信息的技術手段不堪重負。現有的組織結構和決策流程正在被趕超,需要新的方法來確保聯合部隊指揮官抓住機會和保持優勢的能力,從而加劇了這個問題。
LOE2特別關注人類在C2能力方面的表現,并解決了創新人工智能和機器學習工具的使用問題。反過來,此類創新將推動制定預先確定的、預先批準的、事件驅動的、捆綁式授權的需求,以實現快速、相關的決策從戰略層面到戰術邊緣。這可能需要改革、重新調整或創建具有結構、敏捷性和資源的組織,以更有效地融合聯合部隊及其任務伙伴的物理和信息力量,使他們能夠對聯合信息優勢(JIA)進行有效控制操作。 該LOE還解決了培訓和教育領導者精通所有作戰領域作戰所需的專業發展。它將指導和支持JADC2政策、作戰概念(CONOPS)、條令以及戰術、技術和程序(TTP)方面的發展,以優化通過JADC2新能力獲得的優勢。為此,兵棋推演、實驗、演示、評估、訓練和演習的設計必須集中在競爭和沖突期間作戰的C2方面。同樣,國防部員工必須精通識別制度變革,以實現和維持改進的JADC2能力開發流程和產品。
該LOE解決了增強的共享態勢感知、同步和異步全球協作、戰略和作戰聯合規劃、實時全球部隊可視化和管理、預測部隊戰備和后勤、動態和非動態聯合和遠程實時同步和整合?射程精確火力,以及評估聯合部隊和任務伙伴表現的增強能力。
聯合部隊指揮官需要具有足夠速度和帶寬的安全的全球通信網絡,以滿足國家司令部和作戰司令部的作戰需求。LOE3解決了JADC2生態系統的傳輸基礎設施,并提供了基本的最低功能確保持續C2能力所必需的,包括通信系統的彈性和多樣性、多級安全性以及消除單點故障。這些經過網絡強化的先進技術將顯著提高指揮官組織、理解、計劃、決定、指導和監控所有聯合部隊和任務伙伴在所有領域以及在電磁頻譜使用退化和競爭期間的所有行動的能力。
在適當的情況下,JADC2方法將與核C2和通訊。
聯合部隊指揮官通過與任務伙伴共享態勢感知,不斷努力建立和保持對作戰環境的共同理解。當來自每個合作伙伴的C2系統的數據可以被每個其他批準的合作伙伴訪問、查看和采取行動時,就可以實現理想的任務合作伙伴系統集成。然而,新興任務、大型聯盟和不斷發展的技術為實現這一目標帶來了持續的障礙。歸根結底,JADC2系統互操作性對于以速度、精度、相關性和安全性進行聯合和合作作戰至關重要。該LOE力求擴大和提高聯合部隊在所有類型的聯合作戰中交換信息和協調行動和效果的能力。
JADC2方法的實施遵循以下總體原則。
在戰略層面設計和擴展信息共享能力
JADC2基于戰略層面設計和操作,依賴多個戰略節點和通信支撐網絡,提供傳遞重要信息所需的帶寬、功能和安全的全球鏈接能力。
安全
聯合部隊C2必須采用以強大網絡防御為先導的分層防御,以阻止可能威脅企業運營的惡意活動。聯合部隊必須有明確的政策指導、足夠的權力、充分的訓練、及時的情報以及在全球競爭環境中進行安全C2所需的技術。國防部必須在日常行動中采取戰時思維例如,邊打邊訓練并培養知識淵博的領導者和受過訓練的員工,以使用他們所掌握的工具和權威。
通用數據和互操作性標準
聯合部隊數據結構必須由高效、可演進和廣泛適用的通用數據標準和架構組成,并具有標準化的關鍵接口和服務,以便在具有各種不同類型的大型環境中訪問、聚合、管理、存儲、處理和共享數據合作伙伴和運營。
在降級的環境中保持彈性
聯合部隊必須能夠在降級或有爭議的C2環境中以最低限度的指導行動,指揮官和參謀人員必須在傳感和通信受到嚴重影響或完全癱瘓以及對手意圖不明確的情況下進行積極訓練。
在能力建設中保持統一
國防部必須改進其指揮控制能力開發和實施流程,以便更容易地采用跨域優先事項和解決方案選項。JADC2 CFT是部門能力開發人員討論、識別、協作和推薦機會的場所,以改進軍種和作戰領域內的C2信息共享和互操作性。
快速交付JADC2能力
國防部必須繼續發展其當前的C2開發和采購方法,并調整現有方法以更快地產生所需的能力。
全球安全環境的變化,包括針對美國的不斷增加的惡意行動和信息技術的廣泛進步,為聯合部隊帶來了緊迫的挑戰和機遇。JADC2戰略通過推進互連和企業范圍的方法來提供支持全球一體化作戰的物資和非物資能力,從而應對這些挑戰和機遇。這些能力將直接和顯著提高指揮官獲得和保持信息和決策優勢的能力。
JADC2戰略闡明了一種企業方法,用于在所有作戰領域和整個電磁頻譜中改進聯合部隊的C2。它解決了人類決策的獨特方面,并尋求新的機會來增強C2的認知方面。該戰略確定了關鍵的C2功能,即感知、理解和行動,以及組織和指導改進的C2能力的開發和實施的五個努力方向。
JADC2方法成功的核心是JADC2 CFT。該機構將協作推動整個國防部可衡量的積極變化,以實現全域C2所需的能力、能力、持久性和全球影響力。
在加拿大國防研究與發展部(DRDC)05da聯合情報收集和分析能力(JICAC)項目下,本科學報告提出了創新貢獻,為作戰提供先進的情報收集任務支持,作為情報需求管理和收集管理(IRM/CM)能力的一部分。它報告了新型收集任務優化工具的設計,旨在支持收集管理人員處理復雜任務和支持收集資產設施。它總結了新的研究和開發情報收集概念和自動決策支持/規劃能力,以支持/建議收集經理有效和高效的資源分配。以多衛星收集調度用例問題為重點,簡要報告了導致快速、自動和優化收集任務的新技術解決方案概念,提供服務水平的改善和增強及時的態勢感知。從人工智能和運籌學中借用的基本概念,目的是在各種任務、機會、資源能力、時間和成本約束下實現收集價值最大化。報告總結了技術成果,描述了新的快速、自動和優化的收集任務解決方案和原型推薦器,以安排真實/虛擬的多衛星星座。它應對了一些缺陷和挑戰,如短視(以單一任務為重點)或臨時性的情報收集任務分配方法,不適合集中式/分布式的開放和閉環資源管理方法或框架,以確保靜態/動態規劃或處理約束的多樣性/差異性和不確定性管理。本報告還旨在向加拿大軍隊情報指揮部(CFINTCOM)、空間總督(DG SPACE)、加拿大聯合行動指揮部(CJOC)和主要的軍事聯合情報、監視和偵察(JISR)利益相關者提供信息。
本科學報告提出了適用于天基情報、監視和偵察的多衛星情報收集調度問題的新型收集任務技術概念和技術發現。這項工作與雷達衛星星座任務(RCM)項目的后續舉措和加拿大軍隊(CF)在北極和北方的持久性聯合情報、監視和偵察方面的一些優先事項相吻合,以便及時提出增強情報收集任務的解決方案和工具。它提出了新的科學和技術方法,為低密度、高需求的可部署收集資產提供近乎最佳的情報收集。
針對適當的情報、監視和偵察(ISR)應用領域的具有成本效益的天基情報收集任務,對發展適當的國防情報需求管理和收集管理(IRM/CM)能力至關重要。因此,收集管理,特別是收集任務分配,對于保持加拿大領土、空中和海上領域的準確、及時和持久的態勢感知至關重要。典型的收集管理要求包括在資源有限的情況下進行適應性和響應性收集(CFINTCOM);收集任務分配;規劃執行;傳感器組合優化;支持聯合ISR(JISR)資產的動態執行新任務(CJOC);實時收集規劃以及有效的傳感器提示(DG SPACE),等等。最終的目的是有效地彌補信息需求和信息收集之間的差距,最佳的資源管理主要是由人員短缺、有限的收集任務自動化、成本效益、資源限制和低密度高需求的收集資產(衛星)在一個時間限制的不確定環境中的發展。通過多衛星收集調度問題(m-SatCSP)開展北極情報和監視的基于空間的圖像情報(IMINT),代表了一個典型的相關使用案例。
為處理情報收集任務的缺陷和挑戰而提出的解決方案[1]有很多。最近關于收集任務,特別是多衛星圖像采集調度的公開文獻,在 "多異質衛星任務的收集規劃和調度:調查、優化問題和數學規劃公式"[2]和 "QUEST--多衛星調度問題的新二次決策模型,計算機與運籌學"[3]。以下是對擬議方法的主要局限性的簡要總結。讀者可以參考后面的出版物[2],[3]以了解更明確的細節。基于低密度高需求的集合資產為前提,一般的問題在計算上是困難的。大多數研究貢獻主要限于同質衛星和單一星座情景,主要處理簡單的觀測點目標("點 "區域)任務,并提出新的任務聚類和預處理策略以減輕計算復雜性。已呈現的工作大多忽略了大面積覆蓋的復雜性、及復雜的任務結構、聯合價值任務構成、觀測結果和成像機會質量的不確定性以及常見的操作約束。這些制約因素包括最小任務覆蓋閾值、相互任務排斥、任務優先級和成像成本。目前的采集資產任務分配方案大多提供基于短視啟發式的策略,以規劃或分配采集器任務。在實踐中,最好的資源往往是短視推薦或局部選擇,以完成一個特定的任務,而忽略了其他約束條件(例如,為其他采集請求服務的時間窗口和成像機會)、追求的全局目標和持續進行的部分規劃解決方案質量。因此,ISR資源分配和動態重新分配是臨時性的,因為它們是以單一任務為中心的,而不是采用更全面的任務觀,關注整體任務,更好地利用替代機會,更有效地滿足整體收集要求。擬議的基本收集任務的部分解決方案沒有提供一個健全的資源管理框架,以確保適應性動態規劃或處理約束的多重性/多樣性和不確定性管理。它們也未能展示有價值的分布式規劃和融合的協同作用或整合,同時對支持可重構的傳感器網絡提出很少的指導。一方面,減少感知或高級信息融合與資源分配(RA)任務之間的差距,另一方面,規劃(任務分配)和執行(收集)監測之間的差距,仍然難以實現。
這項工作提出了新的研究和發展情報收集概念和自動決策支持/規劃能力,以支持/建議收集人員有效和高效的資源分配。它旨在開發自動咨詢調度組件和概念驗證原型,以實現有效的收集任務分配。以多衛星圖像采集(IMINT)調度為重點,介紹了導致快速、自動和優化采集任務的新技術解決方案概念,改善提供的服務水平,并增強及時的態勢感知。所設想的問題包括許多新的附加功能和完善的元素,這些元素在公開的文獻中主要是被忽視或忽略的。假設在低密度、高需求的收集資產條件下的m-SatCSP,新的特征包括收集資產的多樣性和敏捷性、任務抽象化、更多的包容性目標和更多的約束多樣性。重新審視的表述涉及抽象的情報收集任務,將單一目標區域(點)的重點明確地包括在大面積覆蓋范圍內,同時考慮多個或虛擬的異質衛星星座,脫離了傳統的同質情景。新的空間和時間依賴性,反映更現實的任務復雜性,放松相互獨立和可分離的假設。它抓住了成像質量、部分任務執行和成功概率等概念,擺脫了對有序行動執行或確定性結果的不現實的假設。該方法還重新審視了任務優先級利用的概念。因此,優先權被用作沖突解決機制,而不是基于優先權的有偏見的短視策略,強加任意的任務部分排序來管理高復雜性需求。設想的問題目標是要捕捉到超越通常區域覆蓋范圍特定任務的性能措施,引入收集質量,考慮到探測成功率、跟蹤質量和識別的不確定性,以提高收集的信息價值。基于最近提出的一個問題陳述,即m-SatCSP的背景[3],將情報請求映射到收集資產成像機會,以實現收集價值最大化,這項工作簡要地擴展了標準確定性問題決策模型,使用常規的混合整數二次規劃優化問題表述[5]。針對基于空間的ISR應用領域,新的優化模型降低了計算復雜性,使得在某些情況下利用精確的問題解決方法成為可能,同時提供了對最優解的約束。在公開文獻中大量報道的傳統特征約束的基礎上,推廣的模型引入了額外的規范,如合適的任務覆蓋閾值、可選的任務互斥、任務優先級、聯合值任務組成、成像/服務時間窗口,以及單個和平均軌道的熱約束。報告了在集中式和分布式決策背景下各種靜態和動態情景下的主要貢獻和創新之處。簡要介紹了為支持收集任務而明確開發的創新模型、求解器和概念驗證原型(推薦器)。
