實體交互預測在許多重要的應用如化學、生物、材料科學和醫學中是必不可少的。當每個實體由一個復雜的結構(即結構化實體)表示時,這個問題就變得非常具有挑戰性,因為涉及到兩種類型的圖:用于結構化實體的局部圖和用于捕獲結構化實體之間交互的全局圖。我們注意到,現有的結構化實體交互預測工作不能很好地利用圖的唯一圖模型。在本文中,我們提出了一個圖的神經網絡圖,即GoGNN,它以分層的方式提取了結構化實體圖和實體交互圖中的特征。我們還提出了雙重注意力機制,使模型在圖的兩個層次上都能保持相鄰的重要性。在真實數據集上的大量實驗表明,GoGNN在兩個有代表性的結構化實體交互作用預測任務上的表現優于最先進的方法:化學-化學交互作用預測和藥物-藥物交互作用預測。我們的代碼可以在Github上找到。
【導讀】作為世界數據挖掘領域的最高級別的學術會議,ACM SIGKDD(國際數據挖掘與知識發現大會,簡稱 KDD)每年都會吸引全球領域眾多專業人士參與。今年的 KDD大會計劃將于 2020 年 8 月 23 日 ~27 日在美國美國加利福尼亞州圣地亞哥舉行。上周,KDD 2020官方發布接收論文,共有1279篇論文提交到Research Track,共216篇被接收,接收率16.8%。近期KDD官網公布了接受論文列表,為此,上個月專知小編為大家整理了圖神經網絡相關的論文,這期小編繼續為大家奉上KDD 2020必讀的五篇圖神經網絡(GNN)相關論文-Part 2——多層次GCN、無監督預訓練GCN、圖Hash、GCN主題模型、采樣
KDD 2020 Accepted Paper: //www.kdd.org/kdd2020/accepted-papers
KDD2020GNN_Part1、CVPR2020SGNN、CVPR2020GNN_Part2、CVPR2020GNN_Part1、WWW2020GNN_Part1、AAAI2020GNN、ACMMM2019GNN、CIKM2019GNN、ICLR2020GNN、EMNLP2019GNN、ICCV2019GNN_Part2、ICCV2019GNN_Part1、NIPS2019GNN、IJCAI2019GNN_Part1、IJCAI2019GNN_Part2、KDD2019GNN、
1. Multi-level Graph Convolutional Networks for Cross-platform Anchor Link Prediction
作者:Hongxu Chen, Hongzhi Yin, Xiangguo Sun, Tong Chen, Bogdan Gabrys, Katarzyna Musial
摘要:跨平臺的賬號匹配在社交網絡分析中發揮著重要作用,并且有利于廣泛的應用。然而,現有的方法要么嚴重依賴于高質量的用戶生成內容(包括用戶興趣模型),要么只關注網絡拓撲結構,存在數據不足的問題,這使得研究這個方向變得很困難。為了解決這一問題,我們提出了一種新的框架,該框架統一考慮了局部網絡結構和超圖結構上的多級圖卷積。該方法克服了現有工作中數據不足的問題,并且不一定依賴于用戶的人口統計信息。此外,為了使所提出的方法能夠處理大規模社交網絡,我們提出了一種兩階段的空間協調機制,在基于網絡分區的并行訓練和跨不同社交網絡的帳戶匹配中對齊嵌入空間。我們在兩個大規模的真實社交網絡上進行了廣泛的實驗。實驗結果表明,該方法的性能比現有的模型有較大幅度的提高。
網址:
2. GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training
作者:Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang, Jie Tang
摘要:圖表示學習已經成為解決現實問題的一種強有力的技術。包括節點分類、相似性搜索、圖分類和鏈接預測在內的各種下游圖學習任務都受益于它的最新發展。然而,關于圖表示學習的現有技術集中于領域特定的問題,并為每個圖訓練專用模型,這通常不可轉移到領域之外的數據。受自然語言處理和計算機視覺在預訓練方面的最新進展的啟發,我們設計了圖對比編碼(Graph Contrastive Coding,GCC)一個無監督的圖表示學習框架來捕捉跨多個網絡的通用網絡拓撲屬性。我們將GCC的預訓練任務設計為網絡內部和網絡之間的子圖級別的實例判斷,并利用對比學習來增強模型學習內在的和可遷移的結構表征能力。我們在三個圖學習任務和十個圖數據集上進行了廣泛的實驗。結果表明,GCC在一組不同的數據集上進行預訓練,可以獲得與從頭開始的特定任務訓練的方法相媲美或更好的性能。這表明,預訓練和微調范式對圖表示學習具有巨大的潛力。
網址:
代碼鏈接:
3. GHashing: Semantic Graph Hashing for Approximate Similarity Search in Graph Databases
作者:Zongyue Qin, Yunsheng Bai, Yizhou Sun
摘要:圖相似搜索的目的是根據給定的鄰近度,即圖編輯距離(GED),在圖形數據庫中找到與查詢最相似的圖。這是一個被廣泛研究但仍具有挑戰性的問題。大多數研究都是基于剪枝驗證框架,該框架首先對非看好的圖進行剪枝,然后在較小的候選集上進行驗證。現有的方法能夠管理具有數千或數萬個圖的數據庫,但由于其精確的剪枝策略,無法擴展到更大的數據庫。受到最近基于深度學習的語義哈希(semantic hashing)在圖像和文檔檢索中的成功應用的啟發,我們提出了一種新的基于圖神經網絡(GNN)的語義哈希,即GHash,用于近似剪枝。我們首先用真實的GED結果訓練GNN,以便它學習生成嵌入和哈希碼,以保持圖之間的GED。然后建立哈希索引以實現恒定時間內的圖查找。在回答一個查詢時,我們使用哈希碼和連續嵌入作為兩級剪枝來檢索最有希望的候選對象,并將這些候選對象發送到精確的求解器進行最終驗證。由于我們的圖哈希技術利用了近似剪枝策略,與現有方法相比,我們的方法在保持高召回率的同時,實現了顯著更快的查詢時間。實驗表明,該方法的平均速度是目前唯一適用于百萬級數據庫的基線算法的20倍,這表明GHash算法成功地為解決大規模圖形數據庫的圖搜索問題提供了新的方向。
網址:
4. Graph Structural-topic Neural Network
作者:Qingqing Long, Yilun Jin, Guojie Song, Yi Li, Wei Lin
摘要:圖卷積網絡(GCNS)通過有效地收集節點的局部特征,取得了巨大的成功。然而,GCNS通常更多地關注節點特征,而較少關注鄰域內的圖結構,特別是高階結構模式。然而,這種局部結構模式被顯示為許多領域中的節點屬性。此外,由于網絡很復雜,每個節點的鄰域由各種節點和結構模式的混合組成,不只是單個模式,所有這些模式上的分布都很重要。相應地,在本文中,我們提出了圖結構主題神經網絡,簡稱GraphSTONE,這是一種利用圖的主題模型的GCN模型,使得結構主題廣泛地從概率的角度捕捉指示性的圖結構,而不僅僅是幾個結構。具體地說,我們使用 anonymous walks和Graph Anchor LDA(一種LDA的變體,首先選擇重要的結構模式)在圖上建立主題模型,以降低復雜性并高效地生成結構主題。此外,我們設計了多視圖GCNS來統一節點特征和結構主題特征,并利用結構主題來指導聚合。我們通過定量和定性實驗對我們的模型進行了評估,我們的模型表現出良好的性能、高效率和清晰的可解釋性。
網址:
代碼鏈接:
5. Minimal Variance Sampling with Provable Guarantees for Fast Training of Graph Neural Networks
