亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

災難響應期間的態勢感知是至關重要的,因為它使響應團體能夠在災難時間敏感的急性階段迅速和有效地幫助那些有迫切需要的人。新技術可以極大地提高響應行動的效率:用衛星圖像快速繪制颶風的破壞性路徑,用社交媒體追蹤確定需求增加的社區,用計算機建模預測野火的路線以通知疏散。美國政府已經優先在整個聯邦機構實施人工智能(AI)系統,包括那些可能有助于災難響應的技術。在這份報告中,我們提供了一個技術路線圖,用于向響應社區提供近期和更遠期的人工智能技術,這些技術可以在災害期間幫助提高態勢感知。通過探索當前和歷史上的技術趨勢、成功和困難,我們設想了這種新技術可能給災害響應帶來的好處和脆弱性。考慮到與災害和人工智能技術相關的復雜性,有必要采取綜合的發展方法,以確保新技術既是科學驅動的,又是操作上可行的。

付費5元查看完整內容

相關內容

美國國家人工智能(AI)研究資源(NAIRR)工作組近日發布題為《加強和民主化美國人工智能創新生態系統:國家AI研究資源實施計劃》最終報告。該報告是建立國家研究基礎設施的路線圖,該基礎設施將擴大對AI研發必不可少的資源的訪問。報告由引言,民主化和加速AI研發的國家網絡基礎設施,NAIRR組織、管理和治理,NAIRR架構和對資源要素的技術要求,NAIRR組織和資源的分階段擴建,以及結論六部分,另有12個附錄構成。主要內容如下:

人工智能(AI)是推動科學發現和經濟增長的創新引擎。它正日益成為解決方案不可或缺的一部分,這些解決方案將影響從日常工作到社會層面挑戰的方方面面,最終服務于公共利益。同時,也有人擔心AI會帶來負面的社會環境影響后果。為了實現AI的積極和變革潛力,當務之急是利用美國所有的聰明才智來推進這一領域的發展社會挑戰,為所有美國人工作,維護美國的民主價值觀。

然而,AI當前前沿的進展往往與獲取大量計算能力和數據有關。今天,這種機會往往僅限于資源豐富的組織。這一巨大且不斷擴大的資源鴻溝有可能限制和不利地扭曲AI研究生態系統。這種不平衡威脅到美國培養AI研究的能力社區和勞動力反映了美國豐富的多樣性和駕馭AI的能力推進公共利益。

一個廣泛可用的AI研究網絡基礎設施資源、數據、試驗臺、算法、軟件、服務、網絡和專業知識,如這份報告中所述,在美國將有助于為了所有人的利益去民主化AI研發態勢。這將有助于創造途徑來擴大從事AI的研究人員,致力于AI方法和應用的發展和多樣化。網絡基礎設施也有助于為所有科學領域和學科的進步,包括AI審計、測試和評估等關鍵領域,可信人工智能、偏差緩解和AI安全開辟新的機會和多樣化的視角,反過來可以導致新的想法,否則不會實現,并設置條件開發設計包容的AI系統。

作為2020年國家AI倡議法案的一部分,國會建立了國家AI研究資源(NAIRR)工作組研究發展“NAIRR”作為國家AI研究的可行性和可取性網絡基礎設施,并“提出一個路線圖,詳細說明應該如何建立NAIRR”持續有效。最近的2022年芯片和科學法案強調了通過投資實現國家人工智能研究網絡基礎設施的民主化,從下一代圖形處理器(GPU),加速高級計算的開發到高密度內存芯片——以及積極吸引廣泛多樣的美國人才的措施在前沿科學和工程領域,包括人工智能。

建立NAIRR時應考慮四個可衡量的目標,即(1)刺激創新,(2)增加人才的多樣性,(3)提高能力,以及(4)推進可信的AI。NAIRR應通過支持研究人員的需求來實現這些目標,并來自不同背景的學生,他們追求基礎、使用激勵和轉化AI研究。這些用戶應位于美國或隸屬于美國組織,包括學術機構、非營利組織以及創業公司或小企業。

NAIRR應該包括來自各種提供商資源的一組聯合的計算、數據、測試床和軟件,以及技術支持和培訓,以滿足需求這個目標用戶群。NAIRR的具體設計、實施和評估應以四個關鍵目標為中心,并應支持收集數據以評估實現這些目標過程中的系統性能和成功的關鍵指標。

NAIRR的管理和治理應遵循合作管理原則,作為NAIRR一個單一的聯邦機構行政總部運營和指導委員會,由來自聯邦機構的負責人組成AI研究實體推動著NAIRR的戰略方向。項目管理行政總部機構內的辦公室應為管理NAIRR日常運營的獨立運營實體。由國家AI倡議辦公室(NAIIO)共同主持的指導委員會將在全國AI倡議辦公室的治理中納入來自各聯邦機構的利益和觀點。這些機構還應該直接支持資源提供者,如果聯合起來,他們的資源將構成NAIRR。應挖掘不同的觀點和專業知識,為NAIRR的運營通過用戶委員會、科學顧問委員會、技術顧問委員會和道德咨詢委員會向運營實體提供建議。

NAIRR應該提供對計算和數據的聯合訪問資源、測試平臺、軟件和測試工具以及用戶支持服務門戶網站。計算資源應包括傳統服務器、計算集群、高性能計算和云計算,并應支持對邊緣計算的訪問AI研發的資源和測試平臺。開放和受保護的數據應在分層訪問協議并與計算資源共處一地。經營實體應當它本身并不操作構成NAIRR的全部計算機硬件;相反,計算以及數據、測試和培訓資源應通過聯邦機構或多機構資助機會選擇的合作資源提供商作為服務交付。當完全實施時,NAIRR應解決容量(支持大型用戶數量)和AI的能力(訓練資源密集型AI模型的能力)需求研究社區。

NAIRR必須能夠被廣泛的用戶訪問,并提供一個平臺可用于教育和社區建設活動,以降低參與AI研究生態系統的障礙,增加AI研究人員的多樣性。NAIRR訪問門戶和公共網站應提供目錄、搜索和發現 有助于訪問數據、測試平臺、教育和培訓資源的工具經驗水平。

NAIRR應該為負責任的AI研究制定標準實施其治理流程。NAIRR必須積極主動地通過集成適當的技術控制、政策和治理機制解決。運營實體應遵循其職業道德咨詢委員會制定評估擬議研究的標準和機制從隱私、公民權利和公民自由的角度看NAIRR中包含的資源。應要求定期培訓,以建立NAIRR用戶對權利、責任,以及AI研究中與隱私、公民權利和公民自由相關的最佳實踐.白宮科學與技術辦公室2022年10月公布了AI權利法案的藍圖技術政策。

付費5元查看完整內容

這篇論文試圖研究能夠改善復雜軍事戰術環境中決策的人工智能(AI)技術。戰術環境在威脅、事件的節奏、突發或意外事件的因素、戰斗空間意識的限制以及潛在的致命后果方面可能變得非常復雜。這種類型的環境對戰術作戰人員來說是一個極具挑戰性的決策空間。戰術決策任務在識別決策選項、權衡眾多選項的相對價值、計算選項的預測成功率以及在極短的時間內執行這些任務方面迅速超越了人類的認知能力。海軍已經確定需要開發自動戰斗管理輔助工具(ABMA)來支持人類決策者。這個概念是讓ABMA處理大量的數據來發展戰斗空間知識和意識,并確定戰爭資源和行動方案的優先次序。人工智能方法的最新發展表明,它有望成為ABMAs支持戰術決策的重要推動者。本論文研究人工智能的方法,目的是確定在戰術決策領域的具體應用。

論文組織

本論文分為五章。第一章概述了本課題的背景,描述了本論文所探討的問題,本論文的目的,以及研究的方法和范圍。第二章對論文中討論的定義和概念進行了全面的背景回顧,包括自動戰斗管理輔助工具、決策復雜性和人工智能及自主系統的概念。第三章描述了用于協調數據采集和理解檢索數據要求的研究方法。第四章提供了分析的結果,并探討了從分析結果中得出的潛在好處和局限。本論文的最后一章包含最后的結論和對未來工作的建議。

付費5元查看完整內容

這部專著探討了支持多域作戰和融合概念的技術架構。在回顧了陸軍如何形成其目前的信息架構之后,它利用赫爾穆特-馮-莫特克和約翰-博伊德的實踐和理論,對沃爾瑪、多米諾和亞馬遜網站進行了商業案例研究,以了解它們如何在全球化市場日益復雜的競爭中茁壯成長。實施從這些商業中吸取的教訓,可以使美國軍隊通過改變其數字架構在競爭中取得優勢。轉變為算法增強的、基于網絡的架構,可以將領導者的精力從強調處理堆積如山的數據的機械性細節中釋放出來。這使他們能夠專注于適應性和作戰或戰術方法,增強在現代世界不斷發展的復雜性中成功競爭所需的敏捷性。

引言

本文開始是對陸軍的組織和作戰概念的研究,與陸軍正在開發的支持其多領域作戰(MDO)概念的新能力相配合。研究工作表明,更關鍵的重點領域是技術信息子結構,它可以使MDO和應用其概念的領導人取得成功。目前支持MDO和融合的技術狀態的問題是一個信息架構,它是沿著每個作戰功能的管道,缺乏改進的自動化來快速處理更大的數據集,并迫使領導者專注于低效地重新處理數據集。這些都占用了時間和精力,使他們無法履行更重要的職責,即制定操作方法,利用從收集的信息中獲得的洞察力。C2架構限制了其職能部門和領導者的潛力。一個集中的等級模式阻止了他們在沒有中央節點的信息處理或高級指揮官及其參謀部的指導下做出明智決定的能力。這些不匹配阻礙了MDO的目標:以任務指揮思維領導的跨功能編隊,在時間和空間的關鍵點上匯聚他們的能力,比他們的對手更快、更遠。

