亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

在各種機器學習和數據分析任務中,學習一個圖的拓撲以揭示數據實體之間的底層關系扮演著重要的角色。在結構化數據在圖上平滑變化的假設下,問題可以表示為正半定錐上的正則凸優化,并用迭代算法求解。經典的方法需要一個顯式凸函數來反映一般的拓撲先驗,例如為增強稀疏性而使用L1懲罰,這限制了學習豐富拓撲結構的靈活性和表達性。基于學習優化(L2O)的思想,我們提出學習從節點數據到圖結構的映射。具體來說,我們的模型首先展開了一個迭代原對偶分裂算法到神經網絡。關鍵結構的近端投影被一個變分自編碼器取代,該編碼器用增強的拓撲特性來改進估計圖。模型以端到端方式訓練,使用成對的節點數據和圖樣本。在合成和真實數據上的實驗表明,在學習具有特定拓撲性質的圖時,我們的模型比經典的迭代算法更有效。

//www.zhuanzhi.ai/paper/b14639f0742ba74db5cc07a572dd92a7

付費5元查看完整內容

相關內容

近年來,圖神經網絡在文獻分類中得到了廣泛的應用。然而,現有的方法大多是基于沒有句子級信息的靜態詞同現圖,這帶來了三個挑戰:(1)詞的歧義性(2)詞的同義性(3)動態上下文依存。為了解決這些問題,我們提出了一種新的基于GNN的稀疏結構學習模型用于文檔分類。具體地說,文檔級圖最初是由句子級詞同現圖的斷開并集生成的。模型收集了一組可訓練的連接句子間不相連詞的邊,利用結構學習對動態上下文依賴的邊進行稀疏選取。具有稀疏結構的圖可以通過GNN聯合利用文檔中的局部和全局上下文信息。在歸納學習中,將改進后的文檔圖進一步輸入到一個通用的讀出函數中,以端到端方式進行圖級分類和優化。在幾個真實世界數據集上的大量實驗表明,提出的模型優于最先進的結果,并揭示了學習每個文檔稀疏結構的必要性。

//www.zhuanzhi.ai/paper/63b66dc21199c294e92d3703a5444d25

付費5元查看完整內容

遷移對抗性攻擊是一種非常難的黑箱對抗性攻擊,其目標是對代理模型制造對抗性擾動,然后將這種擾動應用于受害者模型。然而,現有方法的擾動的可遷移性仍然有限,因為對抗性擾動很容易與單一代理模型和特定的數據模式過擬合。在本文中,我們提出了一種學會學習可遷移攻擊(LLTA)方法,通過從數據和模型增強中學習,使對抗攝動更加一般化。對于數據增強,我們采用簡單的隨機大小和填充。在模型增強方面,我們隨機改變正向傳播而不是反向傳播,以消除對模型預測的影響。通過將特定數據和修正模型的攻擊作為一項任務來處理,我們期望對抗攝動采用足夠的任務來泛化。為此,在擾動生成迭代過程中進一步引入元學習算法。在廣泛應用的數據集上進行的實驗結果表明,該攻擊方法的傳輸攻擊成功率比現有方法提高了12.85%。我們還在現實世界的在線系統,即谷歌云視覺API上對我們的方法進行了評估,以進一步展示我們的方法的實用潛力。

//arxiv.org/abs/2112.06658

付費5元查看完整內容

圖神經網絡(GNNs)被廣泛用于學習一種強大的圖結構數據表示。最近的研究表明,將知識從自監督任務遷移到下游任務可以進一步改善圖的表示。然而,自監督任務與下游任務在優化目標和訓練數據上存在內在的差距。傳統的預訓練方法可能對知識遷移不夠有效,因為它們不能適應下游任務。為了解決這一問題,我們提出了一種新的遷移學習范式,該范式可以有效地將自監督任務作為輔助任務來幫助目標任務。在微調階段,我們的方法將不同的輔助任務與目標任務進行自適應的選擇和組合。我們設計了一個自適應輔助損失加權模型,通過量化輔助任務與目標任務之間的一致性來學習輔助任務的權重。此外,我們通過元學習來學習權重模型。我們的方法可以運用于各種遷移學習方法,它不僅在多任務學習中有很好的表現,而且在預訓練和微調中也有很好的表現。在多個下游任務上的綜合實驗表明,所提出的方法能夠有效地將輔助任務與目標任務相結合,與現有的方法相比,顯著提高了性能。