本科學報告總結了技術成果,描述了新的快速、自動和優化的收集任務(改善服務水平,增強態勢感知)解決方案和原型推薦器,為規劃多衛星真實/虛擬星座。它還旨在向CFINTCOM、DG SPACE和CJOC軍事組織通報主要發現,并確定最有希望的收集管理性能要求、技術和工具,容易對正在進行的主要軍事舉措產生潛在影響。這項工作是在2015年12月至2020年3月的DRDC聯合部隊發展(JFD)05da聯合情報收集和分析能力(JICAC)項目下進行的。
本報告概述如下。第2節簡要介紹了m-SatCSP問題陳述。它描述了問題的基本特征,并強調了開環和閉環設定以及集中式和分布式的決策背景。第3節和第4節分別總結了各自的開環(靜態)和閉環(動態)建議的貢獻。簡要介紹和討論了所開發的概念、模型特征、算法或求解器以及主要結果。第5節介紹了在JICAC下明確開發的概念驗證集合任務原型,以檢驗靜態/動態問題。第6節總結了核心貢獻、發現及其潛在影響。最后,在第7節中提出了建議。提出了一些進一步的技術解決方案開發和未來工作擴展的方向。
美國防部(DOD)正在對其指揮軍事力量的方法進行現代化改造。國防部高級領導人已經表示,現有的指揮和控制架構不足以滿足2018年國防戰略(NDS)要求。全域聯合指揮與控制(JADC2)是國防部的概念,將所有軍種--空軍、陸軍、海軍陸戰隊、海軍和太空部隊的傳感器連接到一個網絡中。
DOD指出,用Uber共享服務來比喻其對JADC2的期望最終狀態。Uber結合了兩個不同的應用程序--一個是乘客,另一個是司機。使用各自的位置,Uber算法根據距離、旅行時間和乘客(以及其他變量)來確定最佳匹配。在JADC2的情況下,這種邏輯將找到攻擊特定目標的最佳武器平臺,或應對新出現威脅的最佳單位。為了使JADC2有效工作,DOD正在追求三種新的或新興的技術:自動化和人工智能、云環境和新的通信方法。
DOD的一些機構和組織參與了與JADC2相關的工作。下面的清單突出了與JADC2開發有關的部分組織和項目:
國防部首席信息官:第五代(5G)信息通信技術。
國防部長辦公室(研究與工程):全網絡化指揮、控制和通信(FNC3)。
國防高級研究計劃局:馬賽克戰爭。
空軍:高級戰斗管理系統(ABMS)。
陸軍:項目融合(Project Convergence)。
海軍:項目超配(Project Overmatch)
隨著國防部開發指揮和控制軍事力量的新方法,國會可能會考慮幾個潛在的問題:
國會如何在驗證需求或成本估算之前考慮JADC2的相關活動?
在沒有正式的計劃或預算申請的情況下,國防部為JADC2的預算是多少?
JADC2的支出重點是什么,是否有國防部可能沒有投資的舉措?
國防部如何確保每個軍種和盟國的通信系統之間的互操作性?
國防部應如何優先考慮其未來網絡中相互競爭的通信需求?
人工智能將在未來的指揮和控制決策系統中發揮什么作用?
為了滿足JADC2的要求,有哪些潛在的部隊結構變化是必要的?
國防部應如何管理與JADC2相關的工作?
全域聯合指揮與控制(JADC2)是美國國防部(DOD)的概念,即把所有軍種--空軍、陸軍、海軍陸戰隊、海軍和太空部隊的傳感器連接成一個網絡。傳統上,每個軍種都開發了自己的戰術網絡,與其他軍種的網絡不兼容(例如,陸軍網絡無法與海軍或空軍網絡連接)。通過JADC2,國防部設想建立一個 "物聯網"網絡,將眾多傳感器與武器系統連接起來,利用人工智能算法幫助改善決策。
DOD官員認為,未來的沖突可能需要領導人在幾小時、幾分鐘或可能幾秒鐘內做出決定,而目前分析作戰環境和發布命令的過程需要數天時間。國防戰略(NDS)委員會報告的非保密概要指出,目前的C2系統與潛在的同行競爭對手相比已經"惡化"。國會可能對JADC2概念感興趣,因為它正被用來制定許多高調的采購計劃,以及確定美國軍隊對潛在對手的有效性和競爭力。
圖 1. JADC2 的概念愿景
JADC2設想為聯合部隊提供一個類似云的環境,以共享情報、監視和偵察數據,在許多通信網絡中傳輸,從而實現更快的決策(見圖1)。JADC2打算通過收集來自眾多傳感器的數據,利用人工智能算法處理數據以識別目標,然后推薦最佳武器--包括動能和非動能武器(如網絡或電子武器)--來打擊目標,從而幫助指揮官做出更好的決策。
DOD指出,用Uber共享服務作為類比來描述其對JADC2的期望最終狀態。使用各自的位置,Uber算法根據距離、旅行時間和乘客(以及其他變量)來確定最佳匹配。然后,該應用程序為司機提供指示,讓他們按照指示將乘客送到目的地。Uber依靠蜂窩和Wi-Fi網絡來傳輸數據,以匹配乘客并提供駕駛指示。
一些分析家對JADC2采取了更加懷疑的態度。他們對JADC2的技術成熟度和可負擔性提出了疑問,以及是否有可能在一個致命的、充滿電子戰的環境中部署一個能夠安全可靠地連接傳感器和射手并支持指揮和控制的網絡。分析人士還詢問誰將擁有跨領域的決策權,因為傳統上,指揮權是在每個領域內而不是從整體戰役的角度下放的。
什么是指揮與控制?C2的維度和人工智能的影響 | |
---|---|
人們可以通過五個問題來看待指揮和控制:誰、什么、何時、何地和如何。傳統上,國會通過兩個不同但相關的問題來關注指揮與控制:權力("誰")與技術("如何")。 | |
國會傳統上關注的第一個問題反映了指揮官執行行動的權力。這一討論的重點是指揮系統,反映了負責組織、訓練和裝備美國部隊的軍種與有權在國外使用部隊的作戰司令部之間的差異。這個問題可以用一個問題來概括:"誰指揮部隊?" | |
第二個問題是使指揮官能夠做出這些決定并將其傳遞給戰場的技術方面。指揮、控制、通信(C3)、C3加計算機(C4)以及情報、監視和偵察(ISR)等術語進入了討論。指揮和控制的這一技術問題著眼于指揮官用于決策的數據(和收集方法)(即ISR是促成決策的數據),將數據轉化為信息的處理能力,以及使指揮官將其決策傳達給地理上分布的部隊系統。這種指揮和控制的技術方法可以概括為:"你如何指揮部隊?" | |
指揮和控制的其他動態回答了其他問題:哪些系統和單位被指揮(什么),時間方面(何時),以及地理方面(何處)。國會在歷史上對這些問題中的每一個都是在具體的,而不是一般的問題上表示了興趣。例如,國會沒有考慮一般用途的部隊,而是關注與核部隊和特種作戰相關的權力問題。與核和網絡戰的快速反應相關的指揮和控制問題,以及在有限的程度上與電磁頻譜戰相關的問題,這些都是及時性問題,引起國會關注的其他領域。 | |
關于 "何時",國會已表示對與核和網絡戰的快速反應有關的指揮和控制感興趣,并在有限的程度上對電磁頻譜戰感興趣。然而,對 "何時"的最大敏感度似乎更側重于戰術(例如,何時讓飛機進入目標,何時開始對建筑物進行攻擊);這些決定往往被授權給指揮官。最后,地理因素對指揮美軍提出了獨特的挑戰;只要行政部門和國會繼續支持全球國家安全戰略,地理決策在很大程度上代表了戰術問題,往往被授權給各個指揮官。 | |
圖2. 指揮與控制的維度和人工智能的影響 | |
圖2描述了這些問題是如何通過引入人工智能(AI)來優化各方面的結果。隨著編隊復雜性的增加--特別是為全域聯合作戰設計的編隊,控制這些部隊有可能超越人類的認知能力,并使用算法來幫助管理這些部隊。美國軍方表示,它打算讓人類參與整個決策過程,但隨著美國軍隊將更多的人工智能技術引入其決策機構,各方面的區別開始變得模糊不清。例如,"誰"和 "如何"開始變得相似,特別是當計算機或算法向指揮官提出建議時,他們可能不了解信息或產生建議的過程。 | |
人工智能還可以影響指揮和控制的其他方面,包括 "什么"、"什么時候 "和 "在哪里"。將 "什么 "和 "哪里 "這兩個要素結合起來,可以挑戰對手尋找和與美國部隊交戰的能力;這樣做也可以挑戰指揮官及其參謀部在沒有系統幫助管理復雜情況下保持對部隊的控制能力。從 "何時 "的角度來看,需要快速決策的行動,特別是電磁頻譜戰或網絡戰,可能超過人類的決策能力。這就提出了一個重要的問題,即指揮官能在多大程度上信任人工智能,以及人類作戰員需要理解人工智能系統為什么建議采取特定行動。 |
DOD目前使用戰斗空間的不同部分來執行C2--主要是沿著確定的軍事領域:空中、陸地、海上、太空和網絡空間。這種結構的存在是因為傳統的威脅來自單一系統,如飛機和坦克編隊。作為回應,軍方開發了高度復雜(但昂貴)的傳感器來監視戰斗空間,向集中式指揮中心(如空中作戰中心或陸軍指揮所)提供信息。E-3高級預警和指揮系統(AWACS)和E-8聯合監視目標攻擊雷達系統(JSTARS)等系統經過優化,為這些中央前哨的指揮官提供態勢感知,然后他們可以在那里指揮軍事力量。
2018年國防戰略(NDS)、審查它的 NDS 委員會和其他來源闡述的未來作戰環境描述了潛在對手如何發展復雜的反介入/區域拒止 (A2/AD) 能力(見圖 3)。這些能力包括電子戰、網絡武器、遠程導彈和先進的防空系統。 美國競爭對手將 A2/AD 能力作為對抗美國傳統軍事優勢(例如投射力量的能力)的一種手段,并提高他們贏得快速、決定性交戰的能力。
圖 3. A2/AD 環境的可視化
美國防部高級領導人已經表示,在未來的作戰環境中,獲取信息將是至關重要的。此外,這些領導人還表示,為了挑戰潛在的同等對手,需要采取多領域的方法(美國部隊將使用地面、空中、海上、太空和網絡力量來挑戰對手的目標計算)。因此,全領域聯合作戰的概念為指揮官提供了獲取信息的機會,可以利用突襲進行同步和連續的行動,并在所有領域快速和持續地整合能力,從而獲得物質和心理優勢以及對作戰環境的影響和控制。