在許多相同的挑戰性條件下進行區域和全球競爭。不斷發展的全球供應鏈,互聯網的連通性,以及來自新的商業對手的更多競爭,呈現出一個不斷變化的世界,在這個世界上,他們不僅必須生存,而且必須興旺。他們的競爭步伐是持續的,有些公司已經存在了幾十年。這為在與美國陸軍類似的條件下對技術、組織和領導的替代方法提供了寶貴的觀察和評估。本文不僅考慮了軍事指揮官和參謀部規劃人員背景下的領導者,而且考慮了在其領域內成功競爭的跨國公司的高管。它還關注支持陸軍行動的信息架構的演變所帶來的機會。架構的演變可以更好地支持MDO和融合中的系統和決策工作。本報告首先探討了全球作戰環境和軍事能力所依據的系統的復雜性增加,產生了越來越多的、難以處理的數據集。這些復雜的挑戰增加了作戰環境的邪惡性,這是領導者和作戰藝術家的一個關鍵責任,他們要盡可能地馴服,并作出決定或采取行動,以便在一個或多個領域成功競爭。

接下來是對陸軍當前信息架構發展的考察,其基礎是XXI部隊的理念。二十一軍的概念試圖最大限度地吸取沙漠風暴行動中各部隊的成功經驗,特別是在信息領域內,將每個作戰功能的數據流數字化。為了建立一個理解如何發展陸軍架構的框架,本文分析了理論基礎,為赫爾穆特-馮-莫特克和約翰-博伊德探索的新作戰能力創造條件。

最后,對在同一世界中競爭的不同企業的案例研究增加了復雜性,提供了對技術架構的洞察力,使其在競爭中占據優勢。研究信息架構以及它如何使亞馬遜、沃爾瑪和多米諾披薩的商業行為得以實現,為軍隊技術架構的發展提供了機會。在對陸軍當前和潛在的架構進行反思時,所提供的見解可以使陸軍系統的演變能夠提高其在未來作戰環境中進行MDO、融合和競爭的能力。

付費5元查看完整內容

本專著追求的是確定美國陸軍如何能夠建立對定位導航和授時的共同作戰理解。規劃人員、分析人員和戰略人員必須了解如何實施空間使能因素和能力,以應對有爭議的作戰環境中的挑戰。最重要的是,本專著試圖回答美國陸軍將如何在未來的多域作戰中減輕定位導航和授時(PNT)的不利影響的問題。空間使能器對于成功彌補BCT級別的空間作戰差距以應對PNT戰爭中的近距離威脅是至關重要的。了解美國陸軍在MDO期間如何針對近距離對手開展行動,對于未來的任務規劃至關重要,這將使美國陸軍在多域作戰中應對作戰挑戰并保持作戰優勢。該專著將提供背景資料,確定美國陸軍在被拒絕、降級和中斷的空間作戰環境(D3SOE)中的GPS所面臨的當前問題,適用于PNT的當前文獻,并分析當前PNT的能力和局限性。最后,它的結論是關于美國陸軍必須如何認識到MDO的未來影響,并確定將阻礙美國陸軍未來行動的任何執行的脆弱性的建議。

引言

在當前的信息和技術時代,世界人口已變得越來越依賴實時數據。無論是手機、電視,甚至是電力,技術已經成為地球上日常生活中提供實時信息的主力軍。隨著這種技術全球化的增加,對美國國家安全的挑戰和保護美國國內外利益的復雜性也在增加。美國繼續在有爭議的作戰環境中投射力量。美國在被拒絕的、退化的和被破壞的作戰環境中通過空間能力投射力量的能力不能僅僅停留在戰略領域,還必須延伸到作戰和戰術層面。

今天,近在咫尺的對手威脅,特別是中國和俄羅斯,正在與美國進行一場越來越復雜的技術競賽。國防空間戰略(DSS)總結提出,由于俄羅斯等大國開發、測試和部署反空間能力及其相關的軍事理論,以便在沖突中延伸到空間,因此構成最大的戰略威脅。這與其說是創造最主要和最致命的武器的競賽,不如說是一場更專注于如何拒絕對手能力的競賽。了解到這些空間支持行動的戰略利益,外國政府正在發展威脅他人使用空間能力的能力。中國和俄羅斯各自將空間武器化,作為降低美國和盟國軍事效力和挑戰美國空間行動自由的手段。

這種拒絕對手能力的技術競賽可能導致信息傳遞的 "內容 "和 "方式 "的范式轉變。拒絕信息傳遞是信息作戰(IO)和多域作戰(MDO)的最前沿。美國陸軍目前在作戰層面上面臨的問題是對定位、導航和授時(PNT)以及空間能力如何在退化、中斷或被拒絕的作戰環境中實現任務規劃和執行缺乏共識。美國陸軍必須了解PNT戰爭如何在作戰環境中發生,以及如何在未來的MDO期間減少所有梯隊對PNT戰爭的敵對使用。

三種不同的基本能力的組合定義了PNT。定位是指在標準大地測量系統(如1984年世界大地測量系統或WGS84)中準確和精確地確定一個人的位置和方向的能力,或在需要時確定三維位置。導航是確定當前和所需位置(相對或絕對)的能力,并應用于修正航線、方向和速度,以達到世界上任何地方的所需位置,從地下到表面,從表面到空間。計時是指在世界任何地方并在用戶定義的及時性參數范圍內,從一個標準(協調世界時或UTC)獲得并保持準確和精確的時間的能力。計時還包括時間轉移。

授時是PNT的關鍵。它是定位和導航的基礎。GPS的定位和導航數據來自接收設備的授時信號。全球的用戶完全依靠美國空軍維護的衛星群來獲得授時信息。

由于平民依賴PNT,即目前現代技術的支柱,美國軍隊也極其依賴PNT及其能力。廣泛依賴衛星信號進行導航和計時,使美國的關鍵基礎設施和經濟活動處于危險之中。

從戰術層面上進行徒步巡邏的步兵到進行聯合演習的海軍艦艇,甚至是在戰略層面上投擲精確制導炸彈的B-52 "斷頭臺",這些行動的成功執行所需的精確位置的計算都使用PNT。PNT的中斷可能有能力阻止美國軍隊的行動。人們越來越關注對手破壞GPS信號的方法和手段,從而使美軍無法獲得實現 "美國戰爭方式 "的定位和導航信息。美軍必須對付這些對手的措施,以便在被拒絕的、退化的和被破壞的空間作戰環境(D3SOE)中有效運作。

在D3SOE中有效運作依賴于幾個維持連接網絡的天基系統。天基系統和不受阻礙的空間訪問對國家的經濟福祉越來越關鍵,并與美國的國家安全相關聯。美國陸軍依靠空間能力來實現和加強陸地戰爭;幾乎每一個陸軍和聯合行動都受益于這些能力。了解這些涉及的復雜系統的風險將產生一種保護美國利益的預防行動的緊迫感。

基于空間的能力是軍事、商業和民用部門的一個組成部分。目前美國的空間政策闡明了基礎活動,通過加強機構間和商業伙伴關系來改善空間系統的開發和采購。長期存在的空間技術和成本障礙正在下降,這使得更多的國家和商業公司能夠參與到衛星建造、空間發射、空間探索和人類太空飛行中。私人商業公司Space X最近公布了其空間計劃。這可能促進美國商業空間能力和服務的新市場機會,包括依賴美國政府提供的空間系統的商業應用。促進商業應用對有保障的PNT的依賴,可以利用美國的能力來增強和鼓勵新興技術和空間能力的民用和軍用互操作性。鑒于上述概述,本專論將討論在美國陸軍作戰計劃中理解PNT的重要性。

研究問題

美國陸軍將如何在未來的多域作戰 (MDO) 中減輕 PNT 戰爭的影響?

假設

美國陸軍要求重點支持有保障的PNT和緩解技術,這可能使美國陸軍在MDO期間應對作戰挑戰并保持作戰優勢。為了應對有保障的PNT所面臨的近似挑戰,美國陸軍必須找到新的和全面的方法,通過同時使用其他作戰領域,如網絡戰和電子戰,來減少對計時系統的威脅。這也意味著要建立一個防御性的時間基礎設施和網絡,以維護和改善友好的授時源和授時分配,重點是精確授時的廣泛用途。在GPS被屏蔽的環境中,確保準確的PNT信息被傳遞給作戰人員是絕對關鍵的。為了采用這些技術,并有效地應對近距離的威脅,美國陸軍必須在作戰層面上提高整個部隊對空間能力和促進因素的共同理解。

重要性

美國陸軍必須認識到MDO的未來影響,并確定將阻礙美國陸軍未來行動的任何執行的弱點。了解美國陸軍在MDO期間如何對近距離的對手開展行動,對于未來的任務規劃至關重要。MDO方法將等同于美國陸軍如何減少其目前對PNT的過度依賴,同時繼續執行和實現任務的成功。

方法論

通過條令、歷史和理論的視角,研究將集中在公開來源的非保密檔案材料、當前和歷史上的軍事學說以及理論框架,以產生一個規范性的建議來回答研究問題。訪問聯合導航戰中心(JNWC)、美國陸軍空間和導彈防御司令部(USASMDC)、美國戰略司令部(USTRATCOM)和位于科羅拉多州彼得森空軍基地(AFB)的美國空間司令部(USSPACECOM)的人員資源,將提供歷史和當前背景以及與研究問題有關的信息。這將有助于指導研究,任何發現,并提供與此主題有關的額外背景。該專著將確定當前的MDO理論,包括當前的空間作戰理論,以了解已確定的PNT脆弱性,在可能的情況下減輕,以及在空間使能器可以彌補任何操作差距的情況下未減輕。空間使能器對于在BCT層面成功彌補空間作戰差距以應對PNT戰爭期間的近距離威脅是最重要的。