//www.zhuanzhi.ai/paper/852db932624d6feeb7bbd32e67772b27

付費5元查看完整內容

雖然許多現有的圖神經網絡(gnn)已被證明可以執行基于?2的圖平滑,從而增強全局平滑,但在本工作中,我們旨在通過基于?1的圖平滑進一步增強GNN的局部平滑自適應。在此基礎上,提出了一種基于?1和?2圖平滑的彈性GNN。特別地,我們提出了一種新的、通用的消息傳遞方案。該消息傳遞算法不僅有利于反向傳播訓練,而且在保證理論收斂的前提下達到了預期的平滑特性。在半監督學習任務上的實驗表明,所提出的彈性GNN在基準數據集上具有較好的自適應能力,對圖對抗攻擊具有顯著的魯棒性。

//www.zhuanzhi.ai/paper/09bea7a76036948cbbba30e86af56ef8

付費5元查看完整內容

無監督多對象表示學習依賴于歸納偏差來指導發現以對象為中心的表示。然而,我們觀察到,學習這些表征的方法要么是不切實際的,因為長時間的訓練和大量的記憶消耗,要么是放棄了關鍵的歸納偏見。在這項工作中,我們引入了EfficientMORL,一個有效的無監督學習框架的對象中心表示。我們證明了同時要求對稱性和解纏性所帶來的優化挑戰實際上可以通過高成本的迭代攤銷推理來解決,通過設計框架來最小化對它的依賴。我們采用兩階段的方法進行推理:首先,分層變分自編碼器通過自底向上的推理提取對稱的解纏表示,其次,輕量級網絡使用自頂向下的反饋來改進表示。在訓練過程中所采取的細化步驟的數量根據課程減少,因此在測試時零步驟的模型達到了99.1%的細化分解性能。我們在標準多目標基準上演示了強大的對象分解和解纏,同時實現了比以前最先進的模型快一個數量級的訓練和測試時間推斷。

//www.zhuanzhi.ai/paper/f29b88ee56208601f787cc791e3c7414

付費5元查看完整內容

圖神經網絡(GNN)在實際應用中往往會受到可用樣本數量太少的限制,而元學習(meta-learning)作為解決機器學習中樣本缺乏問題的重要框架,正逐漸被應用到 GNN 領域以解決該問題。本文梳理近年來在元學習應用于 GNN 的一系列研究進展,我們根據模型的架構、共享的表示和應用的領域對以往工作進行分類,并在最后討論該領域當前有待解決的問題和未來值得關注的研究方向。

圖結構數據(Graph)廣泛存在于現實場景中,例如藥物研究中的藥物分子結構和推薦系統中的用戶商品交互都可以用圖(Graph)表示,而圖數據(Graph)的廣泛存在也促進了圖神經網絡(GNN)的發展。GNN 是專門用于處理圖數據的深度神經網絡,它將圖或圖上的頂點、邊映射到一個低維空間,從而學習得到圖的有效表示,并進一步將其應用于下游任務。近年來,GNN 被廣泛應用于新藥發現、交通預測、推薦系統等各個領域。

盡管 GNN 擁有非常強大的能力,但在實際應用中依然面臨樣本數量有限的挑戰,特別是在推薦系統等真實系統更是要求 GNN 可以在少量樣本可用的情況下適應新問題。而元學習(meta-learning)作為解決深度學習系統中樣本缺乏問題的重要框架,在自然語言處理、機器人技術等多種應用中都取得了成功。因此,如何利用元學習解決 GNN 所面臨的樣本缺乏問題,是研究人員普遍關心的問題。

元學習的主要思想是利用之前的學習經驗來快速適應一個新問題,從而利用很少的樣本就能學習一個有用的算法。具體來講,元學習旨在以先驗的形式學習一個模型,而不是針對所有任務學習一個模型(不能區分任務)或針對每個任務學習單獨的模型(可能對每個任務過擬合)。元學習應用于 Graph 的主要挑戰是如何確定跨任務共享的表示類型,以及怎樣設計有效的訓練策略。近期,研究人員針對不同的應用場景,已經提出了多種元學習方法來訓練 GNN。本文我們就將對元學習在 GNN 上的運用進行全面回顧。

