亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

藥物相互作用預測是醫療保健機器學習領域的一項重要任務。在本文中,我們提出了一種全新的框架,利用多視角圖對比表示學習來完成藥物相互作用預測。我們不僅關注藥物分子圖,還關注藥物交互關系圖,從多個視角來建模藥物相互作用關系。針對藥物分子圖,我們使用基于化學鍵的消息傳遞機制來聚合信息和基于注意力機制的圖池化層來提取低層藥物分子表示;針對藥物交互關系圖和得到的低層藥物分子表示,我們使用圖卷積編碼器來聚合兩部分信息。此外,我們還提出了一種新穎的圖對比學習組件來平衡兩個視角中包含的信息。在真實數據集上進行的綜合性實驗表明我們的方法優于當前的其他方法。

//www.zhuanzhi.ai/paper/60e34925ef83710eaad29b0e40d124c9

付費5元查看完整內容

相關內容

序列推薦作為一個新興的課題,由于其重要的現實意義而受到越來越多的關注。基于深度學習和注意力機制的模型在序列推薦中取得了良好的性能。近年來,基于變分自編碼器(VAE)的生成模型在協同過濾方面顯示出了獨特的優勢。特別是,序列貫VAE模型作為遞歸版本,可以有效地捕捉用戶序列中項目之間的時間依賴性,并進行序列推薦。然而,基于VAE的模型有一個共同的局限性,即獲得的近似后驗分布的表征能力有限,導致生成的樣本質量較低。對于生成序列來說尤其如此。為了解決上述問題,本文提出了一種基于對抗與對比的變分自編碼器(ACVAE)的序列推薦算法。具體來說,我們首先在對抗變分貝葉斯(AVB)框架下引入對抗訓練序列生成,從而使我們的模型產生高質量的潛在變量。然后,我們使用對比損失。潛在變量將能夠通過最大限度地減少對比損失來學習更個性化和突出的特征。此外,在對序列進行編碼時,我們使用一個遞歸和卷積結構來捕獲序列中的全局和局部關系。最后,我們在四個真實世界的數據集上進行了大量的實驗。實驗結果表明,我們提出的ACVAE模型優于其他先進的方法。

//www.zhuanzhi.ai/paper/8ce90daf786c65c9c363b16c60ac6c2e

付費5元查看完整內容

對于推薦系統來說,用戶冷啟動推薦是一個長期存在的挑戰,因為只有很少的冷啟動用戶交互可以被利用。最近的研究試圖從元學習的角度解決這一挑戰,大多數研究遵循參數初始化的方式,即通過幾個步驟的梯度更新來學習模型參數。雖然這些基于梯度的元學習模型在一定程度上取得了良好的性能,但其中的一個根本問題是如何將從以前任務中學習到的全局知識更有效地用于冷啟動用戶的推薦。

本文提出了一種新的元學習推薦方法——任務自適應神經過程(TaNP)。TaNP是神經過程家族中的一個新成員,為每個用戶作出推薦都與相應的隨機過程相關聯。TaNP直接將每個用戶觀察到的交互作用映射到一個預測分布,避開了基于梯度的元學習模型中的一些訓練問題。更重要的是,為了平衡模型容量和適應可靠性之間的平衡,我們引入了一種新的任務適應機制。它使我們的模型能夠學習不同任務的相關性,并自定義全局知識到與任務相關的解碼器參數,以估計用戶的偏好。在不同的實驗設置下,我們在多個基準數據集上驗證了TaNP。實證結果表明,TaNP對幾個最先進的元學習推薦器產生了一致的改進。