空中陸戰概念設想將空軍和陸軍的努力結合在一起,在20世紀80年代對抗蘇聯,自該概念提出以來,技術上的進步使美國防部能夠繼續發展全領域聯合作戰的概念。這些技術進步包括增加了攻擊目標的方法(包括電子和網絡手段),相對低成本的傳感器的擴散,以及將這些傳感器的數據轉化為信息的處理能力的提高。維持對所有領域行動的控制所面臨的挑戰是,美國的軍事C2機構并不是為做出這些類型的決定而組織的,26而且正在使用的技術的復雜性和速度可能超過人類的認知能力。
指揮與控制是如何演變的? | |
---|---|
美軍傳統的指揮和控制概念源于德軍的 "任務型命令"(auftragstaktik)。認識到軍事行動中的混亂和 "戰爭迷霧 "是不可避免的,下級指揮官被委托半自主地行動以實現其指揮官的意圖(即任務的總體目標),而不是有預先規定的行動。情報來源和偵察的信息需要很長的時間,甚至可能需要幾天才能到達指揮官手中。為了保持對部隊的控制,指揮官們依靠無線電通訊和紙質信件。有限的信息量使得指揮官可以在兩個方面指揮部隊--使用單一的領域來應對對手的行動。 | |
在冷戰的高峰期,蘇軍給軍事力量提出了一個新的問題:如何對抗一支數量上占優勢的坦克部隊。為了應對這一威脅,陸軍和空軍提出了一種新穎的方法,通過開發新技術來確定增援地點,將空中和陸地力量結合起來。這一概念被稱為 "空地戰"。這種三維方法試圖利用情報、監視和偵察方面的優勢,"深入觀察",將火力集中打擊增援部隊(即 "深入打擊")。為了支持這種利用深度打擊來防止增援部隊的設想,美軍需要改進指揮所,以提高指揮部隊的決策速度,同時仍然保持遵循指揮官意圖的傳統。這種需要導致了新系統的開發,如JSTARS和ATACMS。這些系統使指揮官能夠更快地了解戰斗空間,并提高對敵軍直接開火的反應時間。 | |
在過去的20年里,中國和俄羅斯觀察了美國的戰爭方法,確定了挑戰美國優勢的不對稱方法。中國的軍事現代化尤其注重防止美國建立大量的戰斗力(限制后勤),增加高價值飛機(油輪、間諜飛機、指揮和控制飛機)的風險,并增加其海軍足跡(限制美國的海軍優勢)。為了應對這些新威脅,國防部最初提出了使用多域作戰的想法(后來過渡到全域作戰一詞)。國防部認為,使用一個或甚至兩個維度來攻擊對手是不夠的,因此挑戰對手的目標計算需要更復雜的編隊(額外維度)。國防部認為,不斷增加的復雜性,加上應對新興技術威脅的時間可能減少,需要新的方法來管理部隊。 | |
圖4. 指揮和控制的復雜性的變化 |
在國防部發展JADC2概念的過程中,有三類技術在這種指揮和控制軍事力量的方法中起著不可或缺的作用:自動化、云環境和通信。
許多DOD高級領導人已經明確表示,JADC2是一個概念(或許是一個愿景),而不是任何具體的計劃。在2021年1月的一篇文章中,聯合人工智能中心主任Michael Groen中將說:"JADC2不是一個IT(信息技術)系統,它是一個作戰系統。從歷史上看,你會有一個大型的國防項目,你會花數年時間來完善需求,你會收集大包大包的錢,然后你會去找國防承包商,花更多的時間來建造、測試,然后在多年后最終投入使用"。在這篇文章中,Groen中將描述了人工智能(AI)的作用,以及延伸到數據和數據結構的作用,使這些算法能夠為指揮官提供信息。根據Dennis Crall中將(聯合參謀部指揮、控制、通信和計算機/網絡首席信息官[JS J6]主任)的說法,人工智能和機器學習對于實現JADC2至關重要。Dennis Crall說道:"JADC2是關于將所有這些自動化....。它是關于利用傳感器豐富的環境--查看數據標準等事情;確保我們可以將這些信息轉移到一個我們可以正確處理的區域; 帶來了云;帶來了人工智能、預測分析;然后用一個能夠處理這些的網絡來支撐所有領域和合作伙伴。"
DOD表示,擁有多分類的云環境對于實現JADC2是必要的。DOD設想,用戶能夠根據他們的需要和信息要求,在不同的分類下訪問信息。在2021年6月的新聞發布會上,克拉爾中將說,"戰術邊緣 "的云能力是用于數據存儲和處理,實現人工智能算法。作為一個例子,空軍討論了其高級戰斗管理系統(ABMS)項目對云環境的需求--空軍部對JADC2的貢獻,這將在下文討論。根據空軍的預算說明,ABSM將需要一套云系統、應用程序(即軟件)和網絡(包括商業和政府擁有的),這將 "了解環境并應用由人工智能和機器學習輔助的先進算法"。
根據DOD的說法,開發JADC2將需要新的通信方法。DOD目前的通信網絡已經為中東地區的行動進行了優化。因此,DOD使用衛星作為與海外部隊通信的主要方法。這些系統面臨著延遲(時間延遲)問題,并且在設計上不能在有電子戰的情況下有效運行。這些舊的架構依賴于地球同步軌道上的衛星,這些衛星在地球上空大約22200英里(35800公里)處運行。新的應用,如人工智能,將有可能需要額外的數據速率,而目前的通信網絡可能無法支持--特別是當DOD增加傳感器的數量,以提供額外的數據來改進算法。自主系統的引入,如海軍的大型無人水面和海底航行器,以及陸軍對機器人飛行器越來越感興趣而產生的系統,可能需要安全的通信和短時延來維持對這些系統的控制。
聯合參謀部是負責制定全域聯合指揮與控制概念戰略的國防部組織。此外,還有一些正在進行的研究和努力與JADC2概念有關。每個軍事部門(陸軍、海軍、空軍)以及國防部機構,如國防高級研究計劃局(DARPA)和負責研究和工程的國防部副部長辦公室(OSD[R&E]),都在開發技術和概念。以下各節簡要介紹一些組織的工作。
國防部負責制定JADC2戰略的領導機構是聯合參謀部J6指揮、控制、通信和計算機/網絡局。JADC2戰略最初的設想是改善聯合部隊的互操作性(例如,確保無線電系統能夠相互通信),后來擴大了這一重點,制定了一種信息共享方法,通過為決策提供數據來實現聯合行動。除了制定戰略,J6還組織了一個JADC2跨職能小組,各軍種和國防部機構通過該小組協調他們的實驗和計劃。這與國防部數據戰略和國防部副部長創造數據優勢的努力相一致。該戰略確定了五條工作路線以實現JADC2框架:
1.數據組織
2.人力組織
3.技術組織
4.核指揮、控制和通信(NC3)
5.任務伙伴信息共享
在2021年6月4日的新聞發布會上,克拉爾中將表示國防部長奧斯汀已經批準了JADC2戰略。
根據R&E辦公室的說法,"FNC3確定、啟動和協調指揮、控制和通信關鍵使能技術的研究、開發和降低風險活動。這些活動將包括整個國防企業不同但相互關聯的努力,由FNC3在OUSD(R&E)的工作人員監督和同步進行。" FNC3的主要負責人邁克爾-扎特曼博士描述了FNC3的整體愿景,包括三個層次--物理層、網絡層和應用層--它們為開發指揮、控制和通信系統提供了一種量身定做的方法,與商業部門的最佳實踐相一致。物理層代表無線電和發射器本身,而網絡層則通過開發國防部優化的新興商業軟件定義網絡技術(如網絡切片)來管理應用對物理層的訪問。所有這三層都旨在提高互操作性和彈性(即防止網絡被干擾或中斷的能力),并為每個應用提供適當的服務質量。
根據扎特曼博士的說法,FNC3是JADC2的中長期技術愿景,而每個部門(在以下章節中概述)都有專注于發展近期采購戰略的引人注目的努力。例如,空軍部的先進戰斗管理計劃旨在通過關注成熟技術在未來三年內部署。OUSD R&E利用其投資組合中不太成熟的技術,包括由DARPA、國防創新部門、戰略能力辦公室、各部門和其他部門開發的技術,為實施JADC2提供長期的技術手段。
國防部提出,5G無線技術的商業進展提供了傳輸更多數據(通常稱為數據吞吐量)和更低延遲的能力。國防部認為,它需要這些能力來處理來自眾多傳感器(如衛星、飛機、船只、地面雷達)的更多數據,并在 "邊緣"(與無線電接收器在同一地點)處理這些信息。5G技術的另一個方面可以實現新的指揮和控制概念,即動態頻譜共享。隨著電磁頻譜變得更加擁擠,聯邦政府已經開始允許多個用戶在同一頻段上運行(稱為頻譜共享)。國防部首席信息官認為,頻譜共享技術允許通信系統在有干擾的情況下傳輸和接收數據。2020年9月,國防部CIO向工業界發出了一個信息請求,即如何對待動態頻譜共享。2021年1月21日,已經公布了67份對信息請求的回應。
馬賽克戰爭代表了一系列由DARPA贊助的項目,旨在利用人工智能將傳統上不被設計為互操作的系統和網絡相結合。從概念上講(見圖5),這些項目將能夠利用從衛星上收集的原始情報,并將這些數據轉化為傳遞給 "射手 "的目標信息--在這種情況下,網絡武器、電子干擾器、導彈、飛機或任何其他可能影響預期目標的武器。正如哈德遜研究所的分析家布萊恩-克拉克和丹-帕特所解釋的那樣,"馬賽克戰爭 "試圖將多種重疊的困境強加給敵軍,擾亂他們的行動,從而阻止他們及時到達目標。
圖5:DARPA的馬賽克戰愿景
DARPA的馬賽克計劃之一,稱為異質電子系統的技術集成工具鏈(STITCHES),已被用于空軍和陸軍的實驗。據DARPA稱,STITCHES是一種軟件,旨在通過自主創建允許低延遲和高吞吐量的軟件,快速整合任何領域的通信系統,而無需升級硬件或修改現有的系統軟件。根據空軍的一份新聞稿,該部門已在幾個高級戰斗管理系統的 "上線 "中測試了該技術,并已開始將該計劃從DARPA過渡到空軍部。
高級戰斗管理系統最初的設想是取代E-8聯合監視和目標攻擊雷達系統(JSTARS)。空軍在2019年將ABMS項目從開發飛機或雷達之類的東西過渡到 "數字網絡環境,連接所有領域和每個梯隊的作戰能力,以實現全球決策優勢。" 換句話說,空軍從建立一個支持指揮和決策的平臺(如E-8 JSTARS)轉向建立一個安全的、"類似云"的環境,利用人工智能和預測分析為指揮官提供近實時數據。根據空軍的說法,ABMS項目將沿著六條產品線開發能力:傳感器集成、數據、安全處理、連接、應用和效果集成。
空軍已經舉行了三次 "on-ramps"(空軍用來描述演示的術語),以展示其ABMS的方法。2019年12月舉行的第一次on-ramps,展示了該部門從F-22戰斗機使用的安全通信向陸軍和海軍系統傳輸數據的能力。第二次上線使陸軍榴彈炮能夠擊落一枚代用巡航導彈。此外,空軍向美國北方司令部提供了這種 "類似云 "的零信任平板電腦--一種不在設備上存儲敏感數據的安全功能,以協助其在2020年春季應對COVID大流行。
2020年11月,空軍部確定了首席架構師辦公室,負責評估架構上線和整合企業數字架構。同時,空軍確定空軍部快速能力辦公室為ABMS整合項目執行辦公室。快速能力辦公室的工作重點是快速向現場交付項目,它的參與可以被看作是將ABMS從實驗轉向系統開發。