本專著將特別關注解決美國陸軍應通過實施集中的系統方法來理解PNT的過程。這個過程將通過在各旅戰斗隊(BCT)實施空間使能器和空間能力來提高對PNT戰爭的作戰理解。空間能力是投射陸地力量和贏得近距離戰斗的關鍵使能因素。本專著分為四個主要部分:第一部分是導言,包括背景信息,指出美國陸軍在D3SOE中面臨的GPS問題;第二部分提供適用于PNT戰爭的當前理論,以及對當前PNT戰爭能力和限制的理解;第三部分分析美國陸軍目前如何計劃和執行MDO;第四部分總結了影響、建議,以及必須進行的額外研究。

付費5元查看完整內容

新興的數字孿生概念是任何為未來準備的實體建模和仿真需求的關鍵促成因素。與傳統方法相比,數字孿生通過增強模塊化和可擴展性,能夠以更低的成本將需求快速轉化為能力。本文討論了數字孿生建模和仿真的要素。這些能力包括但不限于智能體建模、優化、并行化、高性能計算、云架構設計等。這些概念與將建模和仿真技術整合到單一界面的數字孿生中有關,用于工程系統的快速原型設計和鑒定。與傳統方法相比,使用這些新興技術可以大大減少模擬計算時間(從幾小時/幾天減少到幾秒鐘甚至幾微秒)。本研究發現,與所有利益相關者合作的便利性、測試時間的減少、最小的現場基礎設施要求是減少成本的關鍵優勢。分析了這種智能和在線數字孿生的信息優勢的適用性,以加強網絡安全和天基(防御)服務的機載威脅評估。使用這些同步和互操作的能力可以減輕對國防空間基礎設施的可逆和不可逆的物理和網絡威脅。

在國防中使用數字孿生的信息優勢

在情報、國防或空間部門使用技術,盡管還不是很廣泛,但由于對系統的快速、可擴展、自主和智能的需求,正在獲得巨大的發展勢頭。與此同時,由于空間的擴散、商業化和競爭加劇,國防對空間部門的依賴也變得更加強烈。美國國防情報局的一份題為 "空間安全的挑戰"[35]的報告指出,基于空間的能力正在出現,為軍事提供整體支持,因此需要確保這些新型服務產生的新風險。空間的軍事化和碰撞風險的增加,以及其他人為的和自然的危害,使得有必要通過使用像DTs這樣的先進技術來減輕風險。衛星技術不僅促進空間系統的故障診斷和健康監測[36],而且還通過快速和有效地使用數據實現網絡安全[37]。使用這些同步和互操作的能力可以減輕對國防空間基礎設施的可逆和不可逆的物理和網絡威脅。

DT也大大加強了對天基(防御)服務的機載威脅評估[38]。空間資產的連接和安全服務,DT技術能夠提供的好處不僅僅是操作上的好處。例如,整個衛星群及其環境的數字孿生使威脅評估成為可能,因為可以模擬碰撞情景,并預測、預防和糾正單個衛星的故障。它還可以幫助檢測干擾和共址,以防止軍事威脅,并使整個系統更具彈性。因此,DT有助于保護空間資產免受各種類型的威脅。

5.1 目前使用案例

5.1.1 硬件在環仿真

SpaceR-SnT擁有的最初的數字孿生方法,Zero-G Lab是在Gazebo軟件中建模的。Zero-G實驗室的數字孿生,減少了測試時間,加快了開發步驟,被用來測試和驗證集成到Zero-G實驗室機器人操作系統(ROS)網絡的任何硬件(HW)組件的代碼。最初的硬件在環(HIL)方法被用來模擬不同的硬件組件,作為Zero-G實驗室的ROS網絡中的數學模型。這些模擬作為模擬的HW組件和Zero-G Lab之間的接口。對于Zero-G實驗室的浮動平臺和機器人操縱器,ROS基礎設施被用來在HW和軟件組件之間創建一個元數據流框架。此外,零-G實驗室的浮動平臺和機器人操縱器可以在零-G實驗室的同一個ROS網絡中使用。這樣的軟硬件互動模擬是實現國防部門敏捷DT系統的最初步驟。

5.1.2 衛星地面站的運行

孿生孿生之外,擁有一個與軌道上的衛星的彈性和快速連接也幾乎是重要的。這包括對數據存儲的快速和安全訪問。在過去,這涉及大量的操作努力以及一些深刻的技術理解。如今,有一些由云驅動的替代解決方案--如Azure Orbital[39]--使衛星地面站更容易訪問,以及將這些數據集傳送到安全的存儲地點并從那里真正使用的周轉時間。這些解決方案還將消費者從一些操作任務中解脫出來,而不犧牲安全、性能或技術的多樣性,因為地面站即服務的產品支持廣泛的行業已知技術,但以虛擬化的方式。使用像這樣的云計算解決方案還提供了一個機會,通過管理一個界面來利用地球上的幾個地面站供應商,與每個供應商的專門合同相比,這反過來提供了一個巨大的操作多樣性和敏捷性,并降低了成本。

另一個重要的用例是傳統衛星的生命周期擴展,這些衛星仍處于運行模式,但像數字孿生這樣的新能力應該擴展到該解決方案。國家海洋局通過合作研究與發展協議對其傳統的極地衛星進行了這方面的實踐[40]。這項工作提供了證據,即使用像Azure Orbital這樣的云計算服務,這些傳統的星座仍然可以用可接受的操作努力和較低的成本來運行。這使得該項目更具有可持續性,即使它已接近壽命終點。

從 NOAA 星座中學習生命周期支持主題。還有一個有遠見的成就值得一提,它使澳大利亞國防部通過在偏遠地區利用衛星支持的連接安全地訪問云存儲數據。"通過釋放SATCOM、5G和云計算的力量,國防組織可以在偏遠地區保持連接,快速、安全地分享數據以提高戰略意識,并對數據進行深入分析以改善決策[41]"。

這可能會導致提供實時的預測性維護指導,在解決方案的數字孿生中可視化。與沉浸式協作平臺相結合,就像之前提到的那樣,這些數據可視化可以提供真正的洞察力,避免誤解,從而推動更好的數據驅動決策。

5.2 未來應用

為了在高度不確定和未建模的環境條件下成功完成防御任務,必須開發高度適應性、響應式和穩健的數字孿生方法。這種極其不確定和多變的物理環境可以在數字孿生環境中建模,以增加任務的成功可能性。從這個角度來看,數字孿生結構有如下的未來應用領域:

  • 國防領域的數字孿生結構將有機會在不斷增長的空間市場中提高其有效性,并與這些市場的不同參與者建立聯系。

  • 國防領域的數字孿生結構將能夠在概念開發階段利用接近真實的測試環境在低成本工程系統的新細分市場中更快地定位。

  • 與北約未來幾十年的空間政策保持一致,使北約的空間生態系統能夠與大規模的空間市場競爭。

為未來的應用提供了創新的資產:

  • 大的集成范圍。在證明了數字孿生的可靠性后,數字孿生框架將有可能擴展到任何空間/防御應用[42]。

  • 高競爭力。數字孿生的擬議整合將加速其工業生態系統中的先進技術研發競爭。

  • 廣泛的可擴展性。由機構、組織和私人倡議開發的許多不同的空間系統系統將被整合到數字孿生結構。

付費5元查看完整內容

小型無人駕駛飛機系統(sUAS)的指數式增長為美國防部帶來了新的風險。技術趨勢正極大地改變著小型無人機系統的合法應用,同時也使它們成為國家行為者、非國家行為者和犯罪分子手中日益強大的武器。如果被疏忽或魯莽的操作者控制,小型無人機系統也可能對美國防部在空中、陸地和海洋領域的行動構成危害。越來越多的 sUAS 將與美國防部飛機共享天空,此外美國對手可能在美國防部設施上空運行,在此環境下美國防部必須保護和保衛人員、設施和資產。

為了應對這一挑戰,美國防部最初強調部署和使用政府和商業建造的物資,以解決無人機系統帶來的直接風險;然而,這導致了許多非整合的、多余的解決方案。雖然最初的方法解決了近期的需求,但它也帶來了挑戰,使美國防部跟上不斷變化問題的能力變得復雜。為了應對這些挑戰,美國防部需要一個全局性的戰略來應對無人機系統的危害和威脅。

2019年11月,美國防部長指定陸軍部長(SECARMY)為國防部反小型無人機系統(C-sUAS,無人機1、2、3組)的執行機構(EA)。作為執行機構,SECARMY建立了C-sUAS聯合辦公室(JCO),該辦公室將領導、同步和指導C-sUAS活動,以促進整個部門的統一努力。

美國防部的C-sUAS戰略提供了一個框架,以解決國土、東道國和應急地點的sUAS從危險到威脅的全過程。國防部的利益相關者將合作實現三個戰略目標:(1)通過創新和合作加強聯合部隊,以保護國土、東道國和應急地點的國防部人員、資產和設施;(2)開發物資和非物資解決方案,以促進國防部任務的安全和可靠執行,并剝奪對手阻礙實現目標的能力;以及(3)建立和擴大美國與盟友和合作伙伴的關系,保護其在國內外的利益。

美國防部將通過重點關注三個方面的工作來實現這些目標:準備好部隊;保衛部隊;和建立團隊。為了準備好部隊,國防部將最大限度地提高現有的C-sUAS能力,并使用基于風險的方法來指導高效和快速地開發一套物質和非物質解決方案,以滿足新的需求。為了保衛部隊,國防部將協調以DOTMLPF-P考慮為基礎的聯合能力的交付,并同步發展作戰概念和理論。最后,作為全球首選的軍事伙伴,國防部將通過利用其現有的關系來建設團隊,建立新的伙伴關系,并擴大信息共享,以應對新的挑戰