//www.zhuanzhi.ai/paper/6e268c251725b797f632dec7d4b6ceef

付費5元查看完整內容

圖卷積網絡(GCNs)在推薦方面表現出巨大的潛力。這歸功于他們通過利用來自高階鄰居的協作信號來學習良好的用戶和項目嵌入的能力。與其他GCN模型一樣,基于GCN的推薦模型也存在著臭名昭著的過平滑問題——當疊加更多層時,節點嵌入變得更加相似,最終無法區分,導致性能下降。最近提出的LightGCN和LR-GCN在一定程度上緩解了這一問題,但是我們認為他們忽略了推薦中出現過平滑問題的一個重要因素,即在圖卷積操作中,用戶的嵌入學習也可以涉及到與用戶沒有共同興趣的高階鄰域用戶。因此,多層圖卷積會使不同興趣的用戶具有相似的嵌入性。在本文中,我們提出了一種新的興趣感知消息傳遞GCN (IMP-GCN)推薦模型,該模型在子圖中進行高階圖卷積。子圖由具有相似興趣的用戶及其交互項組成。為了形成子圖,我們設計了一個無監督的子圖生成模塊,該模塊利用用戶特征和圖結構來有效識別具有共同興趣的用戶。為此,我們的模型可以避免將高階鄰域的負面信息傳播到嵌入學習中。在三個大規模基準數據集上的實驗結果表明,我們的模型可以通過疊加更多的層來獲得性能的提高,顯著優于目前最先進的基于GCN的推薦模型。

付費5元查看完整內容

異構網絡的表示學習方法為每個節點產生一個低維向量嵌入,通常在所有涉及節點的任務中都是固定的。許多現有的方法關注于以一種與下游應用程序無關的方式獲取節點的靜態向量表示。然而,在實踐中,下游任務(如鏈接預測)需要特定的上下文信息,這些信息可以從與節點相關的子圖中提取出來,作為任務的輸入。為了解決這一挑戰,我們提出了SLiCE,這是一個使用整個圖的全局信息和局部注意驅動機制來學習上下文節點表示的靜態表示學習方法的框架。我們首先通過引入高階語義關聯和屏蔽節點以自監督的方式預訓練我們的模型,然后針對特定的鏈接預測任務微調我們的模型。我們不再通過聚合所有通過元路徑連接的語義鄰居的信息來訓練節點表示,而是自動學習不同元路徑的組合,這些元路徑表征了特定任務的上下文,而不需要任何預先定義的元路徑。SLiCE在幾個公開可用的基準網絡數據集上顯著優于靜態和上下文嵌入學習方法。通過廣泛的評價,我們也證明了上下文學習的可解釋性、有效性和SLiCE的可擴展性。

付費5元查看完整內容

//www.zhuanzhi.ai/paper/3696ec78742419bdaa9c23dce139b3d4

消息傳遞圖神經網絡(GNNs)為關系數據提供了強大的建模框架。曾經,現有GNN的表達能力上界取決于1- Weisfeiller -Lehman (1-WL)圖同構測試,這意味著gnn無法預測節點聚類系數和最短路徑距離,無法區分不同的d-正則圖。在這里,我們提出了一類傳遞消息的GNN,稱為身份感知圖神經網絡(ID- GNNs),具有比1-WL測試更強的表達能力。ID-GNN為現有GNN的局限性提供了一個最小但強大的解決方案。ID-GNN通過在消息傳遞過程中歸納地考慮節點的身份來擴展現有的GNN體系結構。為了嵌入一個給定的節點,IDGNN首先提取以該節點為中心的自我網絡,然后進行輪次異構消息傳遞,中心節點與自我網絡中其他周圍節點應用不同的參數集。我們進一步提出了一個簡化但更快的ID-GNN版本,它將節點標識信息作為增強節點特征注入。總之,ID-GNN的兩個版本代表了消息傳遞GNN的一般擴展,其中實驗表明,在具有挑戰性的節點、邊緣和圖屬性預測任務中,將現有的GNN轉換為ID-GNN平均可以提高40%的準確率;結點和圖分類在基準測試上提高3%精度;在實際鏈路預測任務提高15%的ROC AUC。此外,與其他特定于任務的圖網絡相比,ID- GNN表現出了更好的或相當的性能。

付費5元查看完整內容

從異步視頻面試(AVI)中的自動語音識別(ASR)轉錄中,我們解決了基于文本特征自動為候選人的能力評分的任務。問題的關鍵在于如何構建問題與答案之間的依賴關系,并對每個問答(QA)對進行語義級交互。然而,目前AVI的研究大多集中在如何更好地表示問題和答案上,而忽視了它們之間的依賴信息和相互作用,而這是QA評估的關鍵。在這項工作中,我們提出了一種層次推理圖神經網絡(HRGNN)用于問答對的自動評估。具體來說,我們構建了一個句子級關系圖神經網絡來捕獲問題和答案之間的句子依賴信息。基于這些圖,我們采用語義級推理圖注意網絡對當前QA會話的交互狀態進行建模。最后,我們提出了一種門控遞歸單元編碼器來表示用于最終預測的時間問答對。在CHNAT(一個真實數據集)上進行的實證結果驗證了我們提出的模型顯著優于基于文本匹配的基準模型。消融研究和10個隨機種子的實驗結果也表明了我們模型的有效性和穩定性。