付費5元查看完整內容

圖神經網絡(GNN)已被證明是圖分析的強大工具。關鍵思想是沿著給定圖的邊遞歸地傳播和聚合信息。盡管它們取得了成功,但是,現有的GNN通常對輸入圖的質量很敏感。真實世界的圖通常是噪聲和包含任務無關的邊緣,這可能導致在學習的GNN模型中泛化性能次優。本文提出一種參數化拓撲去噪網絡PTDNet,通過學習丟棄任務無關邊來提高GNNs的魯棒性和泛化性能。PTDNet通過使用參數化網絡懲罰稀疏圖中的邊數來刪除與任務無關的邊。考慮到整個圖的拓撲結構,采用核范數正則化對稀疏圖施加低秩約束,以便更好地泛化。PTDNet可以作為GNN模型的關鍵組件,以提高其在各種任務中的性能,如節點分類和鏈路預測。在合成數據集和基準數據集上的實驗研究表明,PTDNet可以顯著提高GNNs的性能,并且對于噪聲較大的數據集性能增益更大。

//personal.psu.edu/dul262/PTDNet/WSDM2021_PTDNet_camera_ready.pdf

付費5元查看完整內容

目前流行的圖學習方法需要豐富的標簽和邊信息進行學習。「當新任務的數據稀缺時,元學習允許我們從以前的經驗中學習」,并形成急需的歸納偏見,以便快速適應新任務。

此文介紹了「G-META,一種新的圖的元學習方法:」

G-META 使用局部子圖傳遞特定于子圖的信息,并通過元梯度使模型更快地學習基本知識。 G-META 學習如何僅使用新任務中的少數節點或邊來快速適應新任務,并通過學習其他圖或相關圖(盡管是不相交的標簽集)中的數據點來做到這一點。 G-META 在理論上是合理的,因為「特定預測的證據可以在目標節點或邊周圍的局部子圖中找到。」

現有方法是專門為特定的圖元學習問題和特定的任務設計的專門技術。雖然這些方法為 GNN 中的元學習提供了一種很有前途的方法,但它們的特定策略沒有很好的伸縮性,也不能擴展到其他圖的元學習問題(圖1)。

付費5元查看完整內容

圖神經網絡(GNNs)已被證明是有效的模型,用于對圖結構數據的不同預測任務。最近關于它們表達能力的工作集中在同構任務和可數特征空間。我們對這個理論框架進行了擴展,使其包含連續的特性——在真實世界的輸入域和gnn的隱藏層中定期出現——并演示了在此上下文中對多個聚合函數的需求。為此,我們提出了一種新的聚合器結構——主鄰域聚合(PNA),它將多個聚合器與度標器相結合,從而推廣了總和聚合器。最后,我們通過一個新的基準來比較不同模型捕獲和利用圖結構的能力,該基準包含了來自經典圖理論的多個任務,以及來自現實領域的現有基準,所有這些都證明了我們模型的強大。通過這項工作,我們希望引導一些GNN研究轉向新的聚合方法,我們認為這對于尋找強大和健壯的模型至關重要。

//www.zhuanzhi.ai/paper/bee47b0e291d163fae01c

付費5元查看完整內容

1、Approximation Ratios of Graph Neural Networks for Combinatorial Problems

作者:Ryoma Sato, Makoto Yamada, Hisashi Kashima;

摘要:本文從理論的角度研究了圖神經網絡(GNNs)在學習組合問題近似算法中的作用。為此,我們首先建立了一個新的GNN類,它可以嚴格地解決比現有GNN更廣泛的問題。然后,我們彌合了GNN理論和分布式局部算法理論之間的差距,從理論上證明了最強大的GNN可以學習最小支配集問題的近似算法和具有一些近似比的最小頂點覆蓋問題比率,并且沒有GNN可以執行比這些比率更好。本文首次闡明了組合問題中GNN的近似比。此外,我們還證明了在每個節點特征上添加著色或弱著色可以提高這些近似比。這表明預處理和特征工程在理論上增強了模型的能力。