作者:Weilin Cong, Rana Forsati, Mahmut Kandemir, Mehrdad Mahdavi
摘要:抽樣方法(如節點抽樣、分層抽樣或子圖抽樣)已成為加速大規模圖神經網絡(GNNs)訓練不可缺少的策略。然而,現有的抽樣方法大多基于圖的結構信息,忽略了最優化的動態性,導致隨機梯度估計的方差較大。高方差問題在非常大的圖中可能非常明顯,它會導致收斂速度慢和泛化能力差。本文從理論上分析了抽樣方法的方差,指出由于經驗風險的復合結構,任何抽樣方法的方差都可以分解為前向階段的嵌入近似方差和后向階段的隨機梯度方差,這兩種方差都必須減小,才能獲得較快的收斂速度。我們提出了一種解耦的方差減小策略,利用(近似)梯度信息自適應地對方差最小的節點進行采樣,并顯式地減小了嵌入近似引入的方差。理論和實驗表明,與現有方法相比,該方法即使在小批量情況下也具有更快的收斂速度和更好的泛化能力。
網址:
【導讀】計算語言學協會(the Association for Computational Linguistics, ACL)年度會議作為頂級的國際會議,在計算語言學和自然語言處理領域一直備受關注。其接收的論文覆蓋了語義分析、文本挖掘、信息抽取、問答系統、機器翻譯、情感分析和意見挖掘等眾多自然語言處理領域的研究方向。今年,第58屆計算語言學協會(the Association for Computational Linguistics, ACL)年度會議將于2020年7月5日至10日在美國華盛頓西雅圖舉行。受COVID-19疫情影響,ACL 2020將全部改為線上舉行。本次ACL大會共提交了3429篇論文,共有571篇長論文、以及208篇短論文入選。不久之前,專知小編為大家整理了大會的圖神經網絡(GNN)相關論文,這期小編繼續為大家奉上ACL 2020圖神經網絡(GNN)相關論文-Part 2供參考——多文檔摘要、多粒度機器閱讀理解、帖子爭議檢測、GAE。
ACL2020GNN_Part1、WWW2020GNN_Part1、AAAI2020GNN、ACMMM2019GNN、CIKM2019GNN、ICLR2020GNN
1. Leveraging Graph to Improve Abstractive Multi-Document Summarization
作者:Wei Li, Xinyan Xiao, Jiachen Liu, Hua Wu, Haifeng Wang, Junping Du
摘要:捕捉文本單元之間關系圖對于從多個文檔中檢測顯著信息和生成整體連貫的摘要有很大好處。本文提出了一種神經抽取多文檔摘要(MDS)模型,該模型可以利用文檔的常見圖表示,如相似度圖和話語圖(discourse graph),來更有效地處理多個輸入文檔并生成摘要。我們的模型使用圖對文檔進行編碼,以捕獲跨文檔關系,這對于總結長文檔至關重要。我們的模型還可以利用圖來指導摘要的生成過程,這有利于生成連貫而簡潔的摘要。此外,預訓練的語言模型可以很容易地與我們的模型相結合,進一步提高了摘要的性能。在WikiSum和MultiNews數據集上的實驗結果表明,所提出的體系結構在幾個強大的基線上帶來了實質性的改進。
網址: //arxiv.org/abs/2005.10043
2. Document Modeling with Graph Attention Networks for Multi-grained Machine Reading Comprehension
作者:Bo Zheng, Haoyang Wen, Yaobo Liang, Nan Duan, Wanxiang Che, Daxin Jiang, Ming Zhou, Ting Liu
摘要:“自然問題”是一種具有挑戰性的新的機器閱讀理解基準,其中包含兩個答案:長答案(通常是一個段落)和短答案(長答案中的一個或多個實體)。盡管此基準測試的現有方法很有效,但它們在訓練期間單獨處理這兩個子任務,忽略了它們間的依賴關系。為了解決這個問題,我們提出了一種新穎的多粒度機器閱讀理解框架,該框架專注于對文檔的分層性質進行建模,這些文檔具有不同的粒度級別:文檔、段落、句子和詞。我們利用圖注意力網絡來獲得不同層次的表示,以便它們可以同時學習。長答案和短答案可以分別從段落級表示和詞級表示中提取。通過這種方式,我們可以對兩個粒度的答案之間的依賴關系進行建模,以便為彼此提供證據。我們聯合訓練這兩個子任務,實驗表明,我們的方法在長答案和短答案標準上都明顯優于以前的系統。
網址:
代碼鏈接:
3. Integrating Semantic and Structural Information with Graph Convolutional Network for Controversy Detection
作者:Lei Zhong, Juan Cao, Qiang Sheng, Junbo Guo, Ziang Wang
摘要:識別社交媒體上有爭議的帖子是挖掘公眾情緒、評估事件影響、緩解兩極分化觀點的基礎任務。然而,現有的方法不能1)有效地融合來自相關帖子內容的語義信息;2)保留回復關系建模的結構信息;3)正確處理與訓練集中主題不同的帖子。為了克服前兩個局限性,我們提出了主題-帖子-評論圖卷積網絡(TPC-GCN),它綜合了來自主題、帖子和評論的圖結構和內容的信息,用于帖子級別的爭議檢測。對于第三個限制,我們將模型擴展到分離的TPC-GCN(DTPC-GCN),將主題相關和主題無關的特征分離出來,然后進行動態融合。在兩個真實數據集上的大量實驗表明,我們的模型優于現有的方法。結果和實例分析表明,該模型能夠將語義信息和結構信息有機地結合在一起,具有較強的通用性。
網址:
4. Knowledge Graph-Augmented Abstractive Summarization with Semantic-Driven Cloze Reward
作者:Luyang Huang, Lingfei Wu, Lu Wang
摘要:用于抽取摘要的序列到序列(sequence-to-sequence )模型已經被廣泛研究,但是生成的摘要通常受到捏造的內容的影響,并且經常被發現是near-extractive的。我們認為,為了解決這些問題,摘要生成器應通過輸入獲取語義解釋,例如通過結構化表示,以允許生成更多信息的摘要。在本文中,我們提出了一種新的抽取摘要框架--Asgard,它具有圖形增強和語義驅動的特點。我們建議使用雙重編碼器-序列文檔編碼器和圖形結構編碼器-來保持實體的全局上下文和局部特征,并且相互補充。我們進一步設計了基于多項選擇完形填空測試的獎勵,以驅動模型更好地捕捉實體交互。結果表明,我們的模型在紐約時報和CNN/每日郵報的數據集上都比沒有知識圖作為輸入的變體產生了更高的Rouge分數。與從大型預訓練的語言模型中優化的系統相比,我們也獲得了更好或可比的性能。評委進一步認為我們的模型輸出信息更豐富,包含的不實錯誤更少。
網址:
5. A Graph Auto-encoder Model of Derivational Morphology
作者:Valentin Hofmann, Hinrich Schutze, Janet B. Pierrehumberty
摘要:關于派生詞的形態良好性(morphological well-formedness, MWF)建模工作在語言學中被認為是一個復雜而困難的問題,并且這方面的研究工作較少。我們提出了一個圖自編碼器學習嵌入以捕捉派生詞中詞綴和詞干的兼容性信息。自編碼器通過將句法和語義信息與來自心理詞典的關聯信息相結合,很好地模擬了英語中的MWF。
網址:
【導讀】計算語言學協會(the Association for Computational Linguistics, ACL)年度會議作為頂級的國際會議,在計算語言學和自然語言處理領域一直備受關注。其接收的論文覆蓋了語義分析、文本挖掘、信息抽取、問答系統、機器翻譯、情感分析和意見挖掘等眾多自然語言處理領域的研究方向。今年,第58屆計算語言學協會(the Association for Computational Linguistics, ACL)年度會議將于2020年7月5日至10日在美國華盛頓西雅圖舉行。受COVID-19疫情影響,ACL 2020將全部改為線上舉行。為此,專知小編提前為大家整理了ACL 2020圖神經網絡(GNN)相關論文,讓大家先睹為快——事實驗證、法律文書、謠言檢測、自動摘要、情感分析。
WWW2020GNN_Part1、AAAI2020GNN、ACMMM2019GNN、CIKM2019GNN、ICLR2020GNN、EMNLP2019GNN、ICCV2019GNN_Part2、ICCV2019GNN_Part1、NIPS2019GNN、IJCAI2019GNN_Part1、IJCAI2019GNN_Part2、KDD2019GNN、ACL2019GNN、CVPR2019GNN、ICML2019GNN
1. Fine-grained Fact Verification with Kernel Graph Attention Network
作者:Zhenghao Liu, Chenyan Xiong, Maosong Sun, Zhiyuan Liu
摘要:事實驗證(Fact V erification)需要細粒度的自然語言推理能力來找到微妙的線索去識別句法和語義上正確但沒有強有力支持的聲明(well-supported claims)。本文提出了基于核方法的圖注意力網絡(KGAT),該網絡使用基于核的注意力進行更細粒度的事實驗證。給定一個聲明和一組形成證據圖潛在證據的句子,KGAT在圖注意力網絡中引入了可以更好地衡量證據節點重要性的節點核,以及可以在圖中進行細粒度證據傳播的邊緣核,以實現更準確的事實驗證。KGAT達到了70.38%的FEVER得分,在FEVER上大大超過了現有的事實驗證模型(FEVER是事實驗證的大規模基準)。我們的分析表明,與點積注意力相比,基于核的注意力更多地集中在證據圖中的相關證據句子和有意義的線索上,這是KGAT有效性的主要來源。
網址://arxiv.org/pdf/1910.09796.pdf
2. Distinguish Confusing Law Articles for Legal Judgment Prediction
作者:Nuo Xu, Pinghui Wang, Long Chen, Li Pan, Xiaoyan Wang, Junzhou Zhao
摘要:法律審判預測(LJP)是在給出案件事實描述文本的情況下,自動預測案件判決結果的任務,其在司法協助系統中具有良好的應用前景,為公眾提供方便的服務。實際上,由于適用于類似法律條款的法律案件很容易被誤判,經常會產生混淆的指控。在本文中,我們提出了一個端到端的模型--LADAN來解決LJP的任務。為了解決這一問題,現有的方法嚴重依賴領域專家,這阻礙了它在不同法律制度中的應用。為了區分混淆的指控,我們提出了一種新的圖神經網絡來自動學習混淆法律文章之間的細微差別,并設計了一種新的注意力機制,該機制充分利用學習到的差別從事實描述中提取令人信服的鑒別特征。在真實數據集上進行的實驗證明了我們的LADAN算法的優越性。
網址:
3. GCAN: Graph-aware Co-Attention Networks for Explainable Fake News Detection on Social Media
作者:Yi-Ju Lu, Cheng-Te Li
摘要:本文解決了在更現實的社交媒體場景下的假新聞檢測問題。給定源短文本推文和相應的沒有文本評論的轉發用戶序列,我們的目的是預測源推文是否是假的,并通過突出可疑轉發者的證據和他們關注的詞語來產生解釋。為了實現這一目標,我們提出了一種新的基于神經網絡的模型--圖感知協同注意網絡(GCAN)。在真實推文數據集上進行的廣泛實驗表明,GCAN的平均準確率比最先進的方法高出16%。此外,案例研究還表明,GCAN可以給出合理的解釋。
網址:
4. Heterogeneous Graph Neural Networks for Extractive Document Summarization
作者:Danqing Wang, Pengfei Liu, Yining Zheng, Xipeng Qiu, Xuanjing Huang
摘要:作為提取文檔摘要的關鍵步驟,跨句關系學習已經有了大量的研究方法。一種直觀的方法是將它們放入基于圖的神經網絡中,該網絡具有更復雜的結構來捕獲句間關系。本文提出了一種基于圖的異構神經網絡抽取摘要算法(HeterSUMGraph),該算法除句子外,還包含不同粒度的語義節點。這些額外的結點起到句子之間的中介作用,豐富了句子之間的關系。此外,通過引入文檔節點,我們的圖結構可以靈活地從單文檔設置自然擴展到多文檔設置。據我們所知,我們是第一個將不同類型的節點引入到基于圖的神經網絡中進行提取文檔摘要的,我們還進行了全面的定性分析,以考察它們的好處。
網址:
代碼鏈接:
5. Relational Graph Attention Network for Aspect-based Sentiment Analysis
作者:Kai Wang, Weizhou Shen, Yunyi Yang, Xiaojun Quan, Rui Wang
摘要:Aspect級的情感分析旨在確定在線評論中對某一特定方面的情感極性。最近的大多數努力采用了基于注意力的神經網絡模型來隱式地將aspect與觀點詞聯系起來。然而,由于語言的復雜性和單句中多個aspect的存在,這些模型往往混淆了它們之間的聯系。在本文中,我們通過對語法信息進行有效的編碼來解決這個問題。首先,我們通過重塑和修剪常規依賴關系樹,定義了一個以目標方面為根的統一的面向aspect的依賴樹結構。然后,我們提出了一種關系圖注意力網絡(R-GAT)來編碼新的樹結構用于情感預測。我們在SemEval 2014和Twitter數據集上進行了廣泛的實驗,實驗結果證實,該方法可以更好地建立aspect和觀點詞之間的聯系,從而顯著提高了圖注意網絡(GAT)的性能。
網址:
【導讀】國際萬維網大會(The Web Conference,簡稱WWW會議)是由國際萬維網會議委員會發起主辦的國際頂級學術會議,創辦于1994年,每年舉辦一屆,是CCF-A類會議。WWW 2020將于2020年4月20日至4月24日在中國臺灣臺北舉行。本屆會議共收到了1129篇長文投稿,錄用217篇長文,錄用率為19.2%。這周會議已經召開,會議論文集已經公開,大家可以自己查看感興趣的論文,專知小編繼續整理WWW 2020 系列論文,這期小編為大家奉上的是WWW 2020五篇知識圖譜+圖神經網絡(KG+GNN)相關論文,供大家參考!——多關系實體對齊、問答推理、動態圖實體鏈接、序列實體鏈接、知識圖譜補全。
WWW 2020 會議論文集: //dl.acm.org/doi/proceedings/10.1145/3366423
WWW2020GNN_Part1、AAAI2020GNN、ACMMM2019GNN、CIKM2019GNN、ICLR2020GNN、EMNLP2019GNN、ICCV2019GNN_Part2、ICCV2019GNN_Part1、NIPS2019GNN、IJCAI2019GNN_Part1、IJCAI2019GNN_Part2、KDD2019GNN、ACL2019GNN、CVPR2019GNN、ICML2019GNN