根據陸軍的說法,"項目融合是陸軍圍繞一系列連續的、結構化的演示和實驗而組織的新的學習活動",旨在應對JADC2所帶來的挑戰。
1.確保陸軍擁有合適的人員和人才;
2.將當前的陸軍現代化工作與陸軍未來司令部的跨職能團隊聯系起來,并與陸軍現代化的六個優先事項保持一致;
3.擁有合適的指揮和控制,以應對節奏越來越快的威脅;
4.利用人工智能分析和分類信息,并在陸軍網絡中傳輸;
5.在 "最嚴峻的地形 "中測試能力。
項目融合2020在三個軍事設施中使用了大約750名士兵、平民和承包商,最終在亞利桑那州的尤馬試驗場進行了兩次現場頂點演習。在這次演習中,陸軍展示了幾種技術,包括人工智能、自主性和機器人技術,以測試新的方法來指揮和控制地理上分散的部隊。陸軍計劃將空軍和海軍的系統作為2021年項目融合的一部分,并打算在2022年項目融合中納入外國軍隊。這其中有3370萬美元用于運營和維護,以及7310萬美元用于研究、開發、測試和評估,由陸軍撥款。
項目超配是海軍為建立一個 "海軍作戰架構",將艦艇與陸軍和空軍資產聯系起來而做出的努力。2020年10月1日,海軍作戰部部長吉爾德伊上將責成一名二星上將領導海軍的"項目超配"工作。在他的備忘錄中,吉爾德伊上將指示 "項目超配"采取類似于海軍發展核動力和AEGIS系統的工程和開發方法。其主要目標是 "使海軍能夠在海上形成集群,從近處和遠處、每個軸線和每個領域提供同步的致命和非致命效果。具體來說,你[斯莫爾海軍司令]要開發網絡、基礎設施、數據架構工具和分析。" 在一個平行的努力中,吉爾德伊上將責成基爾比副上將(負責作戰要求和能力的海軍作戰部副部長)制定一項計劃,將無人系統,包括艦艇和飛機,納入海軍作戰架構。根據新聞聲明,海軍打算在2023年達到初始作戰能力(即有能力部署初始系統)。海軍在2022財政年度為 "項目超配 "申請了三個分類項目元素的資金。
在2021年6月舉行的2021年AFCEA西部會議上,吉爾德伊上將討論了項目超配目前的工作。在這次活動中,吉爾德伊表示,自2020年10月項目啟動以來,項目超配已經完成了三個螺旋式發展周期。吉爾德伊進一步解釋說:"我們實際上正在試驗一種方式,使我們基本上可以將任何網絡上的任何數據傳遞給作戰人員。這是一個軟件定義的通信系統,使我們能夠以一種前所未有的方式拆開我們所有的網絡"。根據新聞報道,吉爾德表示,他預計在2022年底或2023年初將 "項目超配"的測試規模擴大到一個航母打擊群。
以下各節討論了國會的潛在問題,包括需求和成本估算、互操作性挑戰、平衡通信能力、人工智能在決策中的角色,以及實施JADC2所需的潛在部隊結構變化。
美國防部已經為JADC2的相關工作申請了幾個財政年度的資金,特別是在概念的早期發展階段。國防部正在積極制定JADC2戰略,預計將在2021年春季發布。國會中的一些人對國防部沒有像傳統采購項目那樣提供成本估算或驗證需求表示關切。因此,各軍種委員會和撥款委員會已經減少了對這些工作,特別是ABMS和5G研究和開發的要求資金。2021財年國防授權法案(NDAA)要求國防部在2021年4月前為JADC2提出要求。
國防部還沒有正式公布關于JADC2的支出預算數據,該項目在各軍種和國防機構的一些項目中都有資金。根據聯合參謀部J6(JS J6)的說法,JADC2不是一個記錄項目,JS J6也不打算過渡到一個記錄項目。因此,除非國會要求國防部提供JADC2資金的詳細概述,否則國防部可能不太可能這樣做。
一些分析家推測了與JADC2有關的所有項目的年度成本。一位分析家估計,國防部在2022財政年度為與JADC2直接相關的項目編列了大約12億美元的預算。Govini估計,自2017財政年度以來,國防部在JADC2上花費了大約225億美元;這平均每年大約為45億美元。Govini的估計包括其他聯邦機構的資金--如國家航空和航天局(NASA)--以及國防部可能認為與JADC2無關的技術,因此可能高估了JADC2獲得的資金總額。
根據JS J6,有五條與JADC2相關的工作線:
1.數據組織
2.人力組織
3.技術組織
4.核指揮、控制和通信(NC3)
5.任務伙伴信息共享
以數據為中心的方法側重于國防部系統傳輸所需的數據類型和結構,創建一個共同的數據框架,為數據的發送和接收提供一個商定的標準。換句話說,數據的格式化、組織化和結構化的方式影響著數據從傳感器到決策者再到武器的高效和無縫傳輸。另一方面,網絡中心化和互操作性側重于通信標準,如無線電頻率、波形、通信加密等,以確保一個無線電能與另一個無線電通話。通過采用這種方法,JS J6專注于開發軟件應用,以改善指揮和控制。然而,該戰略可能缺少幾個方面,包括:
通信系統的硬件和軟件的功能,
網絡需要傳輸的數據量,
對手的行動對網絡的影響,
以及指揮和控制部隊的模塊化。
隨著國防部繼續改革其JADC2概念和要求,其他觀察家也注意到,在JADC2戰略中存在一些沒有被認定的領域,國防部應將其支出主要集中在研究和開發方面。一位觀察家認為,國防部應將其研發支出集中在改善網絡互操作性上。這種方法支持優先升級軍事通信系統,以便在整個聯合部隊中傳輸數據。它建議國防部在軟件和硬件方面投入更多資金,以提高所有類型的數據鏈路和網絡(例如,Link 16、多功能高級數據鏈路、態勢感知數據鏈路以及綜合海上網絡和事業服務)的互操作性。網絡互操作性方法的重點是,創建網絡是困難的;但是,利用軟件定義的網絡和通用電子設備(如類似的芯片架構)可以使每個軍種無縫共享信息。換句話說,這種方法更注重通信網絡的構建方式,而不是在這些網絡內發送數據的組織方式。軟件定義的無線電和網絡使無線電可以很容易地被編程,并因此更容易地相互通信。微電子(即物理硬件)最終定義了無線電的物理和軟件能力。
其他分析家認為,JADC2的支出應更多地集中在改變決策方式上。這一論點強調了通過利用人工智能(AI)實現決策過程自動化的必要性,正如國防高級研究計劃局(DARPA)的馬賽克戰爭概念所設想的。在這種方法中,優先利用人工智能系統的支出(如空軍的STiTCHES計劃),可以建立主要集中在需要傳輸的數據和數據結構的特設網絡。這一論點假設人工智能也可以分析情報、監視和偵察(ISR)數據,以確定人類可能錯過的趨勢,從而向軍事指揮官提出潛在的更好的建議。
其他觀察家認為,優先考慮如何使用和管理電磁波譜的決策對于支持JADC2至關重要。這些觀察家認為,像國防信息系統局的電磁戰管理計劃--旨在利用情報方法評估電磁波譜環境,然后自動決定如何使用頻譜來減輕對手的電子戰影響--對于實現全域指揮和控制是必要的。這些觀察家還認為,對手的電子戰效應將需要近乎即時地被緩解,因此需要一個強大的電磁環境部分(以及自動化),以便在對網絡的潛在攻擊中管理國防部網絡。
由于國防部設想使用JADC2來同時指揮多個領域的部隊,因此連接不同類型部隊的需求也在增加。國防部擁有并運營著許多通信系統,每個系統都使用不同的無線電頻率、標準和數據鏈,這些系統往往不能相互 "交談",因此需要一個網關將一種無線電協議 "翻譯 "成另一種協議。盟友和合作伙伴的加入增加了互操作性的挑戰。前國防部副部長邁克爾-格里芬在2020年3月向眾議院軍事委員會情報、新興威脅和能力小組委員會作證時,指出這個問題是繼續為FNC3進行OSD R&E努力的理由。
使國防部能夠共享來自不同部門和單位的信息的挑戰可以通過三種互操作性的方法來解決:
圖 6:E-11 戰場機載通信節點 (BACN)
新的通信設備。這種方法采用 "自上而下 "的方式(即由OSD或聯合參謀部確定解決方案,然后要求各軍種采用該方案)。使用與聯合戰術無線電系統(JTRS)開發類似的模式,這種方案將購買一個新的通信架構,重點是互操作性。例如,FNC3的努力似乎就是采用這種方法。盡管這種方法可以確保聯合部隊開發的通信系統可以無縫共享信息,而且可能是安全的,但它可能需要大量的投資,并可能遇到時間表的延誤。這種方法的另一個可能的缺點是,隨著系統的投入使用,它們可能對對手的技術不那么有效。
開發軟件來創建網絡。第三種方法是使用軟件,使用戶能夠創建自定義網絡。DARPA的 "馬賽克戰爭 "和ABMS計劃的某些方面就是這種方法的例子。與其他互操作性解決方案相比,這種方法更加模塊化,使為特定行動定制的單位和系統能夠相互通信。這種方法的一個主要風險是技術上的不成熟,特別是用于創建這些網絡的軟件。另一個風險涉及到與不同系統共享的信息量和分類,這些系統經過認證,具有不同的保密級別(例如,可釋放的秘密、不可釋放的秘密、最高機密)。
國防部和國會可以選擇這些方法中的一種或多種。一種特定的方法可能提供短期的好處,而國防部則追求一種長期的方法來解決互操作性的挑戰。
國防部為滿足JADC2的要求而開發通信網絡的方法包括三種相互競爭的能力:
數據吞吐量(即數據傳輸的速度)
延遲(即接收信息/數據的時間延遲)
彈性(在自然或故意中斷的情況下保持通信信號的能力)
軍事作戰新技術的興起,如人工智能、戰術數據鏈(如Link 16和多功能先進數據鏈[MADL])和對手的電子戰能力,為5G和FNC3等未來通信系統平衡這些能力帶來了明顯的挑戰。人工智能和信息戰可能需要大量的數據來實現預測分析,并讓指揮官對戰斗空間有一個準確的了解。與所有可用用戶共享數據的數據鏈并不一定需要高數據速率;然而,數據鏈確實需要低延遲,以確保傳感器能夠證明 "目標級數據",特別是對于像巡航導彈和飛機這樣快速移動的系統。最后,電子干擾器的擴散需要彈性(或抗干擾性能),以便在被主動干擾時保持通信。圖7說明了在開發新的波形時必須平衡這三個相互競爭的要求(無論該波形是為民用還是軍用而設計)。無線電信號能夠提供每一種能力;然而,優先考慮一種要求意味著其他兩種要求可能會受到影響,這可能會給決策者帶來兩難選擇,即在采購中優先考慮哪些能力。
圖7:平衡通信要求
隨著國防部對其通信系統的現代化改造,它可能會考慮技術特點和限制,以選擇在保護其網絡安全的同時推進任務目標的要求。例如,像5G這樣的技術可以提供高數據容量和低延遲,但目前還不清楚這些信號可能受到對手干擾的影響。另一方面,FNC3的設計似乎是為了提供具有高數據率的彈性;但是,由于它依賴于衛星,延遲將增加。
人工智能是實現JADC2的一個潛在的關鍵組成部分。隨著人工智能被引入軍事決策中,出現了幾個潛在的問題。首先,人工智能在決策中的作用應該達到什么程度?在使用致命武器時,人類的判斷力需要達到什么適當的水平?