網址://www.zhuanzhi.ai/paper/9cad40c81920dfd71fa91e4ddf778616

2、D-VAE: A Variational Autoencoder for Directed Acyclic Graphs

作者:Muhan Zhang, Shali Jiang, Zhicheng Cui, Roman Garnett, Yixin Chen;

摘要:圖結構數據在現實世界中是豐富的。在不同的圖類型中,有向無環圖(DAG)是機器學習研究人員特別感興趣的,因為許多機器學習模型都是通過DAG上的計算來實現的,包括神經網絡和貝葉斯網絡。本文研究了DAG的深度生成模型,提出了一種新的DAG變分自編碼器(D-VAE)。為了將DAG編碼到潛在空間中,我們利用了圖神經網絡。我們提出了一個異步消息傳遞方案,它允許在DAG上編碼計算,而不是使用現有的同步消息傳遞方案來編碼局部圖結構。通過神經結構搜索和貝葉斯網絡結構學習兩項任務驗證了該方法的有效性。實驗表明,該模型不僅生成了新穎有效的DAG,還可以生成平滑的潛在空間,有助于通過貝葉斯優化搜索具有更好性能的DAG。

網址:

3、End to end learning and optimization on graphs

作者:Bryan Wilder, Eric Ewing, Bistra Dilkina, Milind Tambe;

摘要:在實際應用中,圖的學習和優化問題常常結合在一起。例如,我們的目標可能是對圖進行集群,以便檢測有意義的社區(或者解決其他常見的圖優化問題,如facility location、maxcut等)。然而,圖或相關屬性往往只是部分觀察到,引入了一些學習問題,如鏈接預測,必須在優化之前解決。我們提出了一種方法,將用于常見圖優化問題的可微代理集成到用于鏈接預測等任務的機器學習模型的訓練中。這允許模型特別關注下游任務,它的預測將用于該任務。實驗結果表明,我們的端到端系統在實例優化任務上的性能優于將現有的鏈路預測方法與專家設計的圖優化算法相結合的方法。

網址:

4、Graph Neural Tangent Kernel: Fusing Graph Neural Networks with Graph Kernels

作者:Simon S. Du, Kangcheng Hou, Barnabás Póczos, Ruslan Salakhutdinov, Ruosong Wang, Keyulu Xu;

摘要:雖然圖內核(graph kernel,GK)易于訓練并享有可證明的理論保證,但其實際性能受其表達能力的限制,因為內核函數往往依賴于圖的手工組合特性。與圖內核相比,圖神經網絡通常具有更好的實用性能,因為圖神經網絡使用多層結構和非線性激活函數來提取圖的高階信息作為特征。然而,由于訓練過程中存在大量的超參數,且訓練過程具有非凸性,使得GNN的訓練更加困難。GNN的理論保障也沒有得到很好的理解。此外,GNN的表達能力隨參數的數量而變化,在計算資源有限的情況下,很難充分利用GNN的表達能力。本文提出了一類新的圖內核,即圖神經切線核(GNTKs),它對應于通過梯度下降訓練的無限寬的多層GNN。GNTK充分發揮了GNN的表現力,繼承了GK的優勢。從理論上講,我們展示了GNTK可以在圖上學習一類平滑函數。根據經驗,我們在圖分類數據集上測試GNTK并展示它們實現了強大的性能。

網址:

5、HyperGCN: A New Method of Training Graph Convolutional Networks on Hypergraphs

作者:Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand Louis, Partha Talukdar;

摘要:在許多真實世界的網絡數據集中,如co-authorship、co-citation、email communication等,關系是復雜的,并且超越了成對關聯。超圖(Hypergraph)提供了一個靈活而自然的建模工具來建模這種復雜的關系。在許多現實世界網絡中,這種復雜關系的明顯存在,自然會激發使用Hypergraph學習的問題。一種流行的學習范式是基于超圖的半監督學習(SSL),其目標是將標簽分配給超圖中最初未標記的頂點。由于圖卷積網絡(GCN)對基于圖的SSL是有效的,我們提出了HyperGCN,這是一種在超圖上訓練用于SSL的GCN的新方法。我們通過對真實世界超圖的詳細實驗證明HyperGCN的有效性,并分析它何時比最先進的baseline更有效。