作者:Qi Zhu, Hao Wei, Bunyamin Sisman, Da Zheng, Christos Faloutsos, Xin Luna Dong and Jiawei Han
摘要:知識圖(如Freebase、Yago)是表示各類實體之間豐富真實信息的多關系圖。實體對齊是實現多源知識圖集成的關鍵步驟。它旨在識別涉及同一真實世界實體的不同知識圖中的實體。然而,現有的實體對齊系統忽略了不同知識圖的稀疏性,不能通過單一模型對多類型實體進行對齊。在本文中,我們提出了一種用于多類型實體對齊的聯合圖神經網絡(Collective Graph neural network),稱為CG-MuAlign。與以前的工作不同,CG-MuAlign聯合對齊多種類型的實體,共同利用鄰域信息并將其推廣到未標記的實體類型。具體地說,我們提出了一種新的集中聚集函數1)通過交叉圖和自注意力來緩解知識圖的不完全性,2)通過小批量訓練范例和有效的鄰域抽樣策略,有效地提高了可伸縮性。我們在具有數百萬個實體的真實知識圖上進行了實驗,觀察到了比現有方法更優越的性能。此外,我們的方法的運行時間比目前最先進的深度學習方法要少得多。
網址:
作者:Chen Zhao, Chenyan Xiong, Xin Qian and Jordan Boyd-Graber
摘要:我們介紹了Delft,一個事實問答系統,它將知識圖問答方法的細微和深度與更廣泛的free-文本結合在一起。Delft從Wikipedia構建了一個自由文本知識圖,以實體為節點和句子,其中實體同時出現做為邊。對于每個問題,Delft使用文本句子作為邊,找到將問題實體節點鏈接到候選對象的子圖,創建了密集且覆蓋率高的語義圖。一種新穎的圖神經網絡在free-文本圖上進行推理-通過沿邊句子的信息組合節點上的證據-以選擇最終答案。在三個問答數據集上的實驗表明,Delft能夠比基于機器閱讀的模型、基于BERT的答案排序和記憶網絡更好地回答實體豐富的問題。Delft的優勢既來自于其free-文本知識圖譜的高覆蓋率--是DBpedia關系的兩倍多--也來自于新穎的圖神經網絡,它基于豐富而嘈雜的free-文本證據進行推理。
網址:
作者:Junshuang Wu, Richong Zhang, Yongyi Mao, Hongyu Guo, Masoumeh Soflaei and Jinpeng Huai
摘要:實體鏈接將文檔中提及的命名實體映射到給定知識圖中的合適的實體,已被證明能夠從基于圖卷積網絡(GCN)對實體相關性建模中獲得顯著好處。然而,現有的GCN實體鏈接模型沒有考慮到,一組實體的結構化圖不僅依賴于給定文檔的上下文信息,而且在GCN的不同聚合層上自適應地變化,導致在捕捉實體之間的結構信息方面存在不足。在本文中,我們提出了一種動態的GCN體系結構來有效地應對這一挑戰。模型中的圖結構是在訓練過程中動態計算和修改的。通過聚合動態鏈接節點的知識,我們的GCN模型可以集中識別文檔和知識圖之間的實體映射,并有效地捕捉整個文檔中各個實體提及( mentions)之間的主題一致性。在基準實體連接數據集上的實證研究證實了我們提出的策略的優越性能和動態圖結構的好處。
網址:
作者:Yichao Zhou, Shaunak Mishra, Manisha Verma, Narayan Bhamidipati and Wei Wang
摘要:實體鏈接(EL)是將文本中提及的內容映射到知識庫(KB)中相應實體的任務。這項任務通常包括候選生成(CG)和實體消歧(ED)兩個階段。目前基于神經網絡模型的EL系統取得了較好的性能,但仍然面臨著兩個挑戰:(1)以往的研究在評估模型時沒有考慮候選實體之間的差異。事實上,候選集的質量(特別是黃金召回)對EL結果有影響。因此,如何提候選的素質需要引起更多的關注。(Ii)為了利用提及實體之間的主題一致性,提出了許多聚集ED的圖和序列模型。然而,基于圖的模型對所有候選實體一視同仁,這可能會引入大量的噪聲信息。相反,序列模型只能觀察先前引用的實體,而忽略了當前提及的實體與其后續實體之間的相關性。針對第一個問題,我們提出了一種基于多策略的CG方法來生成高召回率的候選集。對于第二個問題,我們設計了一個序列圖注意力網絡(SeqGat),它結合了圖和序列方法的優點。在我們的模型中,提及( mentions)是按順序處理的。在當前提到的情況下,SeqGAT對其先前引用的實體和后續實體進行動態編碼,并為這些實體分配不同的重要性。這樣既充分利用了主題的一致性,又減少了噪聲干擾。我們在不同類型的數據集上進行了實驗,并在開放的評測平臺上與以前的EL系統進行了比較。比較結果表明,與現有的方法相比,我們的模型有了很大的改進。
網址:
作者:Gaole He, Junyi Li, Wayne Xin Zhao, Peiju Liu and Ji-Rong Wen
摘要:知識圖補全(KGC)任務旨在自動推斷知識圖(KG)中缺失的事實信息。在本文中,我們采取了一個新的視角,旨在利用豐富的用戶-項目交互數據(簡稱用戶交互數據)來改進KGC任務。我們的工作靈感來自于觀察到許多KG實體對應于應用系統中的在線項目。然而,這兩種數據源的固有特性有很大的不同,使用簡單的融合策略很可能會損害原有的性能。為了應對這一挑戰,我們提出了一種新的對抗性學習方法,通過利用用戶交互數據來執行KGC任務。我們的生成器是從用戶交互數據中分離出來的,用來提高鑒別器的性能。鑒別器將從用戶交互數據中學習到的有用信息作為輸入,并逐步增強評估能力,以識別生成器生成的假樣本。為了發現用戶的隱含實體偏好,設計了一種基于圖神經網絡的協同學習算法,并與鑒別器進行聯合優化。這種方法有效地緩解了KGC任務的數據異構性和語義復雜性問題。在三個真實世界數據集上的廣泛實驗已經證明了我們在KGC任務上的方法的有效性。
網址:
【導讀】Graph Neural Network(GNN)由于具有分析圖結構數據的能力而受到了廣泛的關注。本文對Graph Neural Network進行了簡要介紹。它涵蓋了一些圖論,以便于理解圖和分析圖時遇到的問題。然后介紹了不同形式的Graph神經網絡及其原理。它還涵蓋了GNN可以做什么以及GNN的一些應用。
圖論
首先,我們需要知道什么是圖。圖是一種由兩個部分組成的數據結構:頂點和edge。它用作分析目標和實體之間成對關系的數學結構。通常,將圖定義為G =(V,E),其中V是一組節點,E是它們之間的邊。
圖通常由鄰接矩陣A表示。如果圖具有N個節點,則A的維數為(N x N)。人們有時會提供另一個特征矩陣來描述圖中的節點。如果每個節點都有F個特征,則特征矩陣X的維數為(N x F)。
為什么圖難以分析?
首先,在歐幾里得空間中不存在圖,這意味著它無法用我們熟悉的任何坐標系表示。與其他類型的數據(例如波,圖像或時間序列信號)相比,這使得圖數據的解釋更加困難(“文本”也可以視為時間序列),可以輕松地將其映射為2-D或3-D歐幾里德空間。
其次,圖沒有固定的形式。為什么?看下面的例子。圖(A)和圖(B)具有完全不同的結構和外觀。但是,當我們將其轉換為鄰接矩陣表示形式時,兩個圖具有相同的鄰接矩陣(如果不考慮邊的權重)。那么我們應該考慮這兩個圖是相同還是不同?
最后,一般來說,圖很難直觀地顯示出來以供人類解釋。我不是在談論像上面的例子這樣的小圖。我說的是涉及數百或數千個節點的巨型圖。它的維數很高,節點密集地分組在一起,甚至使人難以理解圖。因此,為該任務訓練機器是具有挑戰性的。以下示例顯示了對集成電路中邏輯門進行建模的圖。
Example of a giant graph: circuit netlist. Figure from J. Baehr et. al. “Machine Learning and Structural Characteristics of Reverse Engineering”
為什么要使用圖?