第二,國防部如何確保用于人工智能算法協助決策的數據的安全性?盡管國防部把重點放在了數據結構上,但它沒有討論它計劃如何具體確保JADC2的數據有效性和安全性。錯誤的數據可能導致指揮官選擇損害任務目標的選項(如算法推薦可能浪費高價值彈藥的目標)。與此相關的是,國防部打算如何保護云環境中的這些數據,以防止對手操縱它們?這些安全計劃是否足以防止對手的操縱?
由于JADC2可能需要不同類型的部隊和武器系統,每個軍種都可能尋求改變其訓練、組織和裝備部隊的方式。例如,海軍陸戰隊在其部隊重新設計中宣布,它將取消它認為不符合國防戰略指導的部隊,并將資金重新投入到其他更適合未來作戰環境的項目中。
現役和預備役部隊的能力平衡是部隊結構調整的另一個方面。例如,陸軍在歷史上決定將后勤能力從現役部門轉移到預備役部門。因此,如果美國要開戰,陸軍大概需要啟動預備役部隊來實現行動。當國防部和各軍種準備迎接JADC2帶來的挑戰時,這些組織將如何選擇平衡現役和預備役部隊的能力和部隊結構?
聯合參謀部J6是國防部JADC2工作的主要協調者,每個軍種和一些國防部機構都在進行各種活動。國會中的一些人過去曾表示有興趣建立國防部范圍內的項目辦公室(如F-35聯合項目辦公室)來集中管理大規模的工作。國防部的研究和開發工作將隨著時間的推移而增加,因此,管理這些工作可能會變得更具挑戰性。國會在未來可能會尋求確定或建立一個負責項目管理、網絡架構開發和財務管理的組織。
聯合戰術無線電系統(JTRS)是一個通信項目,旨在通過在所有軍種中部署無線電設備來提高通信的互操作性。該計劃于20世紀90年代中期開始,最終于2011年被前國防部負責采購、技術和后勤的副部長弗蘭克-肯德爾取消。在他的理由中,肯德爾副部長指出,"由于當時技術不成熟,移動特設網絡和可擴展性的技術挑戰沒有得到很好的理解......從JTRS GMR[地面移動無線電]開發計劃中產生的產品不太可能在經濟上滿足各軍種的要求。" 在15年的開發工作中,國防部花費了大約150億美元,在終止時還需要130億美元。
JTRS計劃旨在用可在大部分無線電頻譜上運行的基于軟件的無線電取代軍隊使用的25至30個系列的無線電系統--其中許多系統不能相互通信。根據設想,JTRS將使各軍種與選定的盟國一起,通過各級指揮部的無線語音、視頻和數據通信,包括直接獲取來自機載和戰場傳感器的近實時信息,以 "無縫 "方式運作。被描述為 "軟件定義的無線電",JTRS的功能更像一臺計算機,而不是傳統的無線電;例如,它可以通過添加軟件而不是重新設計硬件來升級和修改,以便與其他通信系統一起運行--這是一個更昂貴和費時的過程。國防部聲稱,"在許多情況下,一個具有多種波形的JTRS無線電臺可以取代許多單獨的無線電臺,簡化了維護工作",而且由于JTRS是 "軟件可編程的,它們也將提供更長的功能壽命",這兩個特點都提供了潛在的長期成本節約。JTRS計劃最初被分成五個 "集群",每個集群都有一個特定的服務 "領導"(見表A-1),并由一個聯合項目辦公室管理整個架構。
注:外形尺寸無線電臺基本上是士兵攜帶的小型化無線電臺,以及重量和功率受限的無線電臺。
正如下文所討論的,JTRS在開發過程中遇到了一些困難。這些問題可能與未來的JADC2開發有關。
根據政府問責局(GAO) 2005年的一份報告: 為了實現寬帶網絡波形的全部功能,包括傳輸范圍,Cluster One無線電需要大量的內存和處理能力,這增加了無線電的尺寸、重量和功耗。增加的尺寸和重量是努力確保無線電中的電子部件不會因額外的內存和處理所需的電力而過熱的結果。到目前為止,該計劃還未能開發出符合尺寸、重量和功率要求的無線電,而且目前預計的傳輸范圍只有三公里--遠遠低于寬帶網絡波形所要求的10公里范圍....。Cluster One無線電的尺寸、重量和峰值功率消耗超過直升機平臺要求的80%之多。
由于無法滿足這些基本的設計和性能標準,人們擔心Cluster One可能無法按計劃容納更多的波形(計劃中Cluster One有4到8個存儲波形),而且它可能過于笨重,無法裝入重量和尺寸都受到嚴格限制的未來戰斗系統(FCS)載人地面車輛(MGVs)以及陸軍的直升機機群。一些觀察家擔心,為了滿足這些物理要求,陸軍將大大 "削弱 "第一組的性能規格。然而,根據陸軍的說法,它在減少Cluster One的重量和尺寸以及增加其傳輸范圍方面取得了進展;然而,將所有需要的波形納入Cluster One證明是困難的。據報道,Cluster Five無線電臺也遇到了類似的尺寸、重量和功率方面的困難;這些困難更加明顯,因為有些Cluster Five版本的重量不超過1磅。
JTRS的安全問題成為發展中的一個重要困難。據一位專家說,該計劃最大的問題之一是安全,"即加密,因為JTRS的加密是基于軟件的,因此容易受到黑客攻擊"。 計算機安全專家普遍認為,用于任何目的的軟件都是脆弱的,因為目前沒有一種計算機安全形式能提供絕對的安全或信息保證。據美國政府問責局稱,JTRS要求應用程序在多個安全級別上運行;為了滿足這一要求,開發人員不僅要考慮傳統的無線電安全措施,還要考慮計算機和網絡安全措施。此外,國家安全局(NSA)對JTRS與美國盟友的無線電系統接口的安全擔憂也帶來了發展上的挑戰。
一些分析家表示擔心,使JTRS與傳統無線電 "向后兼容 "的目標在技術上可能是不可行的。據報道,早期的計劃試圖通過交叉頻段來同步不兼容的傳統無線電信號,這被證明過于復雜。目前陸軍的努力集中在使用寬帶網絡波形來連接傳統的無線電頻率。一份報告指出,雖然寬帶網絡波形可以接收來自傳統無線電的信號,但傳統無線電不能接收來自JTRS的信號。為了糾正這種情況,陸軍考慮使用19種不同的波形來促進JTRS向遺留系統的傳輸。在JTRS無線電中加入如此多的不同波形會大大增加內存和處理能力的要求,這反過來又會增加JTRS的尺寸、重量和功率要求。
作者:John R. Hoehn,軍事能力和計劃分析師
指揮、控制和通信(C3)系統是所有軍事作戰的基礎,為國防部(DoD)的所有任務提供計劃、協調和控制部隊和作戰所需的關鍵信息。歷史上,美軍取得并保持了C3技術的主導優勢,但同行的競爭者和對手已經縮小了差距。國防部目前的C3系統沒有跟上威脅增長的步伐,也沒有滿足我們聯合作戰人員不斷增長的信息交流需求。聯合部隊必須配備最新的C3能力,為所有領域提供實時態勢感知和決策支持。
未來的沖突很可能由信息優勢決定,成功的一方將來自多個領域的分布式傳感器和武器系統的大量數據轉化為可操作的信息,以便更好、更快地做出決策并產生精確的效果。國防部(DoD)正在執行一項重點工作,通過綜合和同步的能力發展,在所有領域迅速實現靈活和有彈性的指揮和控制(C2),以確保對我們的對手的作戰和競爭優勢。這項工作被稱為聯合全域指揮與控制(JADC2),是決策的藝術和科學,將決策迅速轉化為行動,利用所有領域的能力并與任務伙伴合作,在競爭和沖突中實現作戰和信息優勢。JADC2需要新的概念、科學和技術、實驗以及多年的持續投資。
該戰略代表了國防部對實施國防部數字化現代化戰略中C3部分的設想,并為彌合今天的傳統C3使能能力和JADC2之間的差距提供了方向。它描述了國防部將如何創新以獲得競爭優勢,同時為完全網絡化的通信傳輸層和先進的C2使能能力打下基礎,以使聯合全域作戰同步應對21世紀的威脅。該戰略的重點是保護和保持現有的C3能力;確保美國、盟國和主要合作伙伴在需要的時候能夠可靠地獲得關鍵信息;提供無縫、有彈性和安全的C3傳輸基礎設施,使聯合部隊在整個軍事作戰中更具殺傷力。這一戰略的實施需要在作戰領域內和跨作戰領域內同步進行現代化工作,從完美的解決方案過渡到一個高度連接的、敏捷的和有彈性的系統。
本文件確定的目標為DOD的C3系統和基礎設施的現代化提供了明確的指導和方向。然而,現代化并不是一個終點,而是一項持續的工作。國防部將評估和更新該戰略,以適應在通往JADC2道路上的新的作戰概念和技術。
美國防部正面臨著幾十年來最復雜和競爭激烈的全球安全環境。在這個大國競爭的新時代,國防部必須提高聯合作戰人員的殺傷力,加強聯盟伙伴關系,吸引新的合作伙伴,并改革國防部以提高績效和經濟效益。
當我們建立一支更具殺傷力的部隊并加強聯盟和伙伴關系時,DOD必須專注于關鍵的有利工具,以有效地運用聯合多國部隊對抗大國競爭。有效的部隊使用始于有效的C2,即由適當指定的指揮官在完成任務的過程中對指定和附屬部隊行使權力和指導。在現代戰爭中,這可能是人對人、機器對機器(M2M)的循環,或者隨著自主程度的提高,M2M的循環中也有人類。在其最基本的層面上,成功的C2需要有可靠的通信、發送和接收信息的手段,以及其他處理和顯示可操作信息的能力,以幫助指揮官進行決策并取得決定性的信息優勢。
圖1:指揮、控制和通信現代化
該戰略的重點是支持有效的聯合和多國作戰的C3使能能力(圖1)。C3使能能力由信息整合和決策支持服務、系統、流程以及相關的通信運輸基礎設施組成,使其能夠對指定和附屬的部隊行使權力和指導。這些能力使指揮官和決策者能夠迅速評估、選擇和執行有效的作戰方案以完成任務。