通過實施這一戰略,美國防部將成功地應對在美國本土、東道國和應急地點出現的無人機系統威脅所帶來的挑戰。在這些不同操作環境中的指揮官將擁有他們需要的解決方案,以保護國防部人員、設施、資產和任務免受當前和未來的無人機系統威脅。

付費5元查看完整內容

毫無疑問,今天圍繞人工智能(AI)的最復雜的治理挑戰涉及國防和安全。CIGI正在促進戰略制定:人工智能對軍事防御和安全的影響項目將這一領域的主要專家與來自國防部的40多名公務員和加拿大武裝部隊的人員聚集在一起,討論人工智能對國家安全和軍事領域的力量倍增效應。

這一努力依賴于一系列的四次研討會,以產生關于數據驅動技術如何引發巨大的技術重組的前瞻性思考,這將對加拿大的國防規劃產生深遠影響。具體來說,這些研討會集中在數據治理和政策(道德、云計算、數據準備和互操作性);決策(可信賴性、人機一體化、生物技術和問責制);模擬工具(培訓、兵棋推演、人機合作、機器人、自主和可信的人工智能);以及信息時代的加拿大情報(將人工智能用于情報)。CIGI還主辦了一個研究生研討會,以激勵整個加拿大在全球公共政策、計算機科學和安全等領域學習的新興學者。

報告總結

本文探討了在人工智能(AI)和機器學習背景下的軍事特定能力的發展。在加拿大國防政策的基礎上,本文概述了人工智能的軍事應用和管理下一代軍事行動所需的資源,包括多邊參與和技術治理。

維持先進軍事能力的前景現在與人工智能的武器化直接聯系在一起。作為一項通用技術,人工智能代表著一種力量的倍增器,有能力重塑戰爭規則。事實上,在核彈頭仍然是一種單一的技術應用的情況下,人工智能有能力支持許多不同類型的武器和系統。正如北大西洋公約組織(NATO)的指導意見所指出的,人工智能和其他 "智能 "技術現在對加拿大及其盟國的未來安全至關重要。

新技術在改變戰爭的性質方面有著悠久的歷史。從馬匹和盔甲的使用到航空母艦和戰斗機的引進,人工智能和機器人只是代表了軍事技術發展的最新階段。常規武器與人工智能和機器學習的融合,必將重塑決策的性質和軍事戰略轉型中的武力應用。

即使當代人工智能系統的能力被限制在機器學習算法的狹窄范圍內,這種限制可能不會持續太久。與神經科學、量子計算和生物技術相重疊的發現領域正在迅速發展,代表了 "智能機器 "進化的未知領域。在這些新的研究領域中的科學和技術發現給加拿大的國防帶來了巨大的風險,但同時也代表著巨大的機遇。

顯而易見的是,新興技術已經成為高度緊張的地緣政治競爭的基礎,它與一系列商業產業和技術平臺相重疊。中國、俄羅斯、美國和其他國家和非國家行為者正在積極追求人工智能和其他前沿技術的軍事應用。競爭的領域包括云技術、高超音速和新導彈技術、空間應用、量子和生物技術以及人類增強。

盡管技術創新一直塑造著國家間沖突的性質,但新興和顛覆性技術(EDT)的規模和速度是前所未有的。加拿大的國防政策反映了這種擔憂,它呼吁使加拿大武裝部隊(CAF)適應不斷變化的地緣政治環境。加拿大國防規劃已著手擴大和發展加拿大武裝部隊,在新的軍事平臺整合中納入下一代偵察機、遙控系統和天基設施。

基于對不斷變化的技術環境的廣泛評估,加拿大國防部(DND)認識到,這個新時代的特點是全球力量平衡的變化。這包括在快速發展的創新經濟中大國競爭性質的變化。就像石油和鋼鐵為工業時代設定條件一樣,人工智能和機器學習現在也可能為數字時代設定條件。

這種規模的破壞是由技術和制度變化的融合所驅動的,這些變化可以以新的和不可預測的方式觸發復雜的反饋回路。在這個新的環境中,人工智能技術將迫使世界各國軍隊投射力量的能力倍增。確定軍事人工智能發展中的護欄對于避免未來危機至關重要。應用減少風險的措施來識別和減輕軍事人工智能可能帶來的一系列風險將是關鍵。事實上,在這些能力完全嵌入世界上目前和未來的軍隊之前,治理人工智能可能會更容易。

從整體上看,這種轉變預示著從初級機器到數據驅動技術和精密電子的巨大轉變。這種物理、數字和生物技術的加速融合代表了一場巨大技術革命的早期階段。在全球范圍內管理這些新興和顛覆性的技術,對于減少未來沖突的風險至關重要。

1 引言

從人工智能和機器人到電池存儲、分布式賬本技術(DLT)和物聯網(IoT),新興和顛覆性技術(EDT)現在正在激起一個商業創新的新時代。這一巨大的技術變革景觀正在醞釀一場社會和經濟變革,對中央銀行的發展具有巨大影響。正如北約最近的一份報告所指出的(北約新興和顛覆性技術咨詢小組2020),這些技術包括:

→ 人工智能和機器學習。人工智能/機器學習的發展及其對創新的潛在影響。這包括神經形態計算、生成式對抗網絡,以及人工智能從已經收集或尚未收集的數據中揭示出意想不到的見解的能力。

→ 量子技術。正在進行的從量子過程研究中獲得的知識轉化為量子技術的應用,包括量子計算、量子傳感、量子密碼系統,以及在量子尺度上對材料的操縱和開發。

→ 數據安全。用于保障和損害通信、數據交易和數據存儲安全的算法和系統的設計,包括量子證明加密方法、區塊鏈和分布式賬本架構,以及更廣泛的網絡安全領域。

→ 計算功能的硬件。微型化、電力采集和能源儲存方面的進展,包括在全球范圍內提供數字化關鍵基礎設施所需的物理系統(物聯網)和機器人的廣泛使用及其對全球系統和流程的持續影響。

→ 生物和合成材料。從原子/分子層面的材料設計、合成和操作到中觀和宏觀尺度的創新,支持生物工程、化學工程、基因層面的操作、增材制造和AI介導的生成設計。

正如蒸汽機和印刷術激發了工業革命一樣,人工智能和機器人技術現在也在軍事技術的性質和全球力量平衡方面引發了巨大變革。人工智能的興起并非沒有歷史先例,但伴隨著人工智能的變化表明,需要對國防規劃進行更精確的調整,以適應一個數據驅動的時代。

在大國競爭和多極體系的背景下,人工智能已經成為競爭的一個特別焦點。中國、俄羅斯、美國和其他許多國家都在積極追求人工智能能力,并把重點放在國防和安全方面。例如,中國希望到2030年在人工智能方面領先世界,并期望通過利用大量的豐富數據,擴大其在人工智能產業化方面的領先優勢(Lucas和Feng,2017年)。

事實上,數據和數據驅動的技術現在占據了全球經濟的制高點。整個全球數據經濟的競爭已經與大國競爭密不可分(Mearsheimer 2021)。盡管美國和中國的經濟深深地相互依存,但中國在整個歐亞大陸不斷擴大的投資將很快使其成為世界貿易的中心。

技術優勢仍然是北約國家的關鍵支柱,但中國正在迅速趕超。即使美國在人工智能發現方面建立了強大的領先優勢,中國也越來越有可能在人工智能驅動的應用產業化方面占據主導地位。中國不僅有先進的商業能力,而且還有一個連貫的國家戰略。中國的技術部門正在達到專業知識、人才和資本的臨界質量,正在重新調整全球經濟的指揮高度(Lucas and Waters 2018)(見圖1)。

中國產業部署的大部分技術創新都是 "漸進式 "的,而不是 "顛覆式 "的,但現在這種情況正在改變。將新興市場聚集在其軌道上,中國前所未有的經濟擴張現在對世界經濟產生了引力(The Economist 2018)。標志性項目,價值數萬億美元的 "一帶一路 "倡議(世界銀行2018年)為圍繞電動汽車、電信、機器人、半導體、鐵路基礎設施、海洋工程以及最終的人工智能的廣泛戰略轉變提供了一個全球平臺(McBride和Chatzky 2019年)。

毫不奇怪,中國已經是國際專利申請的世界領導者(世界知識產權組織2020)。隨著自主機器(Etzioni和Etzioni 2017)、可再生能源基礎設施、量子通信(?iljak 2020)、增強型腦機接口(Putze等人2020)和天基武器(Etherington 2020)的出現,重新思考加拿大國家安全,特別是加拿大國防的性質的壓力正在增加。鑒于技術創新的步伐不斷加快,以及亞洲作為世界貿易中心的崛起(Huiyao 2019),來自國外的技術的影響可能是巨大的。

圖1:按購買力平價計算的國內生產總值預測(以萬億美元計)

2 AI與軍事防御

2.1 AI定義

人工智能的概念已被廣泛討論,但該術語的精確定義仍然是一個移動的目標。與其說人工智能是一項具體的技術或特定的創新,不如說它是一個材料的集合。事實上,即使人工智能技術已經成為廣泛的主流商業應用的基礎,包括網絡搜索、醫療診斷、算法交易、工廠自動化、共享汽車和自動駕駛汽車,人工智能仍然是一個理想的目標。

盡管人工智能領域的研究始于20世紀40年代,但隨著機器學習和計算機處理能力的改進,過去十年對人工智能興趣的爆炸性增長已經加速。人工智能的持續進步被比喻為在人腦中發現的多尺度學習和推理能力。當與大數據和云計算相結合時,預計人工智能將通過將 "智能 "人工智能和機器學習系統與第五代(5G)電信網絡(即物聯網)上的大量聯網設備連接起來,使數字技術 "認知化"。