人們選擇使用圖的原因可以歸納為以下幾點:
傳統圖分析方法
傳統方法主要基于算法,例如:
圖神經網絡
所謂的圖神經網絡是一種可以直接應用于圖的神經網絡。它為節點級別,邊緣級別和圖級別的預測任務提供了一種方便的方法。
文獻中主要有三種類型的圖神經網絡:
GNN的直覺是,節點自然是由其鄰居和連接定義的。為了理解這一點,我們可以簡單地想象一下,如果刪除節點周圍的鄰居和連接,則該節點將丟失其所有信息。因此,節點的鄰居和與鄰居的連接定義了節點的概念。
考慮到這一點,我們然后給每個節點一個狀態(x)來表示其概念。我們可以使用節點狀態(x)產生輸出(o),即有關概念的決策。節點的最終狀態(x_n)通常稱為“節點嵌入”。所有GNN的任務是通過查看其相鄰節點上的信息來確定每個節點的“節點嵌入”。 我們將從圖神經網絡,循環圖神經網絡或RecGNN的經典版本開始。
遞歸圖神經網絡
正如原始GNN論文中介紹的那樣,RecGNN是基于Banach不動點定理的假設而構建的。Banach不動點定理指出:(X,d)是一個完整的度量空間,而(T:X→X)是一個壓縮映射。然后,T具有唯一的不動點(x ?),對于任何x∈X,n→∞的序列T_n(x)收斂到(x ?)。這意味著,如果我申請的映射T上X為?倍,X ^ K在幾乎等于x ^(K-1),即:
RecGNN定義了一個參數化函數f_w:
其中L_N,l_co,x_ne,l_ne 表示當前節點的特征[n],節點的邊緣[n],相鄰節點的狀態,與相鄰節點的功能。(在原始論文中,作者將節點特征稱為節點標簽。這可能會造成一些混亂。)
An illustration of node state update based on the information in its neighbors. Figure from “The Graph Neural Network Model” 最終,在經過k次迭代之后,最終的節點狀態將用于生成輸出,以決定每個節點。輸出函數定義為:
空間卷積網絡
空間卷積網絡的直覺類似于著名的CNN,后者主導著圖像分類和分割任務的文獻。要了解圖像上的CNN,您可以查看這篇文章,其中詳細說明了CNN。
簡而言之,在圖像上進行卷積的想法是對中心像素周圍的相鄰像素求和,該像素由參數化大小和可學習權重的濾波器指定。空間卷積網絡通過將相鄰節點的特征聚合到中心節點中采用了相同的思想。
Left: Convolution on a regular graph such as an image. Right: Convolution on the arbitrary graph structure. Figure from “A Comprehensive Survey on Graph Neural Networks”
譜卷積網絡
與其他類型的GNN相比,這種類型的圖卷積網絡具有非常強大的數學基礎。譜卷積網絡建立在圖信號處理理論的基礎上。并通過簡化和逼近圖卷積。 通過Chebyshev多項式逼近 (Hammond et al。2011),圖卷積可以簡化為以下形式:
進一步簡化后,GCN論文提出了一種2層神經網絡結構,可以用以下等式描述:
其中A_head是原始圖鄰接矩陣A的預處理拉普拉斯算子。(有關數學的詳細信息,請參見GCN論文。將需要大量的精力來進行充分說明。)
如果您有一些機器學習經驗,則此公式看起來非常熟悉。這不過是常用的兩個完全連接的層結構。但是在這種情況下,它確實可以用作圖卷積。我將在下面說明為什么它可以執行圖卷積。
Example of a graph with a feature assigned to each node. Figured by author
讓我們考慮一下,我們有一個包含4個節點的簡單圖。如上圖所示,為這些節點中的每個節點分配了一個特征矩陣。圖鄰接矩陣和特征矩陣很容易得出,如下所示:
Example of the adjacency matrix and feature matrix. Figure by author
注意,鄰接矩陣的對角線故意更改為“ 1”,以為每個節點添加一個自環。當我們執行特征聚合時,這將包括每個節點本身的特征。 然后,我們執行A x X(為簡單起見,我們先忽略A的拉普拉斯算子和權重矩陣W。)
Example of graph convolution by matrix multiplication. Figure by author
矩陣乘法的結果顯示在最右邊的矩陣中。讓我們以第一個節點的結果功能為例。不難發現結果是[節點1]的所有特征之和,包括[節點1]本身的特征,并且[節點4]中的特征不包括在內,因為它不是[節點1]的鄰居。。在數學上,僅當存在邊時,圖的鄰接矩陣才具有值“ 1”,否則具有“ 0”。這使得矩陣乘法成為連接到參考節點的節點的特征之和。 因此,頻譜卷積網絡和空間卷積網絡盡管是在不同的基礎上開始的,但是它們共享相同的傳播規則。 當前可用的所有卷積圖神經網絡共享相同的格式。他們都嘗試學習通過該消息傳遞過程傳遞節點信息并更新節點狀態的功能。 任何圖神經網絡可被表達為與消息傳遞神經網絡(J. Gilmer et al. , 2017)的消息傳遞功能,節點更新功能和讀出功能。
GNN可以做什么?
GNN解決的問題可以大致分為三類:
一些實際的應用
在了解了GNN可以執行哪種類型的分析之后,您一定想知道我可以對圖進行哪些實際應用。好了,本節將為您提供有關GNN實際應用的更多見解。
自然語言處理中的GNN
GNN被廣泛使用在自然語言處理(NLP)中。實際上,這也是GNN最初開始的地方。如果您中的某些人具有NLP經驗,則必須考慮到文本應該是一種序列或時間數據,則可以由RNN或LTSM最好地描述。然而,GNN則從完全不同的角度解決了這個問題。GNN利用單詞或文檔的內部關系來預測類別。例如,引文網絡嘗試根據論文引文關系和其他論文中引用的詞來預測網絡中每篇論文的標簽。它也可以通過查看句子的不同部分而不是像RNN或LTSM中那樣的純粹序列來構建語法模型。
計算機視覺中的GNN
許多基于CNN的方法已經在圖像中的目標檢測中達到了最新的性能,但是我們還不知道目標之間的關系。GNN在CV中的一種成功應用是使用圖來建模基于CNN的檢測器檢測到的物體之間的關系。從圖像中檢測到目標后,將它們輸入到GNN推理中以進行關系預測。GNN推斷的結果是生成的圖,該圖對不同目標之間的關系進行建模。
Scene Graph Generation. Figure from D. Xu, Y. Zhu, C. B. Choy, and L. Fei-Fei, “Scene graph generation by iterative message passing,” in Proc. of CVPR, 2017
CV中另一個有趣的應用是根據圖描述生成圖像。這可以解釋為幾乎與上述應用相反。圖像生成的傳統方式是使用GAN或自動編碼器生成文本到圖像。從圖到圖像的生成不是使用文本來描述圖像,而是提供了有關圖像語義結構的更多信息。
Image generated from scene graphs. Figure from J. Johnson, A. Gupta, and L. Fei-Fei, “Image generation from scene graphs,” in Proc. of CVPR, 2018 我想分享的最有趣的應用是零樣本學習(ZSL)。您可以找到這篇文章,以全面了解ZSL。總之,ZSL是想學給定的一類分類NO(目標類別的)訓練樣本。這是非常具有挑戰性的,因為如果沒有給出訓練樣本,我們需要讓模型在邏輯上“思考”以識別目標。例如,如果給了我們三張圖像(如下圖所示),并告訴我們在其中找到“ okapi”。我們以前可能沒有看過“okapi”。但是,如果我們還得到信息,“okapi”是一種有四只腿,斑馬紋皮膚的鹿面動物,那么我們就不難確定哪個是“okapii”。典型的方法是通過將檢測到的特征轉換為文本來模擬這種“思考過程”。但是,文本編碼彼此獨立。很難對文本描述之間的關系進行建模。換句話說,圖表示很好地模擬了這些關系。
Figure from X. Wang, Y. Ye, and A. Gupta, “Zero-shot recognition via semantic embeddings and knowledge graphs,” in CVPR 2018
其他領域的GNN