具體而言,該戰略為2020-2025年的C3使能能力現代化提供了方法和實施指南。作為2018年國防戰略(NDS)實施的一部分,聯合參謀部正在制定聯合和任務伙伴網絡的工作概念,以便在有爭議的環境中執行全域聯合作戰。根據這些概念,負責研究和工程開發的國防部副部長辦公室(OUSD(R&E))正在開發和發展一個長期的(2024年及以后)全網絡化指揮、控制和通信(FNC3)架構。實施這些未來的概念和架構將需要時間來使得新的技術和多年的投資成熟可用。這個C3現代化戰略為彌合今天的傳統C3使能能力和未來的FNC3使能JADC2之間的差距提供了方向,以確保聯合部隊能夠 "今晚作戰(fight tonight)",同時為聯合全域作戰所需的未來技術創造一個可行的過渡路徑。
本戰略提出的C3現代化目標與國防部數字化現代化戰略(DMS)和其他更高層次的指導意見相一致,包括國家發展戰略、國防部2018年網絡戰略、聯合作戰的基石概念:《聯合部隊2030》和《國防規劃指南》。它實施近期的現代化作戰和創新解決方案,通過更安全、有效和高效的C3環境提供競爭優勢。為此,國防部必須解決這些C3現代化的目標:
1.開發和實施敏捷的電磁頻譜操作;
2.加強定位、導航和授時信息的交付、多樣性和彈性;
3.加強國家領導指揮能力;
4.提供綜合的、可互操作的超視距通信能力;
5.加速和同步實施現代化的戰術通信系統;
6.全面建立和實施國防部公共安全通信生態系統;
7.創造一個快速發展5G基礎設施和利用非美國5G網絡的環境;
8.提供有彈性和響應的C2系統;9.提供任務伙伴環境能力。提供任務伙伴環境能力和服務。
圖2:DOD數字現代化戰略
圖3:DOD C3現代化和數字現代化戰略的一致性
圖2和圖3分別顯示了本戰略中實施的DMS要素以及兩個戰略之間的目標和目的的一致性。
DOD C3依賴于一個復雜的、不斷發展的系統,從網絡基礎設施和核心服務到戰術邊緣的手持無線電和移動設備。本戰略中包含的九個目標是對圖2中強調的六個DMS目標的更細粒度的分解。C3現代化的其他關鍵因素包括聯合信息環境能力目標、數據中心化和數據分析,分別包含在DMS、國防部云戰略和國防部人工智能戰略中。有效的國防部事業管理將確保這些戰略的成功同步和實施。
世界各地專注于對等或接近對等軍事競爭的空軍,越來越意識到采用分布式任務指揮和控制 (C2) 架構的必要性。然而,要實現這一目標,需要克服文化和政治阻力。分布式C2將需要重新引入傳統的任務指揮概念,將決策權力和許可逐步下放給戰術層面上相對較低層的戰斗領導人。盡管如此,大多數正在開發中的C2架構在一定程度上是去中心化的,以便使敵方更難發現、攻擊和削弱關鍵的機載和地基指揮節點。目前空軍強國正在探索分布式軌道衛星和無人機 (UAV) 的組合,以取代傳統的處理、開發和傳播 (PED) 平臺和 C2 平臺。
軌道域資產設施作為分布式 C2 和情報、監視、目標捕獲和偵察 (ISTAR)架構一部分,其未來形態仍然不確定,因為天基傳感器能力、通信帶寬和通信魯棒性的快速發展表明它的作用急劇增加,然而,未來對這些資產設施的使用也可能備受爭議,甚至被否認。無人機具有長續航的潛力,而而不像在軌衛星那樣具有可預測和潛在易受攻擊的軌跡。第五代平臺,如F-35和極低可觀測無人機,作為下一代分布式C2和ISTAR架構的構建模塊,不僅需要安全和難于探測的數據鏈和傳感器,而且要求動態邊緣處理能力以降低帶寬,并自動識別發送相關數據給其他設施資產。因此,在可預見的未來,空軍很可能仍然依賴集中式 C2(基于即將過時的寬體舊系統)。
未來空戰環境的特點是遠程地空導彈(SAM)系統(Bronk, 2020a)、遠程空對空導彈(VLRAAMs)和超低可觀測戰斗機和攔截機(Bronk, 2020b)的日益普遍發展。這種新一代威脅系統正在穩步提高傳統空戰的風險水平,傳統作戰嚴重依賴于 E-3 預警機等集中指揮和控制設施。遠程 SAM 系統、VLRAAM 和 VLO 戰斗機威脅將越來越多地迫使傳統指揮和控制 (C2) 以及情報、監視、目標捕獲和偵察 (ISTAR) 飛機在遠離敵方領土的地方運行,以至于其機載傳感器和通信中心能力將大大降低作戰效用。與此同時,遠程精確打擊系統和進攻性網絡工具的可用性繼續增加了現代國家對彼此的集中式地面指揮和控制設施產生威脅效應,如聯合空中作戰中心(CAOCs)(Kaushal, Macy和Stickings, 2019年)。因此,21世紀初西方空軍的兩大核心力量面臨著潛在的生存挑戰。
自1980年代后期以來,西方空軍嚴重依賴空中力量,為使聯合部隊的行動能夠用較少的陸軍與海軍進行。這種模式在 1990 年代和 2000 年代的多次沖突中取得了驚人的成功,導致陸軍和海軍的部隊設計都假設了空中支援和空中 C2 和 ISTAR 的可用性。因此,從空中提供按需 ISTAR 和火力支援的能力,是許多西方國家使用軍事力量的必要先決條件。
聯合作戰對空中力量的依賴,已經創造了一個以聯合空戰中心(CAOC)為焦點的極度集中式的C2模式。
在聯合空戰中心 CAOC 內,72 小時空中任務指令 (ATO) 是根據各種聯合部隊任務、ISTAR設施、多國特遣隊許可流程和加油機等因素生成的。這一過程需要數百名專業人士、大型固定設施和出色的通信鏈路——這使得 CAOCs 在任何重大戰爭中都成為敵對國家重點關注和明顯??的目標。 CAOC 離作戰區域越近,它就越容易受到敵對遠程精確打擊能力的攻擊。然而,距離越遠,對潛在易受攻擊的隱蔽、視距、超視距和軌道通信鏈路的作戰依賴就越大。
未來作戰概念將以較小的規模、較分散的空戰中心(AOCs)為特征,以避免聯合部隊對其C2的斬首式攻擊。然而,依賴較分散的 AOCs 而不是大型 COACs 可能會造成任務重復,從而增加已經不堪重負的情報和指揮人員負荷。 C2 分配還可能增加對可靠通信鏈路的依賴,因為即使必要流程的高度自動化,每個 AOC 也只能執行全規模 COAC 的某些功能。因此,如果動能或非動能武器切斷或嚴重影響這些聯系,那么集中式COACs 或較小的分布式 AOCs 都可能失去戰區內在戰術上協調 ISTAR、打擊和使能設施的能力。
此外,在幾十年基本上沒有競爭的空中行動中,高級指揮官對戰術行動施加直接控制和監督的習慣已被允許出現。這是由于實時全動態視頻傳輸技術成熟,使得 CAOC 指揮官能夠感知戰術態勢。面對經常被視為任意和不得人心的沖突,政治層面對風險的容忍度顯著降低,這也助長了這一趨勢。這將更加阻礙將控制權委托給戰術層面。這種現有的指揮形式進一步提高了集中化程度,降低了作戰節奏,并為空中作戰引入了一系列潛在的帶寬瓶頸和電磁漏洞。許多國家的高級政治家和軍事領導人可能會將同級沖突中涉及的更高地緣政治風險視為繼續集中管理戰術決策的理由。然而,這種方法在實踐中幾乎必失敗,因為它需要緩慢的作戰節奏,以及它需要超視距連接和帶寬。為了適應未來國與國沖突,戰術空中指揮官文化氛圍必須改變以避免行動癱瘓,因為對 CAOC 結構及其支持通信鏈路的動能、電磁和網絡攻擊會切斷了指揮官與前線設施的聯系。
許多空軍很清楚,源自 E-3預警機和 E-8 J-STARS 等寬體客機的傳統機載 C2 和 ISTAR 節點不再是未來沖突場景的最佳選擇。這些資產設施的自衛能力非常有限,必須發射大量易于檢測的電磁信號才能有效發揮作用,這使得它們容易被定位和跟蹤。此類平臺也是潛在傷亡的重要來源,因為它們攜帶大量訓練有素的任務系統工作人員來執行處理、開發和傳播 (PED) 的關鍵任務,以及空戰管理功能。今天,寬體 ISTAR 和 C2 飛機必須遠離敵方的地空導彈系統和遠程空對空導彈系統,使得在與技術先進的競爭對手發生沖突的早期階段,它們的主要傳感器圖像在很大程度上是無效的。
第五代 F-35 對此類 C2 和 ISTAR 使能器的依賴顯著減少,因為它自身有能力為其飛行員提供多光譜廣域態勢感知。這種在敵對空域內有機地建立態勢感知的能力,使得許多人計劃將 F-35 作為下一代分布式 C2 和 ISTAR 網絡的主要組成部分(Bronk,2020c)。然而,由于帶寬、軟件架構和排放控制限制,F-35 目前的形式無法把為飛行員創建的完整傳感器圖像傳輸到其他軍事設施。此外,作為戰術打擊戰斗機,與傳統的 ISTAR 和 C2 節點相比,F-35 的續航能力有限,而且數量有限的 F-35 也已經致力于打擊、SEAD/DEAD 和攔截任務。因此,諸如 F35 之類的平臺只能為傳統 C2 和 ISTAR 使能資產和網絡日益過時提供部分解決方案。
正在開發的分布式機載 C2 和 ISTAR 架構需要對設備進行更改,以使空軍能夠部署更多的小型平臺。除了 F-35 等支持網絡的戰斗資產設施外,一系列較小的載人 C2 和 ISTAR 平臺仍可能成為攜帶小型任務系統人員的選項,以實現機載 PED 和空戰管理。
然而,幾個主要的空軍強國已經在探索分布式軌道設施和無人機 (UAV) 的組合,這將取代 PED 和 C2到遠程地面站的功能。