//www.zhuanzhi.ai/paper/5c766d478e8b7fae79e95f2a09e5bdd1

付費5元查看完整內容

圖神經網絡(gnn)的優勢在于對結構化數據的拓撲信息進行顯式建模。然而,現有的gnn在獲取層次圖表示方面的能力有限,而層次圖表示在圖形分類中起著重要的作用。本文創新性地提出了層次圖膠囊網絡(HGCN),該網絡可以聯合學習節點嵌入和提取圖的層次結構。具體地說,解糾纏圖膠囊是通過識別每個節點下的異構因素建立的,這樣它們的實例化參數代表同一實體的不同屬性。為了學習層次表示,HGCN通過顯式地考慮部件之間的結構信息,刻畫了低層膠囊(部分)和高層膠囊(整體)之間的部分-整體關系。實驗研究證明了HGCN算法的有效性和各組成部分的貢獻。

//www.zhuanzhi.ai/paper/c9930a15b45547cafbee90db8c5612aa

付費5元查看完整內容

由于二部圖在各種應用領域中得到了廣泛的應用,因此嵌入二部圖引起了人們的廣泛關注。以往的方法大多采用基于隨機行走或基于重構的目標,對學習局部圖結構是典型的有效方法。但是,二部圖的全局性質,包括同構節點的社區結構和異構節點的遠程依賴關系,并沒有很好地保存下來。在本文中,我們提出了一種稱為BiGI的二部圖嵌入,通過引入一個新的局部-全局信息目標來捕獲這種全局性質。具體來說,BiGI首先生成一個由兩個原型表示組成的全局表示。然后BiGI通過提出的子級注意機制將采樣的邊緣編碼為局部表示。BiGI通過最大化局部表示和全局表示之間的互信息,使二部圖中的節點具有全局相關性。我們的模型在各種基準數據集上評估top-K推薦和鏈接預測任務。大量的實驗證明BiGI在最先進的基線上實現了一致和顯著的改進。詳細的分析驗證了二部圖全局性質建模的有效性。

//arxiv.org/pdf/2012.05442.pdf

付費5元查看完整內容

圖神經網絡(GNNs)最近變得越來越受歡迎,因為它們能夠學習復雜的關系系統或相互作用,這些關系或作用來源于生物學和粒子物理學到社會網絡和推薦系統等廣泛問題。盡管在圖上進行深度學習的不同模型太多了,但迄今為止,很少有人提出方法來處理呈現某種動態性質的圖(例如,隨著時間的推移而進化的特征或連通性)。在本文中,我們提出了時序圖網絡(TGNs),一個通用的,有效的框架,用于深度學習動態圖表示為時間事件序列。由于內存模塊和基于圖的運算符的新組合,TGNs能夠顯著優于以前的方法,同時在計算效率上也更高。此外,我們還展示了之前幾個用于學習動態圖的模型可以轉換為我們框架的具體實例。我們對框架的不同組件進行了詳細的消歧研究,并設計了最佳配置,在動態圖的幾個轉導和歸納預測任務中實現了最先進的性能。

//github.com/twitter-research/tgn

付費5元查看完整內容

實體交互預測在許多重要的應用如化學、生物、材料科學和醫學中是必不可少的。當每個實體由一個復雜的結構(即結構化實體)表示時,這個問題就變得非常具有挑戰性,因為涉及到兩種類型的圖:用于結構化實體的局部圖和用于捕獲結構化實體之間交互的全局圖。我們注意到,現有的結構化實體交互預測工作不能很好地利用圖的唯一圖模型。在本文中,我們提出了一個圖的神經網絡圖,即GoGNN,它以分層的方式提取了結構化實體圖和實體交互圖中的特征。我們還提出了雙重注意力機制,使模型在圖的兩個層次上都能保持相鄰的重要性。在真實數據集上的大量實驗表明,GoGNN在兩個有代表性的結構化實體交互作用預測任務上的表現優于最先進的方法:化學-化學交互作用預測和藥物-藥物交互作用預測。我們的代碼可以在Github上找到。

付費5元查看完整內容
北京阿比特科技有限公司