GNN的更多實際應用包括人類行為檢測,交通控制,分子結構研究,推薦系統,程序驗證,邏輯推理,社會影響預測以及對抗攻擊。下面顯示了對社交網絡中人際關系建模的圖表。GNN可用于將人們分為不同的社區群體。
結論
我們在本文中介紹了一些圖論,并強調了分析圖的重要性。人們總是將機器學習算法視為“ 黑匣子 ”。大多數機器學習算法僅從訓練數據的特征中學習,但沒有實際的邏輯可以執行。使用形,我們也許能夠將一些“邏輯”傳遞給機器,并使其更自然地“思考”。
GNN仍然是一個相對較新的領域,值得更多的研究關注。它是分析圖數據的強大工具。但是,它不僅限于圖中的問題。它可以很容易地推廣到任何可以通過圖建模的研究中。圖建模是分析問題的自然方法。
參考鏈接:
最近小編推出CVPR2019圖卷積網絡、CVPR2019生成對抗網絡、【可解釋性】,CVPR視覺目標跟蹤,CVPR視覺問答,醫學圖像分割,圖神經網絡的推薦,CVPR域自適應, ICML圖神經網絡,ICML元學習相關論文,反響熱烈。最近,ACL 2019最新接受文章出爐,大會共收到2905 篇論文投稿,其中660 篇被接收(接收率為22.7%)。小編發現,今年接受的文章結合GNN的工作有二三十篇,看來,圖神經網絡已經攻占NLP領域,希望其他領域的同學多多學習,看能否結合,期待好的工作!今天小編專門整理最新十篇ACL長文,圖神經網絡(GNN)+NLP—注意力機制引導圖神經網絡、Graph-to-Sequence、動態融合圖網絡、實體和關系抽取、Multi-hop閱讀理解、多模態上下文圖理解等。
1、Attention Guided Graph Convolutional Networks for Relation Extraction (注意力機制引導圖神經網絡的關系抽取)
ACL ’19
作者:Zhijiang Guo*, Yan Zhang* and Wei Lu
摘要:Dependency trees傳遞豐富的結構信息,這些信息對于提取文本中實體之間的關系非常有用。然而,如何有效利用相關信息而忽略Dependency trees中的無關信息仍然是一個具有挑戰性的研究問題。現有的方法使用基于規則的hard-pruning策略來選擇相關的部分依賴結構,可能并不總是產生最佳結果。本文提出了一種直接以全依賴樹為輸入的Attention Guided圖卷積網絡(AGGCNs)模型。我們的模型可以理解為一種soft-pruning方法,它自動學習如何有選擇地關注對關系提取任務有用的相關子結構。在包括跨句n元關系提取和大規模句級關系提取在內的各種任務上的大量結果表明,我們的模型能夠更好地利用全依賴樹的結構信息,其結果顯著優于之前的方法。
網址: //www.statnlp.org/paper/2019/attention-guided-graph-convolutional-networks-relation-extraction.html
代碼鏈接:
2、Cognitive Graph for Multi-Hop Reading Comprehension at Scale(大規模認知圖的Multi-Hop閱讀理解)
ACL ’19
作者:Ming Ding, Chang Zhou, Qibin Chen, Hongxia Yang, Jie Tang
摘要:我們提出了一種新的基于CogQA的web級文檔multi-hop問答框架。該框架以認知科學的對偶過程理論為基礎,通過協調隱式抽取模塊(System 1)和顯式推理模塊(System 2),在迭代過程中逐步構建認知圖,在給出準確答案的同時,進一步提供了可解釋的推理路徑。具體來說,我們基于BERT和graph neural network (GNN)的實現有效地處理了HotpotQA fullwiki數據集中數百萬個multi-hop推理問題的文檔,在排行榜上獲得了34.9的F1 score,而最佳競爭對手的得分為23.6。
網址:
代碼鏈接:
3、Coherent Comment Generation for Chinese Articles with a Graph-to-Sequence Model(使用Graph-to-Sequence模型為中文文章生成連貫的評論)
ACL ’19
作者:Wei Li, Jingjing Xu, Yancheng He, Shengli Yan, Yunfang Wu, Xu sun
摘要:自動文章評論有助于鼓勵用戶參與和在線新聞平臺上的互動。然而,對于傳統的基于encoder-decoder的模型來說,新聞文檔通常太長,這往往會導致一般性和不相關的評論。在本文中,我們提出使用一個Graph-to-Sequence的模型來生成評論,該模型將輸入的新聞建模為一個主題交互圖。通過將文章組織成圖結構,我們的模型可以更好地理解文章的內部結構和主題之間的聯系,這使得它能夠更好地理解故事。我們從中國流行的在線新聞平臺Tencent Kuaibao上收集并發布了一個大規模的新聞評論語料庫。廣泛的實驗結果表明,與幾個強大的baseline模型相比,我們的模型可以產生更多的連貫性和信息豐富性的評論。
網址:
代碼鏈接:
4、Dynamically Fused Graph Network for Multi-hop Reasoning(基于動態融合圖網絡的Multi-hop Reasoning)
ACL ’19
作者:Yunxuan Xiao, Yanru Qu, Lin Qiu, Hao Zhou, Lei Li, Weinan Zhang, Yong Yu
摘要:近年來,基于文本的問答(TBQA)得到了廣泛的研究。大多數現有的方法側重于在一段話內找到問題的答案。然而,許多有難度的問題需要來自兩個或多個文檔的分散文本的支持證據。本文提出了動態融合圖網絡(Dynamically Fused Graph Network ,DFGN),這是一種解決需要多個分散證據和推理的問題的新方法。受人類逐步推理行為的啟發,DFGN包含一個動態融合層,從給定查詢中提到的實體開始,沿著文本動態構建的實體圖進行探索,并逐步從給定文檔中找到相關的支持實體。我們在需要multi-hop reasoning的公共TBQA數據集HotpotQA上評估了DFGN。DFGN在公共數據集上取得了有競爭力的成績。此外,我們的分析表明,DFGN可以產生可解釋的推理鏈。
網址:
5、 Encoding Social Information with Graph Convolutional Networks for Political Perspective Detection in News Media(利用圖卷積網絡對Social Information進行編碼,用于新聞媒體中的政治傾向性檢測)
ACL ’19
作者:Chang Li, Dan Goldwasser
摘要:確定新聞事件在媒體中討論方式的政治視角是一項重要而富有挑戰性的任務。在這篇文章中,我們強調了將社交網絡置于情景化的重要性,捕捉這些信息如何在社交網絡中傳播。我們使用最近提出的一種表示關系信息的神經網絡結構——圖卷積網絡(Graph Convolutional Network)來捕獲這些信息,并證明即使在很少的social information分類中也可以得到顯著改進。
網址:
6、Graph Neural Networks with Generated Parameters for Relation Extraction(用于關系抽取的具有生成參數的圖神經網絡)
ACL ’19
作者:Hao Zhu, Yankai Lin, Zhiyuan Liu, Jie Fu, Tat-seng Chua, Maosong Sun
摘要:近年來,在改進機器學習領域的關系推理方面取得了一些進展。在現有的模型中,圖神經網絡(GNNs)是最有效的multi-hop關系推理方法之一。事實上,在關系抽取等自然語言處理任務中,multi-hop關系推理是必不可少的。本文提出了一種基于自然語言語句生成圖神經網絡(GP-GNNs)參數的方法,使神經網絡能夠對非結構化文本輸入進行關系推理。我們驗證了從文本中提取關系的GPGNN。 實驗結果表明,與baseline相比,我們的模型取得了顯著的改進。我們還進行了定性分析,證明我們的模型可以通過multi-hop關系推理發現更精確的關系。
網址:
7、Incorporating Syntactic and Semantic Information in Word Embeddings using Graph Convolutional Networks(使用圖卷積網絡在詞嵌入中結合句法和語義信息)