由于存在一系列競爭趨勢,作為分布式 C2 和 ISTAR 架構一部分的軌道域的未來形態目前尚不清楚。一方面,飛速發展傳感器功能、對空間/重量/電力有要求的設備、通信帶寬和通信魯棒性,MIMO-type數組和軌道設施發射成本下降,都將大幅增加軌道資產在未來分布式ISTAR和C2網絡的角色。然而軟殺傷反衛星能力的激增,能夠進行交會的軌道設施,進攻性近距離作戰和越來越有爭議的電磁波譜,使得軌道資產和利用它們所需的上行/下行鏈路能力越來越有可能被拒絕,或至少在未來的任何戰爭中受到高度競爭。
提供按需的ISTAR和空中火力支援能力是一個必要的先決條件
與依賴人類飛行和任務系統工作人員的資產設施相比,無人機在空間站上提供了更長的續航時間,不像在軌衛星那樣具有可預測和潛在易受攻擊的軌跡。美國空軍 RQ-4 全球鷹和中國神鷹等大型無人機已經展示了一次在非常大的高度飛行超過 24 小時的能力——對于任何分布式的機載 C2 或 ISTAR 節點來說,這是一個非常理想的屬性。為了使它們在面對同行威脅時能夠更好地堅持下去,具有極低可觀測 (VLO) 形狀和材料的高空長航時 (HALE) 型無人機提供了新的潛力。 VLO UAV 在分散系統內執行 C2 和 ISTAR 任務的適用性將取決于尖端數據鏈、傳感器和 SATCOM 的發展,這些數據鏈、傳感器和 SATCOM 可以在不將機身暴露給敵方無源傳感器的情況下執行其任務功能。為了完成這些任務,出現了一些很有前途的技術,這些技術以不同程度的成熟度存在,但仍然很昂貴,并且部署這些技術的國家保持高機密性和安全敏感性。這意味著大規模部署將具有挑戰性,尤其是在靠近敵方領土的無人平臺上。
與當前這一代客機衍生解決方案相比,盡管無人 VLO、HALE 機身可以部署并更接近敵方部隊,但它們取代傳統機載 C2 和 ISTAR 節點的能力取決于自動化數據共享和邊緣處理技術。現代 ISTAR 資產設施,尤其是那些在 F-35 上配備多光譜傳感器套件的設施,在構建周圍戰場的廣域圖像時會產生大量數據。在此過程中,他們將收集可能對其他廣泛資產設施具有較高價值甚至關鍵價值的信息。然而,基于物理的帶寬限制了卸載或共享所有收集的數據,即使在非競爭性電磁環境中也是如此(Watling,2020 年)。在國與國之間的沖突場景中,ISTAR和 C2平臺將競爭有限頻譜資源,并可能在排放控制條件下運行以減少其對檢測和攻擊的脆弱性,應用邊緣處理技術來減少需要共享的數據量將至關重要。
任務工作人員(根據心智能力和工作量)可以對哪些信息可能值得或不值得傳遞給其他資產設施做出必要的主觀和視情況而定的優先級和相關性判斷。然而,至關重要的是,自動化系統目前無法做到這一點,除非在特定的、嚴格定義的情況下。
空戰管理經常是被動反應,依賴判斷的任務也是如此。如果沒有合適的解決方案,用安裝在 HALE 型無人機和作戰資產設施上的數據鏈和分散網絡節點架構,取代空中集中式 C2 和 ISTAR 節點是不可能的。
高度自動化、分布式去中心化的機載 C2 和數據共享網絡的組件(例如美國聯合全域指揮與控制 (JADC2) 計劃所追求的組件),都在機身設計人員的能力范圍內(美國會研究處,2021 年)。
然而,這一雄心超出了目前可行的人工智能和自主技術能力。對這樣一個系統的要求是明確的,因為至少在 2030 年代中期之前,世界各地空軍的大部分戰斗仍將依賴先進的第四代戰斗機和彈藥。
如果沒有來自整個戰場空間的實時態勢感知、目標和武器提示,這些武器系統將無法在高強度沖突中發揮它們所需的作用。然而,如果沒有主觀判斷和優先級排序能力,使得自動化邊緣處理真正取代空戰管理和ISTAR PED任務中的工作人員,空軍很可能仍然依賴于基于過時的寬體遺留系統的集中式機載架構。
Justin Bronk 是英國皇家國防安全聯合軍種研究所(RUSI)軍事科學團隊技術研究員。他還是 RUSI Defense Systems 在線期刊的編輯。他的專業領域包括現代作戰空中環境、無人作戰飛行器和新型武器技術。他為 RUSI 和各種外部出版物撰寫了大量文章。
2021年3月,美國哈德遜研究所國防概念與技術中心發布研究報告《實施以決策為中心的戰爭:提升指揮與控制以獲得選擇優勢》,提出以決策為中心的戰爭將使美軍做出更快、更有效的決策,從而賦予美軍更大的競爭優勢。
自冷戰結束以來,美國國防部(DoD)針對來自主要對手(如中國、俄羅斯和朝鮮等)的巨大軍事沖突發展了相應理論和能力。這些最壞的情況是為了確保美軍也能應對“較少的情況”。然而,這種方法偏重于為大規模、高強度軍事沖突設計的概念和系統,美國的智能對手不太可能向美軍挑起對抗,而國防部可以在力量投射或精確打擊等任務中發揮其優勢。
美國的對手在過去十年中已經發展出了抵消美國軍事優勢的方法,如中國和俄羅斯的灰色地帶或混合行動,這些方法以較低的成本和升級——盡管比傳統的軍事作戰時間更長——獲得目標。因此,國防部應修訂其規劃,提高新方案的優先級,這些方案以不同于戰區范圍內高強度作戰的方式給美軍施加壓力,如通過延長時間、不同程度的升級和規模,以及使用代理和準軍事力量。
中國的“系統破壞戰”概念和俄羅斯軍方的“新一代戰爭”概念是針對美國及其盟友的新方法的代表。雖然它們的制勝理論和方法大相徑庭,但這兩種概念都有一個共同點,即把信息和決策作為未來沖突的主戰場。它們從電子和物理上直接攻擊對手的戰斗網絡,以降低其獲取準確信息的能力,同時引入虛假信息,削弱對手的定向能力。同時,軍事和準軍事力量將通過孤立或攻擊目標的方式向對手提出難題,以中和對手的戰斗潛力,控制沖突的升級。
美國海軍如何重新平衡實施 "馬賽克戰 "部隊的例子
以決策為中心的概念,如系統破壞戰和新一代戰爭,很可能成為未來沖突的重要形式,甚至是主要形式。在冷戰后期,美軍革命性的精確打擊戰方式利用了當時的通信數據鏈、隱身和制導武器等新技術。同樣,以決策為中心的戰爭可能是軍事上利用人工智能(AI)和自主系統的最有效方式,這些技術可以說是當今最突出的技術。
以決策為中心的戰爭的一個例子是國防高級研究計劃局(DARPA)的馬賽克戰爭概念。馬賽克戰爭概念的中心思想是,由人類指揮指導的、具有人工智能功能的機器控制的分列式有人和自主單位可以利用它們的適應性和明顯的復雜性來延遲或阻止對手實現目標,同時破壞敵人的重心以排除進一步的侵略。這種方法與機動戰一致,不同于第二次世界大戰期間盟軍采用的基于損耗的戰略,也不同于冷戰后美軍在科索沃、伊拉克和利比亞沖突中采用的戰略。雖然馬賽克戰爭采用損耗作為給敵人制造困境的一部分,但其實現成功的主要機制是拒絕、拖延或破壞對手的行動,而不是削弱對手的軍事實力,使其無法再有效作戰。因此,馬賽克戰爭非常適合作為現狀軍事大國(如美國)尋求遏制侵略的概念。
在近期兵棋推演中,馬賽克部隊與傳統軍事部隊在任務完成情況的比較
馬賽克戰爭提出了一種部隊設計和指揮控制(C2)程序,與今天的美軍相比,它將使美軍能夠執行更多、更多樣化的行動方案(COA)。馬賽克部隊的分解結構和使用人類指揮與機器控制,將使對手的決策復雜化,縮小其選擇范圍,并施加一系列可能無法解決的困境。通過增加美軍指揮官的選擇權,減少敵方的選擇權,馬賽克戰法將尋求獲得“選擇權優勢”,使美軍能夠做出更快、更有效的決策。
選擇性戰略與以預測為中心的規劃方法形成鮮明對比,在這種規劃方法中,選擇最有可能導致成功的作戰行動方案并迅速實施,通過將與未選擇的作戰行動方案相關的系統和兵力要素分配給其他任務來提高效率。在以預測為中心的模式中,資源的早期承諾必然會限制指揮官今后的選擇空間。
與今天的美軍相比,馬賽克部隊的設計和C2過程可以在選擇權競爭中提供更大的優勢,因為隨著對抗或競爭的進展,可以緩解由于損失或敵方態勢感知的改善而導致的選擇權減少的自然趨勢。例如,“馬賽克”部隊可以更容易地隱藏具有反ISR能力的平臺或編隊,并在以后暴露出來,以實現新的選擇;利用數量更多、規模更小、成本更低的增援部隊;或依靠決策支持工具,允許繼續使用與高級指揮官物理或電子隔離的部隊。
圖:以網絡為中心的戰役空間架構與基于情境的戰役空間架構的特點比較
一支馬賽克部隊也將比今天的美軍更有能力進行縮小對手選擇范圍的行動。通過同時發起許多行動并加速其決策,一支使用人類指揮和機器控制的分布式部隊可以給對手造成足夠的困境,從而排除與作戰相關的數量的《作戰協議》。此外,馬賽克部隊還可以利用諸如分配、佯攻和探測等欺騙技術以及反ISR系統來補充其更大的規模和決策速度,這些技術可以使對手相信某些選擇不可行或不可能成功。
雖然國防部的C3結構,如混合和聯合全域指揮和控制(CJADC2)開始納入決策支持工具,為特派團整合效應鏈,但其目前和近期的實例旨在支持有效的火力投送,而不是持續的可選性。此外,與CJADC2相關的C2和通信(C3)舉措,如高級戰役管理系統(ABMS),需要提前確定架構和組件系統。因此,CJADC2在其能夠提供的可選性方面將受到固有的限制。
圖:C2實施方法的比較
第一步是壓縮空間的表征,重點放在時間的表征上。以一個作戰人員在短時間內的行動為例,在這個例子中,一個作戰人員的任務是收集指定地點的圖像。這在操作上是不現實的情況,只是用一個簡單的案例來說明這個概念。