網址:

6、Social-BiGAT: Multimodal Trajectory Forecasting using Bicycle-GAN and Graph Attention Networks

作者:Vineet Kosaraju, Amir Sadeghian, Roberto Martín-Martín, Ian Reid, S. Hamid Rezatofighi, Silvio Savarese;

摘要:從自動駕駛汽車和社交機器人的控制到安全監控,預測場景中多個交互主體的未來軌跡已成為許多不同應用領域中一個日益重要的問題。這個問題由于人類之間的社會互動以及他們與場景的身體互動而變得更加復雜。雖然現有的文獻探索了其中的一些線索,但它們主要忽略了每個人未來軌跡的多模態性質。在本文中,我們提出了一個基于圖的生成式對抗網絡Social-BiGAT,它通過更好地建模場景中行人的社交互來生成真實的多模態軌跡預測。我們的方法是基于一個圖注意力網絡(GAT)學習可靠的特征表示(編碼場景中人類之間的社會交互),以及一個反方向訓練的循環編解碼器體系結構(根據特征預測人類的路徑)。我們明確地解釋了預測問題的多模態性質,通過在每個場景與其潛在噪聲向量之間形成一個可逆的變換,就像在Bicycle-GAN中一樣。我們表明了,與現有軌跡預測基準的幾個baseline的比較中,我們的框架達到了最先進的性能。

網址:

7、Scalable Gromov-Wasserstein Learning for Graph Partitioning and Matching

作者:Hongteng Xu, Dixin Luo, Lawrence Carin;

摘要:我們提出了一種可擴展的Gromov-Wasserstein learning (S-GWL) 方法,并建立了一種新的、理論支持的大規模圖分析范式。該方法基于Gromov-Wasserstein discrepancy,是圖上的偽度量。給定兩個圖,與它們的Gromov-Wasserstein discrepancy相關聯的最優傳輸提供了節點之間的對應關系,從而實現了圖的匹配。當其中一個圖具有獨立但自連接的節點時(即,一個斷開連接的圖),最優傳輸表明了其他圖的聚類結構,實現了圖的劃分。利用這一概念,通過學習多觀測圖的Gromov-Wasserstein barycenter圖,將該方法推廣到多圖的劃分與匹配; barycenter圖起到斷開圖的作用,因為它是學習的,所以聚類也是如此。該方法將遞歸K分割機制與正則化近似梯度算法相結合,對于具有V個節點和E條邊的圖,其時間復雜度為O(K(E+V) logk V)。據我們所知,我們的方法是第一次嘗試使Gromov-Wasserstein discrepancy適用于大規模的圖分析,并將圖的劃分和匹配統一到同一個框架中。它優于最先進的圖劃分和匹配方法,實現了精度和效率之間的平衡。

網址:

8、Universal Invariant and Equivariant Graph Neural Networks

作者:Nicolas Keriven, Gabriel Peyré;

摘要:圖神經網絡(GNN)有多種形式,但應該始終是不變的(輸入圖節點的排列不會影響輸出)或等變的(輸入的排列置換輸出)。本文考慮一類特殊的不變和等變網絡,證明了它的一些新的普適性定理。更確切地說,我們考慮具有單個隱藏層的網絡,它是通過應用等變線性算子、點態非線性算子和不變或等變線性算子形成的信道求和而得到的。最近,Maron et al. (2019b)指出,通過允許網絡內部的高階張量化,可以獲得通用不變的GNN。作為第一個貢獻,我們提出了這個結果的另一種證明,它依賴于實值函數代數的Stone-Weierstrass定理。我們的主要貢獻是將這一結果推廣到等變情況,這種情況出現在許多實際應用中,但從理論角度進行的研究較少。證明依賴于一個新的具有獨立意義的廣義等變函數代數Stone-Weierstrass定理。最后,與以往許多考慮固定節點數的設置不同,我們的結果表明,由一組參數定義的GNN可以很好地近似于在不同大小的圖上定義的函數。

網址:

付費5元查看完整內容
北京阿比特科技有限公司