ACL ’19
作者:Shikhar Vashishth, Manik Bhandari, Prateek Yadav, Piyush Rai, Chiranjib Bhattacharyya, Partha Talukdar
摘要:詞嵌入已被廣泛應用于多種NLP應用程序中。現有的詞嵌入方法大多利用詞的sequential context來學習詞的嵌入。雖然有一些嘗試利用詞的syntactic context,但這種方法會導致詞表數的爆炸。在本文中,我們通過提出SynGCN來解決這個問題,SynGCN是一種靈活的基于圖卷積的學習詞嵌入的方法。SynGCN在不增加詞表大小的情況下利用單詞的dependency context。SynGCN學習的詞嵌入在各種內部和外部任務上都優于現有方法,在與ELMo一起使用時提供優勢。我們還提出了SemGCN,這是一個有效的框架,用于整合不同的語義知識,以進一步增強所學習的單詞表示。我們提供了兩個模型的源代碼,以鼓勵可重復的研究。
網址:
代碼鏈接:
8、 GraphRel: Modeling Text as Relational Graphs for Joint Entity and Relation Extraction(GraphRel: 將文本建模為關系圖,用于實體和關系抽取)
ACL ’19
作者:Tsu-Jui Fu, Peng-Hsuan Li, Wei-Yun Ma
摘要:本文提出了一種利用圖卷積網絡(GCNs)聯合學習命名實體和關系的端到端關系抽取模型GraphRel。與之前的baseline相比,我們通過關系加權GCN來考慮命名實體和關系之間的交互,從而更好地提取關系。線性結構和依賴結構都用于提取文本的序列特征和區域特征,并利用完整的詞圖進一步提取文本所有詞對之間的隱式特征。基于圖的方法大大提高了對重疊關系的預測能力。我們在兩個公共數據集NYT和webnlg上評估了GraphRel。結果表明,GraphRel在大幅度提高recall的同時,保持了較高的precision。GraphRel的性能也比之前的工作好3.2%和5.8% (F1 score),實現了關系抽取的最先進的方法。
網址:
代碼鏈接:
9、Multi-hop Reading Comprehension across Multiple Documents by Reasoning over Heterogeneous Graphs(通過對異構圖進行推理,實現跨多個文檔的Multi-hop閱讀理解)
ACL ’19
作者:Ming Tu, Guangtao Wang, Jing Huang, Yun Tang, Xiaodong He, Bowen Zhou
摘要:跨文檔的Multi-hop閱讀理解(RC)對單文本RC提出了新的挑戰,因為它需要對多個文檔進行推理才能得到最終答案。在本文中,我們提出了一個新的模型來解決multi-hop RC問題。我們引入了具有不同類型的節點和邊的異構圖,稱為異構文檔-實體(HDE)圖。HDE圖的優點是它包含不同粒度級別的信息,包括特定文檔上下文中的候選信息、文檔和實體。我們提出的模型可以對HDE圖進行推理,節點表示由基于co-attention 和 self-attention的上下文編碼器初始化。我們使用基于圖神經網絡(GNN)的消息傳遞算法,在提出的HDE圖上累積evidence。通過對Qangaroo WIKIHOP數據集的blind測試集的評估,我們的基于HDE圖的單模型給出了具有競爭力的結果,并且集成模型達到了最先進的性能。
網址:
10、Textbook Question Answering with Multi-modal Context Graph Understanding and Self-supervised Open-set Comprehension(多模態上下文圖理解和自監督開放集理解的Textbook問答)
ACL ’19
作者:Daesik Kim, Seonhoon Kim, Nojun Kwak
摘要:在本文中,我們介紹了一種解決教科書問答(TQA)任務的新算法。在分析TQA數據集時,我們主要關注兩個相關問題。首先,解決TQA問題需要理解復雜輸入數據中的多模態上下文。為了解決從長文本中提取知識特征并與視覺特征相結合的問題,我們從文本和圖像中建立了上下文圖,并提出了一種基于圖卷積網絡(GCN)的f-GCN模塊。其次,科學術語不會分散在各個章節中,而且主題在TQA數據集中是分開的。為了克服這個所謂的“領域外”問題,在學習QA問題之前,我們引入了一種新的沒有任何標注的自監督開放集學習過程。實驗結果表明,我們的模型明顯優于現有的最先進的方法。此外,消融研究證實,將f-GCN用于從多模態上下文中提取知識的方法和我們新提出的自監督學習過程對于TQA問題都是有效的。
網址:
下載鏈接: 提取碼:rr1c
1、Graph Convolutional Networks using Heat Kernel for Semi-supervised Learning
作者:Bingbing Xu , Huawei Shen , Qi Cao , Keting Cen and Xueqi Cheng;
摘要:圖卷積網絡在圖結構數據的半監督學習中取得了顯著的成功。基于圖的半監督學習的關鍵是捕捉由圖結構施加于節點上的標簽或特征的平滑性。以往的方法,包括spectral方法和spatial方法,都致力于將圖卷積定義為相鄰節點上的加權平均,然后學習圖卷積核,利用平滑度來提高基于圖的半監督學習的性能。一個開放的挑戰是如何確定合適的鄰域來反映圖結構中表現出來的平滑相關信息。在本文中,我們提出了GraphHeat,利用heat kernel來增強低頻濾波器,并在圖上的信號變化中增強平滑性。GraphHeat利用熱擴散下目標節點的局部結構靈活地確定其相鄰節點,而不受先前方法所受的順序約束。GraphHeat在三個基準數據集(Cora、Citeseer和Pubmed)上實現了基于圖的半監督分類,并取得了最先進的結果。
網址://www.ijcai.org/proceedings/2019/0267.pdf
2、Graph WaveNet for Deep Spatial-Temporal Graph Modeling
作者:Zonghan Wu , Shirui Pan , Guodong Long, Jing Jiang, Chengqi Zhang;
摘要:時空圖(Spatial-temporal graph)建模是分析系統中各組成部分的空間關系和時間趨勢的一項重要工作。假設實體之間的底層關系是預先確定的,現有的方法主要捕獲固定圖結構上的空間依賴關系。但是,顯式圖形結構(關系)不一定反映真實的依賴關系,并且由于數據中的不完整連接可能會丟失真正的關系。此外,現有的方法無法捕捉時間趨勢,因為這些方法中使用的RNNs或CNNs不能捕捉long-range的時間序列。為了克服這些局限性,本文提出了一種新的圖神經網絡結構—Graph WaveNet,用于時空圖的建模。通過開發一種新的自適應依賴矩陣,并通過節點嵌入學習,該模型可以精確地捕捉數據中隱藏的空間依賴關系。利用stacked dilated一維卷積分量,其接收域隨著層數的增加呈指數增長,Graph WaveNet能夠處理非常長的序列。這兩個組件無縫集成在一個統一的框架中,整個框架以端到端方式學習。在METR-LA和PEMS-BAY這兩個公共交通網絡數據集上的實驗結果表明,該算法具有優越的性能。
網址:
3、Hierarchical Graph Convolutional Networks for Semi-supervised Node Classification
作者:Fenyu Hu, Yanqiao Zhu, Shu Wu, Liang Wang and Tieniu Tan;
摘要:圖卷積網絡(GCNs)已成功地應用于網絡挖掘的節點分類任務中。然而,這些基于鄰域聚合的模型大多比較淺顯,缺乏“graph pooling”機制,無法獲得足夠的全局信息。為了增加感受野,我們提出了一種新的深度層次圖卷積網絡(H-GCN)用于半監督節點分類。H-GCN首先重復地將結構相似的節點聚合到超節點,然后將粗糙的圖細化為原始圖,以恢復每個節點的表示形式。該粗糙化方法不只是簡單地聚合一個或兩個hop的鄰域信息,而是擴展了每個節點的接受域,從而獲得更多的全局信息。提出的H-GCN模型在各種公共基準圖數據集上表現出較強的經驗性能,性能優于目前最先進的方法,在精度方面獲得了高達5.9%的性能提升。此外,當只提供少量帶標簽的樣本時,我們的模型得到了實質性的改進。