作為人工智能的一個子集,機器學習代表了人工智能的最突出的應用(見圖2)。機器學習使用統計技術,使機器能夠在沒有明確指令的情況下 "學習",推動許多應用和服務,改善一系列分析和物理任務的自動化。通過使用數據自動提高性能,這個過程被稱為 "訓練 "一個 "模型"。使用一種算法來提高特定任務的性能,機器學習系統分析大量的訓練數據集,以便做人類自然而然的事情:通過實例學習。

今天,機器學習的最常見應用是深度學習。作為更廣泛的機器學習家族的一部分,深度學習利用人工神經網絡層來復制人類智能。深度學習架構,如深度神經網絡、遞歸神經網絡和卷積神經網絡,支持一系列廣泛的研究領域,包括計算機視覺、語音識別、機器翻譯、自然語言處理和藥物設計。

圖2:人工智能的層級

2.2 加拿大國防部:將人工智能應用于國家安全

安全人工智能位于新興和顛覆性技術(EDT)星座的中心,包括機器人學、基因組學、電池存儲、區塊鏈、3D打印、量子計算和5G電信。在研究層面,美國仍然是人工智能的全球領導者。目前,國家科學基金會每年在人工智能研究方面的投資超過1億美元(國家科學基金會2018年)。國防高級研究計劃局(DARPA)最近宣布投資20億美元用于一項名為AI Next的計劃,其目標是推進上下文和適應性推理(DARPA 2018)。

與過去的原子武器或隱形飛機的技術發展不同,沒有國家會壟斷軍事人工智能。研究人員和領先的商業企業之間廣泛的全球合作意味著人工智能和機器學習的進步可能會在全球范圍內擴散。事實上,人工智能發展的大多數技術進步是由工業界而不是政府推動的。除了市場主導的技術公司,世界各地廣泛的網絡集群正在孵化新一代的商業創新(Li and Pauwels 2018)。因此,許多未來的軍事應用將可能是為商業產業開發的技術的改編。

幸運的是,加拿大一直是人工智能研究前沿的領導者,并繼續通過2017年推出的泛加拿大人工智能戰略下的幾個項目培育一個強大的人工智能生態系統。加拿大政府積極參與人工智能咨詢委員會和各種國際伙伴關系,包括2020年啟動的全球人工智能伙伴關系;人工智能國防伙伴關系,其第二次對話在2021年舉行;以及重疊人工智能驅動的安全和規劃的多邊協議(五眼,北約)。事實上,加拿大的國防政策,"強大、安全、參與"(SSE),反映了加拿大政府對增加年度國防開支的承諾,重點是技術。

目前的聯邦預算包括對人工智能發展的實質性承諾,承諾在10年內投入4.438億美元(Silcoff 2021)。在政府2021年的預算中,1.85億美元將支持人工智能研究的商業化;1.622億美元將用于在全國范圍內招聘頂尖的學術人才;4800萬美元將用于加拿大高級研究所;五年內4000萬美元將旨在加強埃德蒙頓、多倫多和蒙特利爾的國家人工智能研究所的研究人員的計算能力;五年內860萬美元將幫助推進人工智能相關標準的發展和采用(加拿大政府2021年,148)。

2.3 增強加拿大的情報能力

人工智能是一個影響廣泛的商業和軍事技術的模糊領域。像電力或化石燃料一樣,人工智能的廣泛應用意味著人工智能和其他通用技術有能力重新配置現代軍隊的步伐和組織(Bresnahan和Trajtenberg 1995)。從整體上看,人工智能代表了國家安全性質的結構性轉變。出于這個原因,SSE設想了一個未來的軍事態勢,更加注重開發、獲取和整合先進的變革性技術,包括網絡和自主系統。

即使加拿大在傳統聯盟(北美防空司令部、北約和五眼聯盟)中的持續作用仍然是國家安全的基礎,EDT正在從根本上改變沖突的性質。正如格雷格-菲夫(2021年)所觀察到的,人工智能作為戰爭工具的崛起與升級加拿大國家安全架構,特別是加拿大情報部門的日益增長的需求相重疊。技術變革和信息爆炸的復合周期,新的技能組合和新的數據分析戰略對國防規劃的演變變得至關重要。

在數字時代,戰爭正日益成為基于知識的戰爭。隨著沖突進入信息領域,軍事規劃開始重新聚焦于信息/虛假信息行動、網絡行動、情報行動和政治或經濟影響行動。事實上,這種混合戰爭作為一種戰爭工具由來已久,其目的是利用宣傳、破壞、欺騙和其他非動能軍事行動,從內部破壞對手(Bilal 2021)。

網絡仍然是潛在對手、國家代理人、犯罪組織和非國家行為者的一個關鍵目標。這包括對通信、情報和敏感信息的嵌入式監視和偵察。正如Amy Zegart(2021年)所解釋的那樣,技術正在通過極大地擴展數據和信息的獲取,使情報的性質民主化。事實上,今天驅動戰略情報的大部分信息實際上是開放源碼情報(OSINT)或在公共領域。

現代軍隊正變得嚴重依賴安全、及時和準確的數據。隨著數據的急劇膨脹,消化它變得不可能。這種數據爆炸正在推動對新的分析模式和新型網絡工具的需求。在數字時代,安全和情報人員需要新的平臺、新的工具和跨領域工作的新OSINT機構。在這方面,人工智能可能特別有幫助。

隨著數據的重要性增加,在廣闊的數字領域的對抗性競爭也在增加。人工智能和機器學習可以通過篩選巨大的數據庫來極大地提高加拿大的國家情報能力。人工智能不是銀彈。人工智能系統不能產生意義或提供因果分析。然而,人工智能和機器學習可以極大地增強人類在管理數據和數據驅動的分析方面的情報能力。

2.4 增強加拿大軍力

隨著決策者為數據驅動的世界調整其安全態勢,人工智能有望改變軍事沖突的既定模式。DND/CAF面臨的關鍵挑戰之一是數據驅動的網絡重塑指揮和控制系統的速度(Thatcher 2020)。集中式系統的優勢在于其協調人類活動的效率。在指揮系統中,人員和傳感器推動威脅檢測,將信息向決策堆棧上移,以便決策者可以做出適當的反應。數字技術深刻地加速了這個過程。

人工智能在軍事領域的應用可能被證明對傳統的指揮和控制系統具有挑戰性。例如,在美國,五角大樓的第一位首席軟件官最近辭職,以抗議技術轉型的緩慢步伐。在離開國防部職位后的一次采訪中,尼古拉-沙伊蘭告訴《金融時報》,美國未能對技術變革和其他威脅作出反應,使國家的未來面臨風險(Manson 2021)。

除了變化的速度緩慢,軍事指揮和控制系統的集中性意味著單點故障提供了脆弱的攻擊點。指揮機關和自動或人類控制者往往容易受到利用不良或欺騙性信息的對抗性技術的影響,甚至自上而下的決策在適應復雜的突發挑戰方面也會很緩慢。

神經形態計算、生成式對抗網絡(GANs)、人工智能決策支持、數據分析和情報分析方面的新創新在增強軍事行動的結構和進程方面可能會產生巨大影響。機器學習算法的快速發展已經在商業和軍事領域引發了一波投資熱潮。

超越對損耗和動能攻擊的傳統關注,轉向基于加速和適應的新方法,數據驅動的技術可能是促成國家安全性質徹底轉變的關鍵。人工智能不是一種單一的技術。相反,它是一類可以在一系列軍事和商業應用中整合的技術。這些技術不斷演變的基礎是數據。

數字技術現在由數據推動,并將繼續推動創造越來越多的數據驅動的技術--特別是人工智能。數據是訓練人工智能和先進機器學習算法的基礎。數據既是大規模運行的數字系統產生的 "操作廢氣",也是機器對數據輸入作出反應的過程,它現在推動了機器的 "自主性"。

數據驅動的技術支撐著現代社會的核心社會和經濟功能,涵蓋了基礎設施、能源、醫療保健、金融、貿易、運輸和國防。隨著5G網絡的全球推廣,預計在高度健全的全球信息網絡中創建、收集、處理和存儲的數據將出現爆炸性增長。根據市場研究公司IDC的數據,目前全球數據正以每年61%的速度增長(Patrizio 2018)。預計到2025年,數據將達到175 zettabytes(一萬億吉字節),改變數字經濟的性質和規模(同上)。

出于這個原因,DND/CAF將數據提升到國家資產的水平是明智的。這對經濟增長和加拿大國防都至關重要。將數據作為國家資產加以保護和利用,將意味著重新思考目前構成當代數據架構的大型集中式數字基礎設施。可以肯定的是,網絡時代的數據安全應該是分散的和聯合的,以避免集中式系統的脆弱性。

3 武器化AI:致命的自治系統

關于技術破壞的傳統預測往往會犯一個錯誤,即假設這種規模的系統變化只是以一對一的方式取代舊技術。在現實中,這種規模的顛覆往往會不成比例地取代舊的系統,使其具有巨大的新的架構、界限和能力(Arbib和Seba 2020)。

正在進行的人工智能武器化正在助長一場全球軍備競賽,有望重塑加拿大國防戰略的輪廓。事實上,世界上許多國家在人員系統自動化、設備維護、監視系統以及無人機和機器人的部署方面已經遠遠領先(斯坦利和平與安全中心、聯合國裁軍事務廳和史汀生中心2019)。從美國到俄羅斯到以色列再到中國,軍事研究人員正在將人工智能嵌入網絡安全舉措和支持遠程手術、戰斗模擬和數據處理的機器人系統。

以先進的物流、半自動車隊、智能供應鏈管理和預測性維護系統的形式將人工智能應用于軍事行動代表了人工智能的近期應用(Perry 2021)。然而,能夠在陸地、海洋、空中、太空和網絡領域針對個人(無論是否需要人類干預)的自主武器的演變代表了軍事沖突的可能未來(見圖3)。事實上,近100個國家的軍隊目前擁有某種程度的武裝或非武裝無人機能力(Gettinger 2019)。