在C3組合中,國防部已經在通信復原力方面進行了大量投資。因此,大部分新的努力和資源應該應用于C2能力。盡管美國軍方投資于所謂的C2系統,但這些項目主要是操作中心和軟件堆棧,作為在部隊中傳遞數據、信息、命令或權限的基體。盡管對管理部隊來說是必要的,但目前國防部的C2系統——將C2看作是連接——并不是決策支持系統,后者將C2看作是一個過程。
圖:在馬賽克C2方法中采用OODA循環
用于以決策為中心的戰爭的C3能力需要做的不僅僅是實現連接。例如,C2工具將需要生成能創造和維持可選擇性的COA,以提高適應性,并將復雜性強加給對手。為了幫助初級領導人執行任務指揮,C2工具還需要了解哪些單位在通信中,他們在潛在的COAs中的作用,并配置網絡以確保所需單位與適當的指揮官保持一致。為了評估這些要求和以決策為中心的C3的其他要求,本研究采用了多種視角,如下所述。
圖:以預測為中心和以決策為中心的選擇空間隨時間變化的比較
網絡視角:要實現可選擇性和實施以決策為中心的戰爭,就需要有能力使C2結構與現有通信保持一致,而不是試圖建立一個在面對敵方協同干擾和物理攻擊時仍能生存的網絡。這些需求導致了一種混合架構,這種架構將網絡方式與分層方式結合起來,可以被定性為 "異構"。這種拓撲結構將使指揮權與合格的人類操作者占據的節點中具有最高程度的節點相一致。
解決問題的視角:與從頭開始處理每個新情況相比,使用類比推理的問題解決過程可以更迅速地評估潛在的備選方案,由此產生的決策空間的增加可以使指揮官將限制其備選方案的作戰行動協議推遲到最后一刻。此外,如果使用人工智能支持的算法在沒有監督的情況下建立COA,對手可以通過佯攻和探測來影響算法的學習,使系統認為COA是成功的,如果不是對手的行動,實際上會失敗。
圖:來自DARPA PROTEUS計劃的分析和用戶界面,AI輔助規劃
時間視角:可選性的概念適用于多個時間尺度,從戰略到工業能力發展和部隊的戰術行動。C3架構的能力應該有助于擴大每個時間尺度上的努力所帶來的決策空間,而不是僅僅在任務期間。
組織視角:國防部的C3架構不是在真空中存在的。各組織的人員必須通過戰略、工業、作戰和戰術時空的流程來運用這些架構。可選性是在以決策為中心的戰爭中獲得優勢的關鍵,但如果僅僅是派出一支更分散的部隊和使用它的工具,如果這支部隊的使用方式很狹窄,為每個單獨的行動提供最高的成功概率,那么只能稍微增加美軍的復雜性和適應性。需要決策組織和程序,盡可能長時間地擴大指揮官的選擇空間。
今天的戰斗指揮官(CCDR)參謀部缺乏組織和程序,無法為即將到來的任務以各種不同的配置組合部隊。為了能夠在任務時間內組成部隊,國防部可以采用類似于將計算機程序編譯成可執行代碼的方法。軟件指令是用較高層次的計算機語言編寫的,但在軟件被計算機處理器執行之前,需要將其轉換成二進制形式。這種方法將從決策支持系統的COA開始,然后組合適當的單位來支持行動。雖然部隊構成主要是以硬件為中心,但也需要在技術棧的信息層和網絡層進行部隊包的軟件構成。
圖:從人工構成到決策中心戰的任務整合浪潮
美軍將需要采用新的部隊設計和C2流程,以實現以決策為中心的戰爭,但如果不與工具和組織結合起來,以充分利用使用人類指揮和機器控制的更分散的部隊中可能存在的可選性,這些努力將付諸東流。
目前國防部通過CJADC2和相關的作戰概念努力使美軍向更分散的組織和更分散的能力發展,這是實現更以決策為中心的軍事行動方法的重要一步。高級戰斗管理系統(ABMS)和DARPA的幾個項目正在開發C2工具和流程,這些工具和流程將增加指揮官使用這些更分布式部隊的可選性。國防部的部隊設計變革或C3舉措將需要更進一步,以便美軍在面對已經躍升到以決策為中心的戰爭并擁有主場優勢的同行對手時保持可選擇性優勢。
也許更重要的是,將需要新的組織和程序,使CCDR能夠在戰區組成和整合分散的部隊,并改變國防部定義需求和發展新能力的方式。如果不對國防部的需求和部隊發展程序進行重大改革,美軍就有可能在爭奪決策優勢的競爭中落后于對手,從而威脅到其保護美國利益和盟友免受大國侵略的能力。
(參考來源:軍事文摘作者:張傳良)
人工智能領域的進展繼續擴大這組技術的潛在軍事應用范圍。本文探討了信任在人機聯合作戰中的關鍵作用,以及依靠人工智能來補充人類認知的潛在影響。如果依靠人工智能來準確處理傳感器數據,操作自主系統和平臺,或通過擬議的作戰概念(如以決策為中心的戰爭)提供有利的決策支持,設想機器智能的中央指揮和控制作用,那么信任機器智能將是未來作戰中的一個關鍵組成部分。鑒于這些技術和理論的發展,信任的概念對于機器智能在戰術和作戰層面的軍事行動中的使用變得高度相關,正確校準的信任水平是安全和有效行動的基礎。在簡要回顧了機器智能的最新進展和對信任概念的探索之后,本文概述了人工智能在戰場上的當前和潛在應用,以及由不充分或不合理的高信任度帶來的挑戰。
縱觀歷史,技術已經擴大了武裝沖突的領域,戰術交戰的節奏,戰場的地理范圍,以及指揮官與部隊溝通的手段。技術創新--包括軍事和民用--改變了軍隊的作戰方式以及國家計劃和進行這些沖突的方式。在21世紀,迄今為止,很少有進步能像統稱為人工智能(AI)的一組技術那樣獲得如此多的關注。人工智能正準備迎來一個新的時代,在這個時代,機器智能和自主性正在為軍事行動的規劃和執行產生明顯的新概念。算法戰爭可能會帶來一些獨特的東西:增強甚至取代人類決策過程的系統,其速度可能超過人類規劃者的認知能力。
新興技術的整合提出了任何數量的基本組織和倫理問題,值得關注。本文將采用定性的社會科學方法,重點討論人類-自治團隊(HAT)的一個重要方面:鼓勵對機器智能的適當信任程度。有大量的學術文獻關注自動化或機器人技術中的信任問題,但有關具體軍事應用的工作較少。當人工智能在聯合作戰中被實際部署時,在信任方面有哪些挑戰和機會?在簡要回顧人工智能和概述機器智能在戰場上的可能應用之后,本文在分析鼓勵適當信任水平的陷阱和潛在解決方案之前,探討了信任和信任校準的概念。
幾十年來,人類一直對賦予機器某種形式的人工智能的可能性著迷,Nils Nilsson將其定義為 "致力于使機器智能化的活動,而智能是使一個實體在其環境中適當運作并具有預見性的品質"。在數字時代的早期,出現了兩種廣泛的人工智能方法。自上而下的專家系統方法使用復雜的預編程規則和邏輯推理來分析一個特定的數據集。對于具有可預測規則的明確定義的環境--諸如分析實驗室結果或下棋等應用--專家系統或 "符號 "人工智能(基于符號邏輯)的性能主要取決于處理速度和算法的質量。另一大類使用自下而上的機器學習方法,模擬人類通過檢測數據中的模式進行學習的方式。神經網絡是一種以人腦為模型的機器學習形式,能夠通過使用多個(因此是 "深")人工神經元層來識別復雜的模式,是被稱為 "深度學習 "的技術的基礎。通過其在數據集中尋找關系的能力,這種技術也被稱為 "連接主義"。
自上而下、基于規則的符號系統和自下而上的機器學習連接主義技術之間的差異是很大的,特別是關于它們的潛在應用范圍和靈活性。深度學習方法的顯著特點是能夠將學習與它所訓練的數據集分開,因此可以應用于其他問題。基于規則的算法可以在狹義的任務中表現得非常好,而深度學習方法能夠迅速找到模式,并在 "蠻力 "專家系統計算方法無效的情況下有效地自學應用。最近的一些人工智能進展顯示了模仿創造力的能力,產生了有效的解決問題的方法,這些方法對人類來說可能是反直覺的。
然而,總的來說,人工智能仍然是狹窄的或 "脆弱的",即它們在特定的應用中功能良好,但在用于其他應用時仍然不靈活。與人類的認知相比,鑒于機器的計算速度遠遠超過人腦,機器智能在將邏輯規則應用于數據集時要優越得多,但在嘗試歸納推理時,它必須對數據集或環境進行一般性的觀察,這就顯得不足。大多數機器學習仍然需要大量的訓練數據集,盡管新的方法(包括生成對抗網絡(GAN)和 "小于一次 "或LO-shot學習)正在出現,需要非常小的數據集。圖像識別算法很容易被混淆,不能像人類那樣立即或直觀地理解情景背景。這種脆性也延伸到了其他問題,比如游戲。雖然人工智能在視頻游戲中經常表現出超人的能力,但他們往往不能將這種專業知識轉移到具有類似規則或玩法的新游戲中。
雖然人工智能技術繼續在變得更加適應方面取得重大進展,但任何接近人類的人工通用智能仍然難以實現。評估人工智能的近期前景因該技術的漸進式進展而變得更加復雜。圍繞著人工智能的炒作--在很大程度上被深度學習方法的成功所推動--既導致了對該技術未來的不切實際的期望,也導致了對其非常大的進展的正常化。正如一份報告所指出的,"人工智能將一項新技術帶入普通人的視野,人們對這項技術習以為常,它不再被認為是人工智能,而出現了更新的技術"。盡管象征性的人工智能和各種形式的機器學習構成了該領域最近的大部分進展,也許除了融合這兩種方法的嘗試之外,未來仍然不確定。一些人猜測,機器學習技術帶來的進展可能會趨于平穩,而另一些人則保持樂觀。相關的技術進步,如短期內的計算機芯片設計和長期內的量子計算,可能會影響進一步進展的速度。