網址:
4、AddGraph: Anomaly Detection in Dynamic Graph Using Attention-based Temporal GCN
作者:Li Zheng, Zhenpeng Li, Jian Li, Zhao Li and Jun Gao;
摘要:動態圖中的異常檢測在許多不同的應用場景中都是非常關鍵的,例如推薦系統,但由于異常的高靈活性和缺乏足夠的標記數據,也帶來了巨大的挑戰。在學習異常模式時,最好考慮所有可能的提示,包括結構、內容和時間特征,而不是對部分特征使用啟發式規則。在本文中,我們提出了AddGraph,一個使用extended temporal GCN(Graph Convolutional Network,圖卷積網絡)和注意力模型的端到端異常邊緣檢測框架,它可以同時捕獲動態圖中的長期模式和短期模式。為了解決顯式標注數據不足的問題,我們采用了選擇性負采樣和邊際損失的方法,對AddGraph進行半監督訓練。我們在實際數據集上進行了大量的實驗,并證明了AddGraph在異常檢測方面可以明顯優于最先進的方法。
網址:
5、Dual Self-Paced Graph Convolutional Network: Towards Reducing Attribute Distortions Induced by Topology
作者:Liang Yang, Zhiyang Chen, Junhua Gu and Yuanfang Guo;
摘要:基于圖卷積神經網絡(GCNNs)的半監督節點分類的成功,歸功于其拓撲上的特征平滑(傳播)。然而,利用拓撲信息可能會干擾特征。這種失真將導致節點的一定量的錯誤分類,這可以僅用特征正確地預測。通過分析邊緣在特征傳播中的影響,連接具有相似特征的兩個節點的簡單邊緣應該在訓練過程中優先于根據curriculum learning的復雜邊緣。為了在充分挖掘屬性信息潛力的同時減少拓撲結構引起的失真,我們提出了Dual Self-Paced圖卷積網絡(DSP-GCN)。具體來說,在節點級self-paced learning中,將具有可信預測標簽的無標簽節點逐步添加到訓練集中,而在邊緣級self-paced learning中,在訓練過程中,將邊緣從簡單的邊緣逐漸添加到復雜的邊緣到圖中。這兩種學習策略通過對邊緣和無標簽節點的選擇進行耦合,實現了相互增強。在多個實際網絡上進行了transductive半監督節點分類的實驗結果表明,我們提出的DSP-GCN在僅使用一個圖卷積層的情況下,成功地減少了拓撲引起的特征失真,同時具有較好的性能。
網址:
6、Masked Graph Convolutional Network
作者:Liang Yang, Fan Wu, Yingkui Wang, Junhua Gu and Yuanfang Guo;
摘要:半監督分類是機器學習領域中處理結構化和非結構化數據的一項基本技術。傳統的基于特征圖的半監督分類方法在通常由數據特征構造的圖上傳播標簽,而圖卷積神經網絡在真實圖拓撲上平滑節點屬性,即傳播特征。本文從傳播的角度對其進行了解釋,并將其分為基于對稱傳播和基于非對稱傳播的方法。從傳播的角度看,傳統的方法和基于網絡的方法都是在圖上傳播特定的對象。然而,與標簽傳播不同的是,直覺上“連接的數據樣本在特征方面趨于相似”,在特征傳播中僅部分有效。因此,提出了一種masked圖卷積網絡(Masked GCN),它只是根據一個masking indicator將一部分特征傳播給鄰居,這是通過聯合考慮局部鄰域中的特征分布和對對分類結果的影響而為每個節點學習的。在傳transductive和inductive節點分類任務上的大量實驗證明了該方法的優越性。
網址:
7、Learning Image-Specific Attributes by Hyperbolic Neighborhood Graph Propagation
作者:Xiaofeng Xu, Ivor W. Tsang, Xiaofeng Cao, Ruiheng Zhang and Chuancai Liu;
摘要:特征作為視覺目標描述的一種語義表示,在各種計算機視覺任務中得到了廣泛的應用。在現有的基于特征的研究中,通常采用類特定特征(class-specific attributes, CSA),這是類級別的標注,由于其對每個類的標注成本較低,而不是對每個單獨的圖像進行標注。然而,由于標注錯誤和單個圖像的多樣性,class-specific的特征通常是有噪聲的。因此,我們希望從原始的class-specific特征中獲得特定于圖像的特征(image-specific,ISA),即image level標注。在本文中,我們提出了通過基于圖的特征傳播來學習image-specific的特征。考慮到雙曲幾何的內在屬性,其距離呈指數擴展,構造雙曲線鄰域圖(HNG)來表征樣本之間的關系。基于HNG,我們定義了每個樣本的鄰域一致性,以識別不一致的樣本。然后,根據HNG中不一致的樣本的鄰居對其進行細化。在5個基準數據集上的大量實驗表明,在zero-shot目標分類任務中,學習的image-specific的特征明顯優于原始的class-specific的特征。
網址:
論文摘要:
圖無處不在,從引文和社交網絡到知識圖譜(KGs)。它們是最富表現力的數據結構之一,已被用于建模各種問題。知識圖譜是圖中事實的結構化表示,其中節點表示實體,邊表示實體之間的關系。最近的研究已經開發出幾種大型知識圖譜;例如DBpedia、YAGO、NELL和Freebase。然而,它們都是稀疏的,每個實體只有很少的事實。例如,每個實體只包含1.34個事實。在論文的第一部分,我們提出了緩解這一問題的三個解決方案:(1)KG規范化,即(2)關聯提取,它涉及到從非結構化文本中提取實體之間的語義關系的自動化過程;(3)鏈接預測,它包括基于KG中的已知事實推斷缺失的事實。KG的規范化,我們建議CESI(規范化使用嵌入和邊信息),一個新穎的方法執行規范化學習嵌入開放KG。KG嵌入的方法擴展了最新進展將相關NP和關系詞信息原則的方式。對于關系提取,我們提出了一種遠程監督神經關系提取方法,該方法利用KGs中的附加邊信息來改進關系提取。最后,對于鏈路預測,我們提出了擴展ConvE的InteractE,這是一種基于卷積神經網絡的鏈路預測方法,通過三個關鍵思想:特征置換、新穎的特征重塑和循環卷積來增加特征交互的次數。通過對多個數據集的大量實驗,驗證了所提方法的有效性。
傳統的神經網絡如卷積網絡和遞歸神經網絡在處理歐幾里得數據時受到限制。然而,在自然語言處理(NLP)中圖形是很突出的。最近,圖卷積網絡(Graph Convolutional Networks, GCNs)被提出來解決這一缺點,并成功地應用于多個問題。在論文的第二部分,我們利用GCNs來解決文檔時間戳問題,它是文檔檢索和摘要等任務的重要組成部分。
為此,我們提出利用GCNs聯合開發文檔語法和時態圖結構的NeuralDater,以獲得該問題的最新性能。提出了一種靈活的基于圖卷積的詞嵌入學習方法——SynGCN,該方法利用詞的依賴上下文而不是線性上下文來學習更有意義的詞嵌入。在論文的第三部分,我們討論了現有GCN模型的兩個局限性,即(1)標準的鄰域聚合方案對影響目標節點表示的節點數量沒有限制。這導致了中心節點的噪聲表示,中心節點在幾個躍點中幾乎覆蓋了整個圖。為了解決這個缺點,我們提出了ConfGCN(基于信任的GCN),它通過估計信任來確定聚合過程中一個節點對另一個節點的重要性,從而限制其影響鄰居。(2)現有的GCN模型大多局限于處理無向圖。然而,更一般和更普遍的一類圖是關系圖,其中每條邊都有與之關聯的標簽和方向。現有的處理此類圖的方法存在參數過多的問題,并且僅限于學習節點的表示。我們提出了一種新的圖卷積框架CompGCN,它將實體和關系共同嵌入到一個關系圖中。CompGCN是參數有效的,并且可以根據關系的數量進行擴展。它利用了來自KG嵌入技術的各種實體-關系組合操作,并在節點分類、鏈接預測和圖分類任務上取得了明顯的優勢結果。