圖3:全球無人機激增

商業無人機技術在采礦、農業和能源領域的縱橫捭闔,正在助長無人機技術的廣泛擴散。正如最近亞美尼亞和阿塞拜疆之間的沖突所表明的那樣,一群相對便宜的自主和半自主無人機可以被利用來壓倒傳統的軍事系統,使一系列當代平臺變得過時(Shaikh和Rumbaugh 2020)。輕型、可重復使用的武裝無人機,如土耳其的Songar(Uyan?k 2021)可以配備一系列有效載荷,包括迫擊炮、手榴彈和輕機槍。最近對沙特阿拉伯的Abqaiq石油加工設施(Rapier 2019)和俄羅斯的Khmeimim空軍基地(Hambling 2018)的攻擊反映了軍事無人機在不同戰場環境中的應用越來越多。

致命自主武器系統(LAWS)被定義為可以在沒有人類授權的情況下選擇和攻擊目標的武器,它被設計為在獨立識別目標之前在指定的行動區域內長期徘徊。多個無人機或機器人可以并行運作,以克服對手的防御或摧毀一個特定目標。開發人員傾向于將致命性武器系統分為三大類,即觀察、定位、決定和行動(OODA)循環(見圖4)。這些類別包括。"循環中的人"、"循環中的人 "和 "循環外的人"。這種區分也被框定為 "半自主"、"受監督的自主 "和 "完全自主 "的技術系統。不幸的是,受監督的致命性自主武器系統和完全自主的致命性自主武器系統之間的區別,可能只是一個軟件補丁或一個監管程序。

圖4:OODA環

隨著致命性自主武器系統和其他數據驅動的技術變得更便宜和更廣泛,它們可能會給廣泛的國家和非國家行為者提供平臺和工具,以新的和破壞性的方式利用人工智能和機器學習。除了收緊OODA循環外,軍事人員將需要了解人工智能在加速OODA循環方面的影響,以確定在特定情況下哪種模式最合適。

3.1 網絡平臺

鑒于EDT的范圍和規模,認為我們可以簡單地保持從上個世紀繼承的系統和做法是錯誤的。正如英國查塔姆研究所2018年的一份報告所警告的那樣,美國、英國和其他核武器系統正變得越來越容易受到網絡攻擊(Unal and Lewis 2018)。這些擔憂是有根據的。人工智能和EDT的擴散一起,幾乎肯定會通過利用人工智能和自主系統的規模效應,為小國和非國家行為者帶來好處。

對于許多北約國家來說,網絡平臺已經成為多領域行動的關鍵--海、空、陸、網絡和空間。大規模的網絡使得在復雜環境中可視化和協調大量資源成為可能。在5G電信和云計算的基礎上,信息系統現在可以有效地收集、傳輸和處理大量的戰場數據,提供實時數據分析。

連接設備正在成為協調空襲、駕駛無人機、消化戰斗空間的實時視頻和管理高度復雜的供應鏈的關鍵。在英國,國防數據框架提供了一個結構,以解決軍事組織與數據驅動的企業需求相一致的挑戰(Ministry of Defence 2021)。從戰略到通信到后勤到情報,數字平臺現在是協調復雜軍事行動的基礎。數據現在是所有作戰領域的命脈。

在一個數字化的戰斗空間中,每個士兵、平臺和資源現在都是一個復雜軍事網絡中的節點。從20世紀90年代以網絡為中心的美國軍事行動開始,數字技術已經成為先進武器、戰術和戰略的基礎。從戰場態勢感知和自主無人機到精確制導彈藥和機器驅動的心理行動,網絡正在使戰爭進入網絡時代。

在集中式機構對工業時代至關重要的地方,平臺和網絡正在成為數字時代的關鍵。人工智能本質上是一種 "自下而上 "的技術,依靠不斷 "喂養 "大量的數據來支持機器學習作為 "學習引擎"。隨著數字生態系統的激增,網絡平臺和它們所依賴的數據管理系統成為管理不斷擴大的資源和人員的關鍵。

與金融部門一樣,DND應該尋求區塊鏈等DLT,以加速加拿大軍隊的數字化轉型。通過在分散的網絡中橫向分配數據,CAF區塊鏈可以幫助減少官僚化系統固有的限制和脆弱性。DLT提供了一個高度分散的驗證系統,可以確保所有的通信和數據傳輸免受對手的攻擊,同時消除集中式節點的潛在故障。

3.2 無人機群和機器人技術

人工智能在軍事規劃中的應用正在迅速推進,許多國家在部署無人機和機器人方面已經取得了很大進展。事實上,無人機技術的全球擴散正在順利進行中。

世界各地的軍隊正在加速開發或采購攻擊型無人機(見圖5)。俄羅斯的 "閃電"(BulgarianMilitary.com 2021)、西班牙的Rapaz8以及英國、9美國10和以色列11的各種無人機項目共同代表了軍事技術新時代的早期階段。與工業時代的軍事技術不同,無人機可以以低成本獲得,并需要相對較少的技術技能。

無人機群技術涉及微型/迷你無人機/無人駕駛飛行器或無人機群,利用基于共享信息的自主決策。事實上,當代軍用無人機已經可以被設計成在沒有人參與的情況下定位、識別和攻擊目標。利用蜂群技術,數以百計的非武裝無人機可以從現場收集信息,同時用各種武器(即火器、火炮和/或彈藥)引導數以千計的無人機。

正如簡短的視頻 "Slaugherbots "所展示的那樣,完全自主的武器將使瞄準和殺死獨特的個人變得非常容易和便宜。在面部識別和決策算法的基礎上,國家和非國家行為者都可以廣泛使用致命性武器。數以千計的相對便宜的無人機配備了爆炸性的彈頭,有可能壓倒防空系統,攻擊基礎設施、城市、軍事基地等等。

圖5:無人機對比

3.3 馬賽克戰爭

無人機群壓倒加拿大軍事設施的威脅,以及對關鍵基礎設施的網絡攻擊或在衛星傳感器檢測到威脅時自動發射的高超音速導彈,代表了一個令人不安但越來越可能的未來。從復雜性科學和對昆蟲的研究中產生的,使用無人機來支持 "集群情報 "代表了一個加速戰爭節奏的新工具集。

為了應對這種不斷變化的環境,DARPA提出了 "馬賽克戰爭"的概念。馬賽克戰爭的中心思想是,模塊化系統可以成為應對高度網絡化環境的廉價、靈活和高度可擴展的工具。就像馬賽克中的瓷片一樣,單個作戰平臺可以被設計成高度可配置的。編隊利用分散的代理在 "殺戮網 "上進行重新配置。殺戮網的目標是避免 "單體系統 "的結構僵化。

與傳統戰爭中需要的復雜棋局不同,馬賽克戰爭利用數字網絡,利用模塊的靈活性和增強的決策(時間壓縮)加快動態響應時間。像自然界中的復雜系統一樣,殺傷性網絡使用算法來消除單點故障,通過模塊化設計加速反應時間。

從主導地位(預測)轉向加速反應(適應),"馬賽克戰爭 "旨在支持混合軍事單位,利用 "決策棧 "上下的橫向網絡。人工智能、無人機、傳感器、數據和人員結合在一起,為地面上的作戰指揮官提供支持,使小型編隊能以更快的速度獲得情報、資源和后勤資產。

像 "馬賽克戰爭 "這樣的模塊化系統表明,未來的戰爭將越來越多地利用現在驅動戰爭游戲和模擬的計算、數據分析和算法。推動高度流動、游戲化和不可預測的環境,未來的人工智能系統可以將戰爭加速到一個隨著結果范圍的擴大而變得極其密集的計算速度和節奏。

DARPA最近的AlphaDogfight(2019-2020年)為這一新現實提供了一個窗口。使用復雜的F-16飛行模擬器讓計算機與有經驗的人類飛行員對決,試驗的目的是為DARPA的空戰進化計劃推進人工智能開發者。毫不奇怪,F-16人工智能代理通過積極和精確的機動性擊敗了人類飛行員,而人類飛行員根本無法與之相提并論,五局為零。

4 對抗性攻擊

人工智能的武器化也在激起對抗人工智能系統的新戰略和方法。正如網絡行動(無論是間諜活動還是攻擊)可以指示計算機網絡或機器以它們不打算的方式運行,對手也可以對人工智能系統使用同樣的策略。這個過程被稱為對抗性機器學習,旨在找出機器學習模型的弱點并加以利用。攻擊可能發生在開發或部署階段,包括通過提供欺騙性輸入(例如,"毒化"數據)或針對模型本身來誤導模型。

這些方法在國家安全環境中特別危險,因為在許多情況下,它們是微妙的,人類無法察覺。此外,具有挑戰性的是,對手不一定需要對目標模型的具體知識或直接訪問其訓練數據來影響它。隨著人工智能系統變得更加普遍,更多的人可以接觸到,對手的吸引力和攻擊機會將增加。

4.1 攻擊數據

攻擊者可能試圖修改訓練數據或測試數據。這是通過創造對抗性樣本來實現的,這些樣本被故意 "擾亂 "或改變并提供給模型,從而導致錯誤。例如,通過改變洗衣機圖像的分辨率,研究人員能夠欺騙一個模型,將機器分類為 "安全 "或 "擴音器"(Kurakin, Goodfellow and Bengio 2017)。對人的眼睛來說,對抗性圖像看起來幾乎是一樣的。

在國家安全方面,對手可能會試圖使用同樣的技術來暗示武器系統實際上是一個社區中心。如果這是在孤立的情況下發生的,那么這個問題很可能被識別和解決。如果對手的樣本被長期大規模使用,這可能成為一個重大的挑戰,并影響對情報收集系統的信任。

此外,一些對手可能并不精確--或有技能--并可能試圖迫使一個模型對整個類別而不是特定類別進行錯誤分類。由于我們在國家安全環境中越來越依賴計算機圖像,并不總是能夠實時或在有爭議的空間進行驗證,因此在這種攻擊中出現誤判的風險是很大的。

高后果的人工智能系統并不是對抗性攻擊的唯一目標。受對抗性樣本影響的人工智能系統可以包括生物識別,其中假的生物特征可以被利用來冒充合法用戶,語音識別中攻擊者添加低量級的噪音來混淆系統(Zelasko等人,2021)和計算機安全(包括在網絡數據包中混淆惡意軟件代碼)。

由于DND/CAF尋求通過部署人工智能系統來提高效率--如軍艦上的語音助手(McLeod 2019)--必須在部署前評估對抗性使用的風險并制定對策。

4.2 攻擊模型

除了改變輸入,另一種攻擊方法可用于逆向工程模型以獲取訓練數據(Heaven 2021)。由于機器學習模型對訓練數據的表現比新的輸入更好,對手可以識別目標模型預測的差異,并與包括個人身份信息在內的已知數據相匹配(Shokri等人,2017)。隨著機器學習即服務變得越來越多--而且在許多情況下,被用作開發更復雜的能力的基礎--DND將需要仔細審查國家安全系統的數據泄漏風險。這甚至適用于看似無害的系統,如語音助手。

人工智能系統的弱點的例子很多(Hadfield-Menell等人,2017)。這些例子包括吸塵器將收集到的灰塵彈回它剛打掃過的地方,以便它能收集更多的灰塵,或者數字游戲中的賽艇在原地循環以收集分數,而不是追求贏得比賽的主要目的。雖然這些例子沒有生命危險,但同樣的技術--被稱為獎勵黑客(當一個模型被指示使其目標函數最大化,但卻以非故意的方式進行)--可以被用于更嚴重的效果。

從旨在用固定的訓練數據解決 "單步決策問題 "的機器學習過渡到解決 "順序決策問題 "和更廣泛的數據集的深度機器學習,將使對抗性攻擊更難發現。這種威脅是如此之大,以至于美國情報高級研究項目活動正在資助一個項目,以檢測木馬人工智能對已完成系統的攻擊。令人擔憂的是,政府可能會在不知情的情況下操作一個產生 "正確 "行為的人工智能系統,直到出現 "觸發 "的情況。例如,在部署過程中,對手可能會攻擊一個系統,并在更晚的時候才導致災難性的故障發生。這些類型的攻擊可能會影響到圖像、文本、音頻和游戲的人工智能系統。

4.3 防御和反制措施

正如對抗性樣本可以用來愚弄人工智能系統一樣,它們可以被納入訓練過程中,以使它們對攻擊更加強大。通過對最重要的國家安全人工智能系統進行清潔和對抗性數據的訓練--要么給它們貼上這樣的標簽,要么指示一個模型將它們分離出來--更大的防御是可能的。但是,復雜的對手很可能會自行躲避這種防御方法,而使用額外的戰術進行深度防御將是必要的。

GANs有各種各樣的用例,從創建深度假說到癌癥預后(Kim, Oh and Ahn 2018)。它們也可用于防御對抗性攻擊(Short, Le Pay and Ghandi 2019),使用一個生成器來創建對抗性樣本,并使用一個判別器來確定它是真的還是假的。一個額外的好處是,使用GANs作為防御,實際上也可能通過規范數據和防止 "過度擬合 "來提高原始模型的性能(IBM云教育2021)。

對抗性攻擊和防御模型進行基準測試--如使用GANs--是一種全面的對策,可以對AI系統進行比較。這種方法為制定和滿足安全標準提供了一個量化的衡量標準,并允許評估人工智能系統的能力和限制。

作為這個測試和評估過程的一部分,博弈論可能有助于建立對手的行為模型,以確定可能的防御策略。由于人工智能系統無法在傳統的信息安全意義上進行 "修補",因此在部署前應仔細分析針對國家安全人工智能系統的對抗性攻擊的風險,并定期進行審查。此外,訓練有素的模型--特別是那些關于機密數據和最敏感應用的模型--應該得到仔細保護。

5 關于人工智能的全球治理

數據驅動的戰爭的速度和范圍表明,我們正在進入一個新的時代,其中致命性武器系統的潛力--無論是否有人類參與--都可能極大地改變全球力量平衡。從殺手級無人機和人機合作到增強的軍事決策(殺手2020),人工智能技術將使世界各國軍隊投射力量的能力大大增加。正在進行的人工智能武器化也與空間武器化相重疊(《經濟學人》2019年),因為低地球軌道(LEO)日益成為軍事監視、遙感、通信、數據處理(Turner 2021)和彈道武器(Sevastopulo和Hille 2021)的操作環境。

人工智能與低地軌道和致命性自主武器系統的興起,代表了全球安全性質的一個關鍵轉折點。為此,世界各地的學術研究人員、技術企業家和公民都對人工智能的軍事化所帶來的危險表示擔憂。正如他們正確地指出的那樣,在規范負責任地開發和使用人工智能的規范和法律方面缺乏國際共識,有可能造成未來的危機。

5.1 戰爭法則

除了我們在科幻小說中經常看到的對人工智能的夸張描述,重要的是建立適當的制衡機制,以限制人工智能技術可能提供的權力集中。關于管理人工智能和其他數字技術的共同國際規則和條例將塑造未來幾十年的戰爭和沖突的輪廓。在軍事人工智能的發展中制定護欄,對于減少未來沖突的可能性至關重要。

加拿大和其他北約國家積極參與這一討論可能是未來全球和平與安全的關鍵。在發動戰爭的條件(jus ad bellum)和戰爭中的人工智能行為(jus in bello)方面,規范人工智能使用的戰爭法仍有待確定。鑒于美國和中國之間不斷擴大的競爭,需要制定關于致命性自主武器系統的使用及其擴散的條約是再及時不過了。

正如北約所觀察到的,加拿大及其盟國應尋求促進、參與和建立合作機會,以支持開發和應用人工智能和其他EDT的廣泛、全面的架構(北約新興和顛覆性技術咨詢小組2020)。盡管面臨著艱巨的挑戰,全球治理在規范軍事人工智能方面可以發揮重要作用。盡管對人工智能及其武器化有不同的看法,但過去的談判可以作為未來條約的基礎,特別是在定義戰爭規則方面。這包括關于常規武器、核軍備控制、生物和化學武器、地雷、外層空間和平民保護的條約(見圖6)。

到目前為止,《聯合國特定常規武器公約》(CCW)已經監督了一個討論應對自主武器帶來的人道主義和國際安全挑戰的進程。已經提出了一系列監管致命性自主武器系統的潛在方案,包括《特定常規武器公約》下的一項國際條約,一個不具約束力的行為準則,宣布各國承諾負責任地開發和使用致命性自主武器系統。在聯合國之外,2013年發起了 "停止殺手機器人 "運動,目標是完全禁止致命性自主武器系統。

聯合國秘書長安東尼奧-古特雷斯強調了人工智能和其他數字技術的風險和機遇(聯合國2020),并呼吁禁止致命性自主武器系統(古特雷斯2021)。不幸的是,聯合國成員國,特別是聯合國安理會的觀點存在分歧,一些國家認為監管是民族國家的專屬權限,而另一些國家則側重于更多部門的做法。除了人工智能的武器化,在圍繞人權、算法偏見、監控(公共和私人)以及國家支持的或國家支持的網絡攻擊等問題上也存在廣泛的分歧。

對于世界上的主要軍事大國來說,缺乏互信仍然是追求人工智能集體軍備控制協議的一個重大障礙。即使相當多的國家支持提供新的具有法律約束力的條約,禁止開發和使用致命性自主武器,但世界上大多數主要軍事大國都認為人工智能的武器化具有重大價值。鑒于這些分歧,致命性自主武器系統的多邊管理將需要建立信任措施,作為打開政治僵局的軍控進程的手段。

走向平凡的監管 也許制定管理人工智能的政策和監管制度的最具挑戰性的方面是難以準確地確定這些制度應該監管什么。與生物和化學武器不同,人工智能大多是軟件。事實上,人工智能是一個移動的目標:40年前被定義為人工智能的東西,今天只是傳統的軟件。

人工智能是一個模糊的技術領域,影響著廣泛的商業和軍事應用。例如,機器學習算法是搜索引擎(算法排名)、軍用無人機(機器人技術和決策)和網絡安全軟件(算法優化)的成分。但它們也支撐著平凡的行業,甚至兒童玩具(語義分析、視覺分析和機器人技術)、金融軟件和社交媒體網絡(趨勢分析和預測分析)。

與屬于這些平凡的監管領域的產品和流程一樣,人工智能技術不是被設計成最終實體,而是被設計成在廣泛的產品、服務和系統中使用的成分或組件。例如,一個 "殺手機器人 "不是一種特定技術的結果。相反,它是人工智能 "成分 "重新組合的結果,其中許多成分也被用來檢測癌癥或增加駕駛者的安全。

雖然人們傾向于使用一個專門的不擴散鏡頭來監管人工智能,但雙重用途的挑戰仍然存在。與核擴散或轉基因病原體不同,人工智能不是一種特定的技術。相反,它更類似于一個材料或軟件成分的集合。與大多數二元的核不擴散鏡頭相比,可以在食品監管中找到更相關(盡管不那么令人興奮)的監管模式的靈感,特別是食品安全和材料標準(Araya和Nieto-Gómez 2020)。

5.2 治理人工智能

鑒于對人工智能進行全面監管存在重大的概念和政治障礙,治理仍然是一項艱巨的挑戰。一方面,如果我們把人工智能理解為一系列復制人類活動的技術實踐,那么就根本沒有一個單一的領域可以監管。相反,人工智能的治理幾乎重疊了每一種使用計算來執行任務的產品或服務。另一方面,如果我們將人工智能理解為大幅改變人民和國家之間權力平衡的基礎,那么我們就會面臨重大挑戰。

幸運的是,這并不是民族國家第一次面臨影響全球安全的新技術。在第二次世界大戰之后,世界上最強大的國家--美國、英國、蘇聯、中國、法國、德國和日本--對核武器、化學制劑和生物戰的全球治理進行監督。當時和現在一樣,世界必須采取集體行動來治理人工智能。

與冷戰時期一樣,包括定期對話、科學合作和分享學術成果在內的建立信任措施可以幫助減少地緣政治的緊張。為管理軍事人工智能帶來的風險制定一個共同的詞匯,可以為隨著時間的推移制定更有力的人工智能多邊條約提供基礎。

在這方面,經濟合作與發展組織(OECD)已經公布了其關于人工智能的建議,作為一套政府間標準,于2020年2月啟動了人工智能政策觀察站。加拿大和法國政府還與經合組織一起領導了一個全球人工智能伙伴關系(GPAI),旨在成為一個人工智能政策的國際論壇。GPAI的成員專注于以 "人權、包容、多樣性、創新和經濟增長原則 "為基礎的負責任的人工智能發展。

除了GPAI,一些歐洲國家已經呼吁歐盟成員開始一個關于負責任地使用新技術的戰略進程--特別是人工智能。美國已經邀請盟國討論人工智能的道德使用問題(JAIC公共事務2020)。北約已經啟動了一個進程,鼓勵成員國就一系列道德原則和具有軍事用途的電子技術關鍵領域的國際軍備控制議程達成一致(Christie 2020;NATO 2020)。認識到EDT對全球安全的深遠影響,北約于2019年12月推出了EDT路線圖(北約科技組織2020)。

從整體上看,二十一世紀需要進行正式監管。從長遠來看,這很可能包括尋求與禁止生物武器、化學武器和殺傷人員地雷一樣的人工智能條約。然而,鑒于人工智能的創新速度和世界超級大國之間日益擴大的分歧,就人工智能的全球治理進行談判的機會之窗可能正在關閉。

圖6:人工智能的全球治理

6 結論:走向國家創新體系

即使在工業時代即將結束的時候,技術創新也在加速進行(Araya 2020)。自從大約80年前誕生以來,人工智能已經從一個神秘的學術領域發展成為社會和經濟轉型的強大驅動力。人工智能在戰爭中的整合被一些軍事分析家描述為一個不斷發展的 "戰場奇點"(Kania 2017)。在 "技術奇點"(Schulze-Makuch 2020)的概念基礎上,人們越來越多地猜測,人工智能和機器人將超越人類的能力,有效地應對算法驅動的戰爭。

人工智能和其他EDT的演變正在將先進的數據、算法和計算能力匯集起來,以 "認知 "軍事技術。在這種新環境下,現代軍隊正變得嚴重依賴提供安全、及時和準確數據的網絡。數據已經成為數字系統的 "作戰用氣 "和驅動 "智能機器 "的原料。隨著數據重要性的增加,在廣闊的數字領域的對抗性競爭也在增加。事實上,數據的真正價值在于其推動創新的數量和質量。

正如北約關于EDT的年度報告(北約新興和顛覆性技術咨詢小組2020)明確指出,要想跟上技術變革的步伐,就必須在技術的開發、實驗和應用方面保持靈活性和快速迭代。整個CAF的創新能力必須是一個更廣泛的創新生態系統的一部分,該系統有效地整合了公共和私人生態系統的研究和實施。這包括與加拿大工業界合作利用雙重用途的GPT的明確目標,以便利用已經存在的技術。

這種多領域的合作在歷史上被定義為國家創新體系(NSI)(OECD 1997)。事實上,NSI政策和規劃可以采取多種形式,從松散的協調到高度整合的伙伴關系。在美國(Atkinson 2020)、中國(Song 2013)和歐洲(Wirkierman, Ciarli and Savona 2018)應用的各種NSI規劃模式表明,在最大化政府-產業-研究伙伴關系方面可以找到大量的經濟和社會回報。政府應通過稅收優惠、采購和研究資金以及戰略規劃,努力建設加拿大的技術能力。但它不能單獨行動。

國家創新必然取決于機構參與者在一個共享的生態系統中進行合作。出于這個原因,一個協調的加拿大國家統計局將需要在推動長期創新的過程中,人們和機構之間的技術和信息的相互流動。鑒于EDT的許多創新是由工業界主導的,推進公私伙伴關系對加拿大軍隊的發展至關重要。對于國防部/加拿大空軍來說,要推進適合數字時代的軍隊,政府、工業界和學術界將需要以更綜合的方式進行合作。

建立一個強大的加拿大創新生態系統將意味著更廣泛的公私合作和持續的知識和資源的再培訓、培訓和孵化。盡管開發尖端人工智能需要人力資本投資,但大多數人工智能應用現在可以通過開源許可獲得,即使核心學習算法可以在公共平臺和整個學術生態系統中獲得。這種 "開放一切 "環境的影響是對封閉的等級制度和深思熟慮的官方機構的實質性挑戰。

政府程序和規劃將需要適應加速的創新生命周期,以配合EDT積極的淘汰周期。除了與網絡技術相關的巨大的不對稱安全風險外,向數據驅動型軍隊的轉變將需要大量關注數據安全和數據治理。與進行傳統的國家間沖突所需的大量成本和規劃不同,網絡攻擊的破壞性影響可以由僅有一臺個人電腦的小團體對關鍵基礎設施發動。鑒于未來不斷增加的挑戰,大型官僚機構(公司、政府、學術和軍事)的設計變化是不可避免的。

除了對新的和不同的知識、資源和專長的需求,加拿大政府和加拿大軍方將需要平衡硬實力和不斷變化的地緣政治格局的需求。在美國占主導地位的時代之外,二十一世紀正被一個以技術民族主義和后布雷頓森林體系為特征的多極體系所塑造。面對一個快速發展的數字時代,國際合作將是確保和平與安全的關鍵。信息共享、專家會議和多邊對話可以幫助世界各民族國家及其軍隊更好地了解彼此的能力和意圖。作為一個全球中等國家,加拿大可以成為推動這一努力的主要伙伴。

國際治理創新中心(CIGI)

國際治理創新中心(CIGI)是一個獨立的、無黨派的智囊團,其經同行評議的研究和可信的分析影響著政策制定者的創新。其全球多學科研究人員網絡和戰略伙伴關系為數字時代提供政策解決方案,目標只有一個:改善各地人民的生活。CIGI總部設在加拿大滑鐵盧,得到了加拿大政府、安大略省政府和創始人吉姆-巴爾西利的支持。

付費5元查看完整內容

澳大利亞皇家海軍 (RAN) 最近推出了一項開發和使用機器人、自主系統和人工智能 (RAS-AI) 的戰略,該戰略將通過一項運動計劃來實施。蘭德澳大利亞研究團隊正在通過建立證據基礎來支持 RAN 的這項工作,以幫助識別和塑造基礎活動。本報告概述了近期和長期(到 2040 年)海上 RAS-AI 技術的現狀和軌跡,并對近期、中期和長期可能執行的任務進行了高級審查根據相關的技術和非技術推動因素。

本報告并沒有研究人工智能在海上行動中更廣泛的整合,而是關注支撐無人平臺的任務和技術的進步,包括無人空中、水面和水下航行器。除了概述近期和長期 RAS-AI 任務的關鍵技術推動因素外,該報告還指出了在 RAS-AI 能力發展中應考慮的三個關鍵原則:(1)關注多種技術(新系統和“遺留”系統),而不是單一的技術解決方案; (2) 考慮國防和商業 RAS-AI 系統的互補性進展; (3) 監測非技術因素,例如不斷發展的監管、法律、政策和道德框架,這些框架可能會顯著影響未來的技術采用路徑

研究問題

  • RAS-AI 技術和任務在海洋領域的前景如何?
  • 到 2040 年,海上領域的 RAS-AI 技術和任務的可能軌跡是什么?
  • 哪些可能的技術推動因素會塑造未來海上區域的 RAS-AI 任務?

主要發現

  • 快速發展的技術環境使 RAS-AI 任務在海洋領域得以擴展
    • 無人駕駛飛行器 (UAV) 任務的跨度有所增長,特別是因為無人機的覆蓋范圍、適應性和生存能力不斷增加(盡管仍然相對有限)。
    • 由于通信、有效載荷和模塊化的進步,越來越多地使用無人水面航行器(USV)來支持海軍任務已經成為可能,盡管限制包括依賴載人平臺的遠程控制以及與其他車輛的有限集成。
    • 無人水下航行器 (UUV) 任務已經擴大,因為其在更深的深度、更遠的距離以及先進的傳感器和有效載荷下運行的能力越來越強。然而,水下通信、網絡和深水導航的有限耐力和未解決的障礙仍然對 UUV 任務施加了限制。
  • 在所有平臺上,海上 RAS-AI 任務可能會在短期內擴大,這得益于幾個關鍵技術領域的進步
    • 在自治、集群、互操作性、安全通信和信息交換、生存能力、推進和能源管理以及先進傳感和多任務平臺開發等領域取得了進展。
  • 從長遠來看,技術和非技術障礙可能會限制某些 RAS-AI 任務
    • 長期 RAS-AI 任務可能包括在有爭議的環境中部署以及在進攻性自主和動力應用中的部署,盡管后者可能會受到道德、法律和監管障礙的嚴重限制。
    • 長期任務和技術前景的特點是存在很大的不確定性,可能需要通過后續研究探索更多種類的具有潛在破壞性的未來 RAS-AI 任務、技術和戰術。
付費5元查看完整內容
北京阿比特科技有限公司